Search results for: nonlinear static analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28708

Search results for: nonlinear static analysis

27388 The Environmental Impact of Sustainability Dispersion of Chlorine Releases in Coastal Zone of Alexandra: Spatial-Ecological Modeling

Authors: Mohammed El Raey, Moustafa Osman Mohammed

Abstract:

The spatial-ecological modeling is relating sustainable dispersions with social development. Sustainability with spatial-ecological model gives attention to urban environments in the design review management to comply with Earth’s System. Naturally exchange patterns of ecosystems have consistent and periodic cycles to preserve energy flows and materials in Earth’s System. The probabilistic risk assessment (PRA) technique is utilized to assess the safety of industrial complex. The other analytical approach is the Failure-Safe Mode and Effect Analysis (FMEA) for critical components. The plant safety parameters are identified for engineering topology as employed in assessment safety of industrial ecology. In particular, the most severe accidental release of hazardous gaseous is postulated, analyzed and assessment in industrial region. The IAEA- safety assessment procedure is used to account the duration and rate of discharge of liquid chlorine. The ecological model of plume dispersion width and concentration of chlorine gas in the downwind direction is determined using Gaussian Plume Model in urban and ruler areas and presented with SURFER®. The prediction of accident consequences is traced in risk contour concentration lines. The local greenhouse effect is predicted with relevant conclusions. The spatial-ecological model is also predicted the distribution schemes from the perspective of pollutants that considered multiple factors of multi-criteria analysis. The data extends input–output analysis to evaluate the spillover effect, and conducted Monte Carlo simulations and sensitivity analysis. Their unique structure is balanced within “equilibrium patterns”, such as the biosphere and collective a composite index of many distributed feedback flows. These dynamic structures are related to have their physical and chemical properties and enable a gradual and prolonged incremental pattern. While this spatial model structure argues from ecology, resource savings, static load design, financial and other pragmatic reasons, the outcomes are not decisive in artistic/ architectural perspective. The hypothesis is an attempt to unify analytic and analogical spatial structure for development urban environments using optimization software and applied as an example of integrated industrial structure where the process is based on engineering topology as optimization approach of systems ecology.

Keywords: spatial-ecological modeling, spatial structure orientation impact, composite structure, industrial ecology

Procedia PDF Downloads 70
27387 The Amount of Conformity of Persian Subject Headlines with Users' Social Tagging

Authors: Amir Reza Asnafi, Masoumeh Kazemizadeh, Najmeh Salemi

Abstract:

Due to the diversity of information resources in the web0.2 environment, which is increasing in number from time to time, the social tagging system should be used to discuss Internet resources. Studying the relevance of social tags to thematic headings can help enrich resources and make them more accessible to resources. The present research is of applied-theoretical type and research method of content analysis. In this study, using the listing method and content analysis, the level of accurate, approximate, relative, and non-conformity of social labels of books available in the field of information science and bibliography of Kitabrah website with Persian subject headings was determined. The exact matching of subject headings with social tags averaged 22 items, the approximate matching of subject headings with social tags averaged 36 items, the relative matching of thematic headings with social tags averaged 36 social items, and the average matching titles did not match the title. The average is 116. According to the findings, the exact matching of subject headings with social labels is the lowest and the most inconsistent. This study showed that the average non-compliance of subject headings with social labels is even higher than the sum of the three types of exact, relative, and approximate matching. As a result, the relevance of thematic titles to social labels is low. Due to the fact that the subject headings are in the form of static text and users are not allowed to interact and insert new selected words and topics, and on the other hand, in websites based on Web 2 and based on the social classification system, this possibility is available for users. An important point of the present study and the studies that have matched the syntactic and semantic matching of social labels with thematic headings is that the degree of conformity of thematic headings with social labels is low. Therefore, these two methods can complement each other and create a hybrid cataloging that includes subject headings and social tags. The low level of conformity of thematic headings with social tags confirms the results of backgrounds and writings that have compared the social tags of books with the thematic headings of the Library of Congress. It is not enough to match social labels with thematic headings. It can be said that these two methods can be complementary.

Keywords: Web 2/0, social tags, subject headings, hybrid cataloging

Procedia PDF Downloads 153
27386 Series Solutions to Boundary Value Differential Equations

Authors: Armin Ardekani, Mohammad Akbari

Abstract:

We present a method of generating series solutions to large classes of nonlinear differential equations. The method is well suited to be adapted in mathematical software and unlike the available commercial solvers, we are capable of generating solutions to boundary value ODEs and PDEs. Many of the generated solutions converge to closed form solutions. Our method can also be applied to systems of ODEs or PDEs, providing all the solutions efficiently. As examples, we present results to many difficult differential equations in engineering fields.

Keywords: computational mathematics, differential equations, engineering, series

Procedia PDF Downloads 330
27385 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second

Authors: P. V. Pramila , V. Mahesh

Abstract:

Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients esulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF 25, PEF,FEF 25-75, FEF50, and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF 25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects). It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.

Keywords: FEV, multivariate adaptive regression splines pulmonary function test, random forest

Procedia PDF Downloads 301
27384 Electrostatic Solitary Waves in Degenerate Relativistic Quantum Plasmas

Authors: Sharmin Sultana, Reinhard Schlickeiser

Abstract:

A degenerate relativistic quantum plasma (DRQP) system (containing relativistically degenerate electrons, degenerate/non-degenerate light nuclei, and non-degenerate heavy nuclei) is considered to investigate the propagation characteristics of electrostatic solitary waves (in the ionic scale length) theoretically and numerically. The ion-acoustic solitons are found to be associated with the modified ion-acoustic waves (MIAWs) in which inertia (restoring force) is provided by mass density of the light or heavy nuclei (degenerate pressure of the cold electrons). A mechanical-motion analog (Sagdeev-type) pseudo-potential approach is adopted to study the properties of large amplitude solitary waves. The basic properties of the large amplitude MIAWs and their existence domain in terms of soliton speed (Mach number) are examined. On the other hand, a multi-scale perturbation approach, leading to an evolution equation for the envelope dynamics, is adopted to derive the cubic nonlinear Schrödinger equation (NLSE). The criteria for the occurrence of modulational instability (MI) of the MIAWs are analyzed via the nonlinear dispersion relation of the NLSE. The possibility for the formation of highly energetic localized modes (e.g. peregrine solitons, rogue waves, etc.) is predicted in such DRQP medium. Peregrine solitons or rogue waves with amplitudes of several times of the background are observed to form in DRQP. The basic features of these modulated waves (e.g. envelope solitons, peregrine solitons, and rogue waves), which are found to form in DRQP, and their MI criteria (on the basis of different intrinsic plasma parameters), are investigated. It is emphasized that our results should be useful in understanding the propagation characteristics of localized disturbances and the modulation dynamics of envelope solitons, and their instability criteria in astrophysical DRQP system (e.g. white dwarfs, neutron stars, etc., where matters under extreme conditions are assumed to exist) and also in ultra-high density experimental plasmas.

Keywords: degenerate plasma, envelope solitons, modified ion-acoustic waves, modulational instability, rogue waves

Procedia PDF Downloads 189
27383 Asynchronous Sequential Machines with Fault Detectors

Authors: Seong Woo Kwak, Jung-Min Yang

Abstract:

A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.

Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector

Procedia PDF Downloads 335
27382 Development of Equivalent Inelastic Springs to Model C-Devices

Authors: Oday Al-Mamoori, J. Enrique Martinez-Rueda

Abstract:

'C' shape yielding devices (C-devices) are effective tools for introducing supplemental sources of energy dissipation by hysteresis. Studies have shown that C-devices made of mild steel can be successfully applied as integral parts of seismic retrofitting schemes. However, explicit modelling of these devices can become cumbersome, expensive and time consuming. The device under study in this article has been previously used in non-invasive dissipative bracing for seismic retrofitting. The device is cut from a mild steel plate and has an overall shape that resembles that of a rectangular portal frame with circular interior corner transitions to avoid stress concentration and to control the extension of the dissipative region of the device. A number of inelastic finite element (FE) analyses using either inelastic 2D plane stress elements or inelastic fibre frame elements are reported and used to calibrate a 1D equivalent inelastic spring model that effectively reproduces the cyclic response of the device. The more elaborate FE model accounts for the frictional forces developed between the steel plate and the bolts used to connect the C-device to structural members. FE results also allow the visualization of the inelastic regions of the device where energy dissipation is expected to occur. FE analysis results are in a good agreement with experimental observations.

Keywords: C-device, equivalent nonlinear spring, FE analyses, reversed cyclic tests

Procedia PDF Downloads 127
27381 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding

Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang

Abstract:

As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.

Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis

Procedia PDF Downloads 17
27380 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 581
27379 Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley

Authors: Bijit Kalita, K. V. N. Surendra

Abstract:

Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts.

Keywords: crack-tip deformations, static loading, stress concentration, stress intensity factor

Procedia PDF Downloads 135
27378 Fokas-Lenells Equation Conserved Quantities and Landau-Lifshitz System

Authors: Riki Dutta, Sagardeep Talukdar, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

Fokas-Lenells equation (FLE) is one of the integrable nonlinear equations use to describe the propagation of ultrashort optical pulses in an optical medium. A 2x2 Lax pair has been introduced for the FLE and from that solving the Riccati equation yields infinitely many conserved quantities. Thereafter for a new field function (S) of the Landau-Lifshitz (LL) system, a gauge equivalence of the FLE with the generalised LL equation has been derived. We hope our findings are useful for the application purpose of FLE in optics and other branches of physics.

Keywords: conserved quantities, fokas-lenells equation, landau-lifshitz equation, lax pair

Procedia PDF Downloads 97
27377 Analytical Study of the Structural Response to Near-Field Earthquakes

Authors: Isidro Perez, Maryam Nazari

Abstract:

Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.

Keywords: near-field, pulse, pushover, time-history

Procedia PDF Downloads 134
27376 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems

Authors: Ho Yeon Park, Kyoung-Jae Kim

Abstract:

The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.

Keywords: sub-group analysis, social media, social network analysis, recommender systems

Procedia PDF Downloads 352
27375 Multiscale Modeling of Damage in Textile Composites

Authors: Jaan-Willem Simon, Bertram Stier, Brett Bednarcyk, Evan Pineda, Stefanie Reese

Abstract:

Textile composites, in which the reinforcing fibers are woven or braided, have become very popular in numerous applications in aerospace, automotive, and maritime industry. These textile composites are advantageous due to their ease of manufacture, damage tolerance, and relatively low cost. However, physics-based modeling of the mechanical behavior of textile composites is challenging. Compared to their unidirectional counterparts, textile composites introduce additional geometric complexities, which cause significant local stress and strain concentrations. Since these internal concentrations are primary drivers of nonlinearity, damage, and failure within textile composites, they must be taken into account in order for the models to be predictive. The macro-scale approach to modeling textile-reinforced composites treats the whole composite as an effective, homogenized material. This approach is very computationally efficient, but it cannot be considered predictive beyond the elastic regime because the complex microstructural geometry is not considered. Further, this approach can, at best, offer a phenomenological treatment of nonlinear deformation and failure. In contrast, the mesoscale approach to modeling textile composites explicitly considers the internal geometry of the reinforcing tows, and thus, their interaction, and the effects of their curved paths can be modeled. The tows are treated as effective (homogenized) materials, requiring the use of anisotropic material models to capture their behavior. Finally, the micro-scale approach goes one level lower, modeling the individual filaments that constitute the tows. This paper will compare meso- and micro-scale approaches to modeling the deformation, damage, and failure of textile-reinforced polymer matrix composites. For the mesoscale approach, the woven composite architecture will be modeled using the finite element method, and an anisotropic damage model for the tows will be employed to capture the local nonlinear behavior. For the micro-scale, two different models will be used, the one being based on the finite element method, whereas the other one makes use of an embedded semi-analytical approach. The goal will be the comparison and evaluation of these approaches to modeling textile-reinforced composites in terms of accuracy, efficiency, and utility.

Keywords: multiscale modeling, continuum damage model, damage interaction, textile composites

Procedia PDF Downloads 343
27374 Climate Change Adaptation in Agriculture: A General Equilibrium Analysis of Land Re-Allocation in Nepal

Authors: Sudarshan Chalise, Athula Naranpanawa

Abstract:

This paper attempts to investigate the viability of cropland re-allocation as an adaptation strategy to minimise the economy-wide costs of climate change on agriculture. Nepal makes an interesting case study as it is one of the most vulnerable agricultural economies within South Asia. This paper develops a comparative static multi-household Computable General Equilibrium (CGE) model for Nepal with a nested set of Constant Elasticity of Transformation (CET) functional forms to model the allocation of land within different agricultural sectors. Land transformation elasticities in these CET functions are allowed to reflect the ease of switching from one crop to another based on their agronomic characteristics. The results suggest that, in the long run, farmers in Nepal tend to allocate land to crops that are comparatively less impacted by climate change, such as paddy, thereby minimizing the economy-wide impacts of climate change. Furthermore, the results reveal that land re-allocation tends to reduce the income disparity among different household groups by significantly moderating the income losses of rural marginal farmers. Therefore, it is suggested that policy makers in Nepal should prioritise schemes such as providing climate-smart paddy varieties (i.e., those that are resistant to heat, drought and floods) to farmers, subsidising fertilizers, improving agronomic practices, and educating farmers to switch from crops that are highly impacted by climate change to those that are not, such as paddy.

Keywords: climate change, general equilibrium, land re-allocation, nepalese agriculture

Procedia PDF Downloads 321
27373 Solar Photovoltaic Pumping and Water Treatment Tools: A Case Study in Ethiopian Village

Authors: Corinna Barraco, Ornella Salimbene

Abstract:

This research involves the Ethiopian locality of Jeldi (North Africa), an area particularly affected by water shortage and in which the pumping and treatment of drinking water are extremely sensitive issues. The study aims to develop and apply low-cost tools for the design of solar water pumping and water purification systems in a not developed country. Consequently, two technical tools have been implemented in Excel i) Solar photovoltaic Pumping (Spv-P) ii) Water treatment (Wt). The Spv-P tool was applied to the existing well (depth 110 [m], dynamic water level 90 [m], static water level 53 [m], well yield 0.1728 [m³h⁻¹]) in the Jeldi area, where estimated water demand is about 50 [m3d-1]. Through the application of the tool, it was designed the water extraction system of the well, obtaining the number of pumps and solar panels necessary for water pumping from the well of Jeldi. Instead, the second tool Wt has been applied in the subsequent phase of extracted water treatment. According to the chemical-physical parameters of the water, Wt returns as output the type of purification treatment(s) necessary to potable the extracted water. In the case of the well of Jeldi, the tool identified a high criticality regarding the turbidity parameter (12 [NTU] vs 5 [NTU]), and a medium criticality regarding the exceeding limits of sodium concentration (234 [mg/L Na⁺] vs 200 [mg/L Na⁺]) and ammonia (0.64 [mg/L NH³-N] vs 0.5 [mg/L NH³-N]). To complete these tools, two specific manuals are provided for the users. The joint use of the two tools would help reduce problems related to access to water resources compared to the current situation and represents a simplified solution for the design of pumping systems and analysis of purification treatments to be performed in undeveloped countries.

Keywords: drinking water, Ethiopia, treatments, water pumping

Procedia PDF Downloads 145
27372 Impact of Simulated Brain Interstitial Fluid Flow on the Chemokine CXC-Chemokine-Ligand-12 Release From an Alginate-Based Hydrogel

Authors: Wiam El Kheir, Anais Dumais, Maude Beaudoin, Bernard Marcos, Nick Virgilio, Benoit Paquette, Nathalie Faucheux, Marc-Antoine Lauzon

Abstract:

The high infiltrative pattern of glioblastoma multiforme cells (GBM) is the main cause responsible for the actual standard treatments failure. The tumor high heterogeneity, the interstitial fluid flow (IFF) and chemokines guides GBM cells migration in the brain parenchyma resulting in tumor recurrence. Drug delivery systems emerged as an alternative approach to develop effective treatments for the disease. Some recent studies have proposed to harness the effect CXC-lchemokine-ligand-12 to direct and control the cancer cell migration through delivery system. However, the dynamics of the brain environment on the delivery system remains poorly understood. Nanoparticles (NPs) and hydrogels are known as good carriers for the encapsulation of different agents and control their release. We studied the release of CXCL12 (free or loaded into NPs) from an alginate-based hydrogel under static and indirect perfusion (IP) conditions. Under static conditions, the main phenomena driving CXCL12 release from the hydrogel was diffusion with the presence of strong interactions between the positively charged CXCL12 and the negatively charge alginate. CXCL12 release profiles were independent from the initial mass loadings. Afterwards, we demonstrated that the release could tuned by loading CXCL12 into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded them into alginate-hydrogel. The initial burst release was substantially attenuated and the overall cumulative release percentages of 21%, 16% and 7% were observed for initial mass loadings of 0.07, 0.13 and 0.26 µg, respectively, suggesting stronger electrostatic interactions. Results were mathematically modeled based on Fick’s second law of diffusion framework developed previously to estimate the effective diffusion coefficient (Deff) and the mass transfer coefficient. Embedding the CXCL12 into NPs decreased the Deff an order of magnitude, which was coherent with experimental data. Thereafter, we developed an in-vitro 3D model that takes into consideration the convective contribution of the brain IFF to study CXCL12 release in an in-vitro microenvironment that mimics as faithfully as possible the human brain. From is unique design, the model also allowed us to understand the effect of IP on CXCL12 release in respect to time and space. Four flow rates (0.5, 3, 6.5 and 10 µL/min) which may increase CXCL12 release in-vivo depending on the tumor location were assessed. Under IP, cumulative percentages varying between 4.5-7.3%, 23-58.5%, 77.8-92.5% and 89.2-95.9% were released for the three initial mass loadings of 0.08, 0.16 and 0.33 µg, respectively. As the flow rate increase, IP culture conditions resulted in a higher release of CXCL12 compared to static conditions as the convection contribution became the main driving mass transport phenomena. Further, depending on the flow rate, IP had a direct impact on CXCL12 distribution within the simulated brain tissue, which illustrates the importance of developing such 3D in-vitro models to assess the efficiency of a delivery system targeting the brain. In future work, using this very model, we aim to understand the impact of the different phenomenon occurring on GBM cell behaviors in response to the resulting chemokine gradient subjected to various flow while allowing them to express their invasive characteristics in an in-vitro microenvironment that mimics the in-vivo brain parenchyma.

Keywords: 3D culture system, chemokines gradient, glioblastoma multiforme, kinetic release, mathematical modeling

Procedia PDF Downloads 76
27371 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values

Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec

Abstract:

A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.

Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods

Procedia PDF Downloads 288
27370 Calibration of Resistance Factors for Reliability-Based Design of Driven Piles Considering Unsaturated Soil Effects

Authors: Mohammad Amin Tutunchian, Pedram Roshani, Reza Rezvani, Julio Ángel Infante Sedano

Abstract:

The highly recommended approach to design, known as the load and resistance factor design (LRFD) method, employs the geotechnical resistance factor (GRF) for shaping pile foundation designs. Within the standard process for designing pile foundations, geotechnical engineers commonly adopt a design strategy rooted in saturated soil mechanics (SSM), often disregarding the impact of unsaturated soil behavior. This oversight within the design procedure leads to the omission of the enhancement in shear strength exhibited by unsaturated soils, resulting in a more cautious outcome in design results. This research endeavors to present a methodology for fine-tuning the GRF used for axially loaded driven piles in Winnipeg, Canada. This is achieved through the application of a well-established probabilistic approach known as the first-order second moment (FOSM) method while also accounting for the influence of unsaturated soil behavior. The findings of this study demonstrate that incorporating the influence of unsaturated conditions yields an elevation in projected bearing capacity and recommends higher GRF values in accordance with established codes. Additionally, a novel factor referred to as phy has been introduced to encompass the impact of saturation conditions in the calculation of pile bearing capacity, as guided by prevalent static analysis techniques.

Keywords: unsaturated soils, shear strength, LRFD, FOSM, GRF

Procedia PDF Downloads 80
27369 Sentiment Analysis: Comparative Analysis of Multilingual Sentiment and Opinion Classification Techniques

Authors: Sannikumar Patel, Brian Nolan, Markus Hofmann, Philip Owende, Kunjan Patel

Abstract:

Sentiment analysis and opinion mining have become emerging topics of research in recent years but most of the work is focused on data in the English language. A comprehensive research and analysis are essential which considers multiple languages, machine translation techniques, and different classifiers. This paper presents, a comparative analysis of different approaches for multilingual sentiment analysis. These approaches are divided into two parts: one using classification of text without language translation and second using the translation of testing data to a target language, such as English, before classification. The presented research and results are useful for understanding whether machine translation should be used for multilingual sentiment analysis or building language specific sentiment classification systems is a better approach. The effects of language translation techniques, features, and accuracy of various classifiers for multilingual sentiment analysis is also discussed in this study.

Keywords: cross-language analysis, machine learning, machine translation, sentiment analysis

Procedia PDF Downloads 702
27368 Sentiment Analysis in Social Networks Sites Based on a Bibliometrics Analysis: A Comprehensive Analysis and Trends for Future Research Planning

Authors: Jehan Fahim M. Alsulami

Abstract:

Academic research about sentiment analysis in sentiment analysis has obtained significant advancement over recent years and is flourishing from the collection of knowledge provided by various academic disciplines. In the current study, the status and development trend of the field of sentiment analysis in social networks is evaluated through a bibliometric analysis of academic publications. In particular, the distributions of publications and citations, the distribution of subject, predominant journals, authors, countries are analyzed. The collaboration degree is applied to measure scientific connections from different aspects. Moreover, the keyword co-occurrence analysis is used to find out the major research topics and their evolutions throughout the time span. The area of sentiment analysis in social networks has gained growing attention in academia, with computer science and engineering as the top main research subjects. China and the USA provide the most to the area development. Authors prefer to collaborate more with those within the same nation. Among the research topics, newly risen topics such as COVID-19, customer satisfaction are discovered.

Keywords: bibliometric analysis, sentiment analysis, social networks, social media

Procedia PDF Downloads 207
27367 Data-Driven Analysis of Velocity Gradient Dynamics Using Neural Network

Authors: Nishant Parashar, Sawan S. Sinha, Balaji Srinivasan

Abstract:

We perform an investigation of the unclosed terms in the evolution equation of the velocity gradient tensor (VGT) in compressible decaying turbulent flow. Velocity gradients in a compressible turbulent flow field influence several important nonlinear turbulent processes like cascading and intermittency. In an attempt to understand the dynamics of the velocity gradients various researchers have tried to model the unclosed terms in the evolution equation of the VGT. The existing models proposed for these unclosed terms have limited applicability. This is mainly attributable to the complex structure of the higher order gradient terms appearing in the evolution equation of VGT. We investigate these higher order gradients using the data from direct numerical simulation (DNS) of compressible decaying isotropic turbulent flow. The gas kinetic method aided with weighted essentially non-oscillatory scheme (WENO) based flow- reconstruction is employed to generate DNS data. By applying neural-network to the DNS data, we map the structure of the unclosed higher order gradient terms in the evolution of the equation of the VGT with VGT itself. We validate our findings by performing alignment based study of the unclosed higher order gradient terms obtained using the neural network with the strain rate eigenvectors.

Keywords: compressible turbulence, neural network, velocity gradient tensor, direct numerical simulation

Procedia PDF Downloads 161
27366 Thermodynamic Behaviour of Binary Mixtures of 1, 2-Dichloroethane with Some Cyclic Ethers: Experimental Results and Modelling

Authors: Fouzia Amireche-Ziar, Ilham Mokbel, Jacques Jose

Abstract:

The vapour pressures of the three binary mixtures: 1, 2- dichloroethane + 1,3-dioxolane, + 1,4-dioxane or + tetrahydropyrane, are carried out at ten temperatures ranging from 273 to 353.15 K. An accurate static device was employed for these measurements. The VLE data were reduced using the Redlich-Kister equation by taking into consideration the vapour pressure non-ideality in terms of the second molar virial coefficient. The experimental data were compared to the results predicted with the DISQUAC and Dortmund UNIFAC group contribution models for the total pressures P and the excess molar Gibbs energies GE.

Keywords: disquac model, dortmund UNIFAC model, excess molar Gibbs energies GE, VLE

Procedia PDF Downloads 253
27365 Capability of Intelligent Techniques for Friction Factor Simulation in Water Channels

Authors: Kiyoumars Roushangar, Shabnam Mirheidarian

Abstract:

This study proposes metamodel approaches as a new intelligent technique for the explicit formulation of friction factors of water conveyance structures. For this purpose, experimental data of a movable bed flume with dune bed form were used. Analyzing the result clears the high capability of metamodel approaches (MNE= 0.05, R= 0.92) as a powerful tool for optimizing and explicit simulation of Manning's roughness coefficients of water conveyance structures compared to other nonlinear approaches.

Keywords: intelligent techniques, explicit simulation, roughness coefficient, water conveyance structure

Procedia PDF Downloads 462
27364 Offshore Facilities Load Out: Case Study of Jacket Superstructure Loadout by Strand Jacking Skidding Method

Authors: A. Rahim Baharudin, Nor Arinee binti Mat Saaud, Muhammad Afiq Azman, Farah Adiba A. Sani

Abstract:

Objectives: This paper shares the case study on the engineering analysis, data analysis, and real-time data comparison for qualifying the stand wires' minimum breaking load and safe working load upon loadout operation for a new project and, at the same time, eliminate the risk due to discrepancies and unalignment of COMPANY Technical Standards to Industry Standards and Practices. This paper demonstrates “Lean Construction” for COMPANY’s Project by sustaining fit-for-purpose Technical Requirements of Loadout Strand Wire Factor of Safety (F.S). The case study utilizes historical engineering data from a few loadout operations by skidding methods from different projects. It is also demonstrating and qualifying the skidding wires' minimum breaking load and safe working load used for loadout operation for substructure and other facilities for the future. Methods: Engineering analysis and comparison of data were taken as referred to the international standard and internal COMPANY standard requirements. Data was taken from nine (9) previous projects for both topsides and jacket facilities executed at the several local fabrication yards where load out was conducted by three (3) different service providers with emphasis on four (4) basic elements: i) Industry Standards for Loadout Engineering and Operation Reference: COMPANY internal standard was referred to superseded documents of DNV-OS-H201 and DNV/GL 0013/ND. DNV/GL 0013/ND and DNVGL-ST-N001 do not mention any requirements of Strand Wire F.S of 4.0 for Skidding / Pulling Operations. ii) Reference to past Loadout Engineering and Execution Package: Reference was made to projects delivered by three (3) major offshore facilities operators. Strand Wire F.S observed ranges from 2.0 MBL (Min) to 2.5 MBL (Max). No Loadout Operation using the requirements of 4.0 MBL was sighted from the reference. iii) Strand Jack Equipment Manufacturer Datasheet Reference: Referring to Strand Jack Equipment Manufactured Datasheet by different loadout service providers, it is shown that the Designed F.S for the equipment is also ranging between 2.0 ~ 2.5. Eight (8) Strand Jack Datasheet Model was referred to, ranging from 15 Mt to 850 Mt Capacity; however, there are NO observations of designed F.S 4.0 sighted. iv) Site Monitoring on Actual Loadout Data and Parameter: Max Load on Strand Wire was captured during 2nd Breakout, which is during Static Condition of 12.9 MT / Strand Wire (67.9% Utilization). Max Load on Strand Wire for Dynamic Conditions during Step 8 and Step 12 is 9.4 Mt / Strand Wire (49.5% Utilization). Conclusion: This analysis and study demonstrated the adequacy of strand wires supplied by the service provider were technically sufficient in terms of strength, and via engineering analysis conducted, the minimum breaking load and safe working load utilized and calculated for the projects were satisfied and operated safely for the projects. It is recommended from this study that COMPANY’s technical requirements are to be revised for future projects’ utilization.

Keywords: construction, load out, minimum breaking load, safe working load, strand jacking, skidding

Procedia PDF Downloads 98
27363 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 143
27362 Hand Gesture Recognition for Sign Language: A New Higher Order Fuzzy HMM Approach

Authors: Saad M. Darwish, Magda M. Madbouly, Murad B. Khorsheed

Abstract:

Sign Languages (SL) are the most accomplished forms of gestural communication. Therefore, their automatic analysis is a real challenge, which is interestingly implied to their lexical and syntactic organization levels. Hidden Markov models (HMM’s) have been used prominently and successfully in speech recognition and, more recently, in handwriting recognition. Consequently, they seem ideal for visual recognition of complex, structured hand gestures such as are found in sign language. In this paper, several results concerning static hand gesture recognition using an algorithm based on Type-2 Fuzzy HMM (T2FHMM) are presented. The features used as observables in the training as well as in the recognition phases are based on Singular Value Decomposition (SVD). SVD is an extension of Eigen decomposition to suit non-square matrices to reduce multi attribute hand gesture data to feature vectors. SVD optimally exposes the geometric structure of a matrix. In our approach, we replace the basic HMM arithmetic operators by some adequate Type-2 fuzzy operators that permits us to relax the additive constraint of probability measures. Therefore, T2FHMMs are able to handle both random and fuzzy uncertainties existing universally in the sequential data. Experimental results show that T2FHMMs can effectively handle noise and dialect uncertainties in hand signals besides a better classification performance than the classical HMMs. The recognition rate of the proposed system is 100% for uniform hand images and 86.21% for cluttered hand images.

Keywords: hand gesture recognition, hand detection, type-2 fuzzy logic, hidden Markov Model

Procedia PDF Downloads 453
27361 Anomaly Detection Based on System Log Data

Authors: M. Kamel, A. Hoayek, M. Batton-Hubert

Abstract:

With the increase of network virtualization and the disparity of vendors, the continuous monitoring and detection of anomalies cannot rely on static rules. An advanced analytical methodology is needed to discriminate between ordinary events and unusual anomalies. In this paper, we focus on log data (textual data), which is a crucial source of information for network performance. Then, we introduce an algorithm used as a pipeline to help with the pretreatment of such data, group it into patterns, and dynamically label each pattern as an anomaly or not. Such tools will provide users and experts with continuous real-time logs monitoring capability to detect anomalies and failures in the underlying system that can affect performance. An application of real-world data illustrates the algorithm.

Keywords: logs, anomaly detection, ML, scoring, NLP

Procedia PDF Downloads 85
27360 Challenges in Video Based Object Detection in Maritime Scenario Using Computer Vision

Authors: Dilip K. Prasad, C. Krishna Prasath, Deepu Rajan, Lily Rachmawati, Eshan Rajabally, Chai Quek

Abstract:

This paper discusses the technical challenges in maritime image processing and machine vision problems for video streams generated by cameras. Even well documented problems of horizon detection and registration of frames in a video are very challenging in maritime scenarios. More advanced problems of background subtraction and object detection in video streams are very challenging. Challenges arising from the dynamic nature of the background, unavailability of static cues, presence of small objects at distant backgrounds, illumination effects, all contribute to the challenges as discussed here.

Keywords: autonomous maritime vehicle, object detection, situation awareness, tracking

Procedia PDF Downloads 443
27359 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.

Keywords: epidemic model, HIV, MCMC, parameter estimation

Procedia PDF Downloads 591