Search results for: iterated function systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13553

Search results for: iterated function systems

12293 Integrated Life Skill Training and Executive Function Strategies in Children with Autism Spectrum Disorder in Qatar: A Study Protocol for a Randomized Controlled Trial

Authors: Bara M Yousef, Naresh B Raj, Nadiah W Arfah, Brightlin N Dhas

Abstract:

Background: Executive function (EF) impairment is common in children with autism spectrum disorder (ASD). EF strategies are considered effective in improving the therapeutic outcomes of children with ASD. Aims: This study primarily aims to explore whether integrating EF strategies combined with regular occupational therapy intervention is more effective in improving daily life skills (DLS) and sensory integration/processing (SI/SP) skills than regular occupational therapy alone in children with ASD and secondarily aims to assess treatment outcomes on improving visual motor integration (VMI) skills. Procedures: A total of 92 children with ASD will be recruited and, following baseline assessments, randomly assigned to the treatment group (45-min once weekly individual occupational therapy plus EF strategies) and control group (45-min once weekly individual therapy sessions alone). Results and Outcomes: All children will be evaluated systematically by assessing SI/SP, DLS, and VMI, skills at baseline, 7 weeks, and 14 weeks of treatment. Data will be analyzed using ANCOVA and T-test. Conclusions and Implications: This single-blind, randomized controlled trial will provide empirical evidence for the effectiveness of EF strategies when combined with regular occupational therapy programs. Based on trial results, EF strategies could be recommended in multidisciplinary programs for children with ASD. Trial Registration: The trial has been registered in the clinicaltrail.gov for a registry, protocol ID: MRC-01-22-509 ClinicalTrials.gov Identifier: NCT05829577, registered 25th April 2023

Keywords: autism spectrum disorder, executive function strategies, daily life skills, sensory integration/processing, visual motor integration, occupational therapy, effectiveness

Procedia PDF Downloads 112
12292 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization

Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir

Abstract:

Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.

Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink

Procedia PDF Downloads 103
12291 Roadmaps as a Tool of Innovation Management: System View

Authors: Matich Lyubov

Abstract:

Today roadmaps are becoming commonly used tools for detecting and designing a desired future for companies, states and the international community. The growing popularity of this method puts tasks such as identifying basic roadmapping principles, creation of concepts and determination of the characteristics of the use of roadmaps depending on the objectives as well as restrictions and opportunities specific to the study area on the agenda. However, the system approach, e.g. the elements which are recognized to be major for high-quality roadmapping, remains one of the main fields for improving the methodology and practice of their development as limited research was devoted to the detailed analysis of the roadmaps from the view of system approach. Therefore, this article is an attempt to examine roadmaps from the view of the system analysis, to compare areas, where, as a rule, roadmaps and systems analysis are considered the most effective tools. To compare the structure and composition of roadmaps and systems models the identification of common points between construction stages of roadmaps and system modeling and the determination of future directions for research roadmaps from a systems perspective are of special importance.

Keywords: technology roadmap, roadmapping, systems analysis, system modeling, innovation management

Procedia PDF Downloads 306
12290 Introducing Design Principles for Clinical Decision Support Systems

Authors: Luca Martignoni

Abstract:

The increasing usage of clinical decision support systems in healthcare and the demand for software that enables doctors to take informed decisions is changing everyday clinical practice. However, as technology advances not only are the benefits of technology growing, but so are the potential risks. A growing danger is the doctors’ over-reliance on the proposed decision of the clinical decision support system, leading towards deskilling and rash decisions by doctors. In that regard, identifying doctors' requirements for software and developing approaches to prevent technological over-reliance is of utmost importance. In this paper, we report the results of a design science research study, focusing on the requirements and design principles of ultrasound software. We conducted a total of 15 interviews with experts about poten-tial ultrasound software functions. Subsequently, we developed meta-requirements and design principles to design future clinical decision support systems efficiently and as free from the occur-rence of technological over-reliance as possible.

Keywords: clinical decision support systems, technological over-reliance, design principles, design science research

Procedia PDF Downloads 97
12289 Building Scalable and Accurate Hybrid Kernel Mapping Recommender

Authors: Hina Iqbal, Mustansar Ali Ghazanfar, Sandor Szedmak

Abstract:

Recommender systems uses artificial intelligence practices for filtering obscure information and can predict if a user likes a specified item. Kernel mapping Recommender systems have been proposed which are accurate and state-of-the-art algorithms and resolve recommender system’s design objectives such as; long tail, cold-start, and sparsity. The aim of research is to propose hybrid framework that can efficiently integrate different versions— namely item-based and user-based KMR— of KMR algorithm. We have proposed various heuristic algorithms that integrate different versions of KMR (into a unified framework) resulting in improved accuracy and elimination of problems associated with conventional recommender system. We have tested our system on publically available movies dataset and benchmark with KMR. The results (in terms of accuracy, precision, recall, F1 measure and ROC metrics) reveal that the proposed algorithm is quite accurate especially under cold-start and sparse scenarios.

Keywords: Kernel Mapping Recommender Systems, hybrid recommender systems, cold start, sparsity, long tail

Procedia PDF Downloads 332
12288 Off-Body Sub-GHz Wireless Channel Characterization for Dairy Cows in Barns

Authors: Said Benaissa, David Plets, Emmeric Tanghe, Jens Trogh, Luc Martens, Leen Vandaele, Annelies Van Nuffel, Frank A. M. Tuyttens, Bart Sonck, Wout Joseph

Abstract:

The herd monitoring and managing - in particular the detection of ‘attention animals’ that require care, treatment or assistance is crucial for effective reproduction status, health, and overall well-being of dairy cows. In large sized farms, traditional methods based on direct observation or analysis of video recordings become labour-intensive and time-consuming. Thus, automatic monitoring systems using sensors have become increasingly important to continuously and accurately track the health status of dairy cows. Wireless sensor networks (WSNs) and internet-of-things (IoT) can be effectively used in health tracking of dairy cows to facilitate herd management and enhance the cow welfare. Since on-cow measuring devices are energy-constrained, a proper characterization of the off-body wireless channel between the on-cow sensor nodes and the back-end base station is required for a power-optimized deployment of these networks in barns. The aim of this study was to characterize the off-body wireless channel in indoor (barns) environment at 868 MHz using LoRa nodes. LoRa is an emerging wireless technology mainly targeted at WSNs and IoT networks. Both large scale fading (i.e., path loss) and temporal fading were investigated. The obtained path loss values as a function of the transmitter-receiver separation were well fitted by a lognormal path loss model. The path loss showed an additional increase of 4 dB when the wireless node was actually worn by the cow. The temporal fading due to movement of other cows was well described by Rician distributions with a K-factor of 8.5 dB. Based on this characterization, network planning and energy consumption optimization of the on-body wireless nodes could be performed, which enables the deployment of reliable dairy cow monitoring systems.

Keywords: channel, channel modelling, cow monitoring, dairy cows, health monitoring, IoT, LoRa, off-body propagation, PLF, propagation

Procedia PDF Downloads 314
12287 Application of Support Vector Machines in Forecasting Non-Residential

Authors: Wiwat Kittinaraporn, Napat Harnpornchai, Sutja Boonyachut

Abstract:

This paper deals with the application of a novel neural network technique, so-called Support Vector Machine (SVM). The objective of this study is to explore the variable and parameter of forecasting factors in the construction industry to build up forecasting model for construction quantity in Thailand. The scope of the research is to study the non-residential construction quantity in Thailand. There are 44 sets of yearly data available, ranging from 1965 to 2009. The correlation between economic indicators and construction demand with the lag of one year was developed by Apichat Buakla. The selected variables are used to develop SVM models to forecast the non-residential construction quantity in Thailand. The parameters are selected by using ten-fold cross-validation method. The results are indicated in term of Mean Absolute Percentage Error (MAPE). The MAPE value for the non-residential construction quantity predicted by Epsilon-SVR in corporation with Radial Basis Function (RBF) of kernel function type is 5.90. Analysis of the experimental results show that the support vector machine modelling technique can be applied to forecast construction quantity time series which is useful for decision planning and management purpose.

Keywords: forecasting, non-residential, construction, support vector machines

Procedia PDF Downloads 429
12286 A Computationally Intelligent Framework to Support Youth Mental Health in Australia

Authors: Nathaniel Carpenter

Abstract:

Web-enabled systems for supporting youth mental health management in Australia are pioneering in their field; however, with their success, these systems are experiencing exponential growth in demand which is straining an already stretched service. Supporting youth mental is critical as the lack of support is associated with significant and lasting negative consequences. To meet this growing demand, and provide critical support, investigations are needed on evaluating and improving existing online support services. Improvements should focus on developing frameworks capable of augmenting and scaling service provisions. There are few investigations informing best-practice frameworks when implementing e-mental health support systems for youth mental health; there are fewer which implement machine learning or artificially intelligent systems to facilitate the delivering of services. This investigation will use a case study methodology to highlight the design features which are important for systems to enable young people to self-manage their mental health. The investigation will also highlight the current information system challenges, to include challenges associated with service quality, provisioning, and scaling. This work will propose methods of meeting these challenges through improved design, service augmentation and automation, service quality, and through artificially intelligent inspired solutions. The results of this study will inform a framework for supporting youth mental health with intelligent and scalable web-enabled technologies to support an ever-growing user base.

Keywords: artificial intelligence, information systems, machine learning, youth mental health

Procedia PDF Downloads 109
12285 Potentials of Underutilised Crops in the Nigerian Farming Systems for Sustainable Food Production and Economic Empowerment

Authors: Jesse Silas Mshelia, Michael Mamman Degri, Akeweta Emmanuel Samaila

Abstract:

This review was conducted in the North-Eastern part of Nigeria where there are a lot of challenges of poverty and low level of productivity of farmlands as a result of dwindling soil fertility and dependence on crops that are not so much adopted to the soil and climatic condition and the prevailing farming systems of the area which is predominantly mixed cropping. The crops that are neglected are well fitted into this system of production and yield better with the low level of input and management and give a higher profit margin. These crops, the farmers have mastered the production techniques, but do not have the scientific knowledge to improve the quality of the seed and the products hence need the intervention of modern technologies to benefit maximally from the full potentials of these crops.

Keywords: farming systems, neglected crops, potentials, underutilised

Procedia PDF Downloads 371
12284 Nano-Sensors: Search for New Features

Authors: I. Filikhin, B. Vlahovic

Abstract:

We focus on a novel type of detection based on electron tunneling properties of double nanoscale structures in semiconductor materials. Semiconductor heterostructures as quantum wells (QWs), quantum dots (QDs), and quantum rings (QRs) may have energy level structure of several hundred of electron confinement states. The single electron spectra of the double quantum objects (DQW, DQD, and DQR) were studied in our previous works with relation to the electron localization and tunneling between the objects. The wave function of electron may be localized in one of the QDs or be delocalized when it is spread over the whole system. The localizing-delocalizing tunneling occurs when an electron transition between both states is possible. The tunneling properties of spectra differ strongly for “regular” and “chaotic” systems. We have shown that a small violation of the geometry drastically affects localization of electron. In particular, such violations lead to the elimination of the delocalized states of the system. The same symmetry violation effect happens if electrical or magnetic fields are applied. These phenomena could be used to propose a new type of detection based on the high sensitivity of charge transport between double nanostructures and small violations of the shapes. It may have significant technological implications.

Keywords: double quantum dots, single electron levels, tunneling, electron localizations

Procedia PDF Downloads 500
12283 Classifying Time Independent Plane Symmetric Spacetime through Noether`s Approach

Authors: Nazish Iftikhar, Adil Jhangeer, Tayyaba Naz

Abstract:

The universe is expanding at an accelerated rate. Symmetries are useful in understanding universe’s behavior. Emmy Noether reported the relation between symmetries and conservation laws. These symmetries are known as Noether symmetries which correspond to a conserved quantity. In differential equations, conservation laws play an important role. Noether symmetries are helpful in modified theories of gravity. Time independent plane symmetric spacetime was classified by Noether`s theorem. By using Noether`s theorem, set of linear partial differential equations was obtained having A(r), B(r) and F(r) as unknown radial functions. The Lagrangian corresponding to considered spacetime in the Noether equation was used to get Noether operators. Different possibilities of radial functions were considered. Firstly, all functions were same. All the functions were considered as non-zero constant, linear, reciprocal and exponential respectively. Secondly, two functions were proportional to each other keeping third function different. Second case has four subcases in which four different relationships between A(r), B(r) and F(r) were discussed. In all cases, we obtained nontrivial Noether operators including gauge term. Conserved quantities for each Noether operators were also presented.

Keywords: Noether gauge symmetries, radial function, Noether operator, conserved quantities

Procedia PDF Downloads 228
12282 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network

Authors: Abdolreza Memari

Abstract:

In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.

Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model

Procedia PDF Downloads 496
12281 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling

Authors: Adji Achmad Rinaldo Fernandes

Abstract:

Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.

Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline

Procedia PDF Downloads 40
12280 Bit Error Rate Performance of MIMO Systems for Wireless Communications

Authors: E. Ghayoula, M. Haj Taieb, A. Bouallegue, J. Y. Chouinard, R. Ghayoula

Abstract:

This paper evaluates the bit error rate (BER) performance of MIMO systems for wireless communication. MIMO uses multiple transmitting antennas, multiple receiving antennas and the space-time block codes to provide diversity. MIMO transmits signal encoded by space-time block (STBC) encoder through different transmitting antennas. These signals arrive at the receiver at slightly different times. Spatially separated multiple receiving antennas are employed to provide diversity reception to combat the effect of fading in the channel. This paper presents a detailed study of diversity coding for MIMO systems. STBC techniques are implemented and simulation results in terms of the BER performance with varying number of MIMO transmitting and receiving antennas are presented. Our results show how increasing the number of both transmit and receive antenna improves system performance and reduces the bit error rate.

Keywords: MIMO systems, diversity, BER, MRRC, SIMO, MISO, STBC, alamouti, SNR

Procedia PDF Downloads 487
12279 Analytical Solutions to the N-Dimensional Schrödinger Equation with a Collective Potential Model to Study Energy Spectra Andthermodynamic Properties of Selected Diatomic Molecules

Authors: BenedictI Ita, Etido P. Inyang

Abstract:

In this work, the resolutions of the N-dimensional Schrödinger equation with the screened modified Kratzerplus inversely quadratic Yukawa potential (SMKIQYP) have been obtained with the Greene-Aldrich approximation scheme using the Nikiforov-Uvarov method. The eigenvalues and the normalized eigenfunctions are obtained. We then apply the energy spectrum to study four (HCl, N₂, NO, and CO) diatomic molecules. The results show that the energy spectra of these diatomic molecules increase as quantum numbers increase. The energy equation was also used to calculate the partition function and other thermodynamic properties. We predicted the partition function of CO and NO. To check the accuracy of our work, the special case (Modified Kratzer and screened Modified Kratzer potentials) of the collective potential energy eigenvalues agrees excellently with the existing literature.

Keywords: Schrödinger equation, Nikiforov-Uvarov method, modified screened Kratzer, inversely quadratic Yukawa potential, diatomic molecules

Procedia PDF Downloads 79
12278 Streamlining Cybersecurity Risk Assessment for Industrial Control and Automation Systems: Leveraging the National Institute of Standard and Technology’s Risk Management Framework (RMF) Using Model-Based System Engineering (MBSE)

Authors: Gampel Alexander, Mazzuchi Thomas, Sarkani Shahram

Abstract:

The cybersecurity landscape is constantly evolving, and organizations must adapt to the changing threat environment to protect their assets. The implementation of the NIST Risk Management Framework (RMF) has become critical in ensuring the security and safety of industrial control and automation systems. However, cybersecurity professionals are facing challenges in implementing RMF, leading to systems operating without authorization and being non-compliant with regulations. The current approach to RMF implementation based on business practices is limited and insufficient, leaving organizations vulnerable to cyberattacks resulting in the loss of personal consumer data and critical infrastructure details. To address these challenges, this research proposes a Model-Based Systems Engineering (MBSE) approach to implementing cybersecurity controls and assessing risk through the RMF process. The study emphasizes the need to shift to a modeling approach, which can streamline the RMF process and eliminate bloated structures that make it difficult to receive an Authorization-To-Operate (ATO). The study focuses on the practical application of MBSE in industrial control and automation systems to improve the security and safety of operations. It is concluded that MBSE can be used to solve the implementation challenges of the NIST RMF process and improve the security of industrial control and automation systems. The research suggests that MBSE provides a more effective and efficient method for implementing cybersecurity controls and assessing risk through the RMF process. The future work for this research involves exploring the broader applicability of MBSE in different industries and domains. The study suggests that the MBSE approach can be applied to other domains beyond industrial control and automation systems.

Keywords: authorization-to-operate (ATO), industrial control systems (ICS), model-based system’s engineering (MBSE), risk management framework (RMF)

Procedia PDF Downloads 87
12277 The Impact of Introspective Models on Software Engineering

Authors: Rajneekant Bachan, Dhanush Vijay

Abstract:

The visualization of operating systems has refined the Turing machine, and current trends suggest that the emulation of 32 bit architectures will soon emerge. After years of technical research into Web services, we demonstrate the synthesis of gigabit switches, which embodies the robust principles of theory. Loam, our new algorithm for forward-error correction, is the solution to all of these challenges.

Keywords: software engineering, architectures, introspective models, operating systems

Procedia PDF Downloads 532
12276 On Transferring of Transient Signals along Hollow Waveguide

Authors: E. Eroglu, S. Semsit, E. Sener, U.S. Sener

Abstract:

In Electromagnetics, there are three canonical boundary value problem with given initial conditions for the electromagnetic field sought, namely: Cavity Problem, Waveguide Problem, and External Problem. The Cavity Problem and Waveguide Problem were rigorously studied and new results were arised at original works in the past decades. In based on studies of an analytical time domain method Evolutionary Approach to Electromagnetics (EAE), electromagnetic field strength vectors produced by a time dependent source function are sought. The fields are took place in L2 Hilbert space. The source function that performs signal transferring, energy and surplus of energy has been demonstrated with all clarity. Depth of the method and ease of applications are emerged needs of gathering obtained results. Main discussion is about perfect electric conductor and hollow waveguide. Even if well studied time-domain modes problems are mentioned, specifically, the modes which have a hollow (i.e., medium-free) cross-section domain are considered.

Keywords: evolutionary approach to electromagnetics, time-domain waveguide mode, Neumann problem, Dirichlet boundary value problem, Klein-Gordon

Procedia PDF Downloads 324
12275 Serum Interlukin-8 and Immunomodulation in Beta Thalassemia Patients

Authors: Shahira El Shafie, Hanaa Eldash, Engy Ghabbour, Mohamed Eid

Abstract:

Several immunologic defects can be found in patients with beta-thalassemia, among which the impairment of neutrophil phagocytic function is of utmost importance. Attention has been directed to the role of proinflammatory cytokines in neutrophil chemotaxis and phagocytosis. Interleukin-8 (IL-8) is an important chemotactic and activation peptide for neutrophils; changes in IL-8 level and potential correlation with neutrophil function can be relevant to immunomodulation pathophysiology in beta-thalassemia patients. This case-control study aimed to evaluate IL-8 level and to assess granulocyte recruitment, as markers of immunomodulation, in poly-transfused thalassemia patients attending Fayoum University Hospitals. The study was conducted on 50 patients with ß thalassemia and 32 age-matched controls. 21/50 patients were transfused more than ten times, and 29/50 were transfused in a lower frequency. Patients and controls were subjected to thorough history taking and clinical examination, measurement of IL-8 level using human IL-8 ELISA kit, and Rebuck skin window technique (RSWT) to assess granulocyte recruitment. Our data showed statistically significant higher levels of IL-8 in ß thalassemia patients compared to control with a much higher difference in patients transfused more than ten times. Neutrophil recruitment was significantly lower in ß thalassemia patients compared to control at 4 hours and 24 hours test time. Although IL-8, the main chemotactic pro-inflammatory cytokine showed a higher level in thalassemia patients, neutrophils recruitment was significantly lower, especially in those receiving more than ten transfusion times. Our findings suggest a possible role of other neutrophil chemotactic factors, defective neutrophil response, or increased IL-8 as compensation of abnormal function. We recommend the use of IL-8 and Rebuck skin window technique as useful markers of immunomodulation in thalassemia and further study for these biomarkers to assess their clinical implications and impact on the management of thalassemia patients.

Keywords: beta-thalassemia, Interleukin-8, Rebuck skin window technique, immunomodulation

Procedia PDF Downloads 183
12274 The Utilization of Manganese-Enhanced Magnetic Resonance Imaging in the Fields of Ophthalmology and Visual Neuroscience

Authors: Parisa Mansour

Abstract:

Understanding how vision works in both health and disease involves understanding the anatomy and physiology of the eye as well as the neural pathways involved in visual perception. The development of imaging techniques for the visual system is essential for understanding the neural foundation of visual function or impairment. MRI provides a way to examine neural circuit structure and function without invasive procedures, allowing for the detection of brain tissue abnormalities in real time. One of the advanced MRI methods is manganese-enhanced MRI (MEMRI), which utilizes active manganese contrast agents to enhance brain tissue signals in T1-weighted imaging, showcasing connectivity and activity levels. The way manganese ions build up in the eye, and visual pathways can be due to their spread throughout the body or by moving locally along axons in a forward direction and entering neurons through calcium channels that are voltage-gated. The paramagnetic manganese contrast is utilized in MRI for various applications in the visual system, such as imaging neurodevelopment and evaluating neurodegeneration, neuroplasticity, neuroprotection, and neuroregeneration. In this assessment, we outline four key areas of scientific research where MEMRI can play a crucial role - understanding brain structure, mapping nerve pathways, monitoring nerve cell function, and distinguishing between different types of glial cell activity. We discuss various studies that have utilized MEMRI to investigate the visual system, including delivery methods, spatiotemporal features, and biophysical analysis. Based on this literature, we have pinpointed key issues in the field related to toxicity, as well as sensitivity and specificity of manganese enhancement. We will also examine the drawbacks and other options to MEMRI that could offer new possibilities for future exploration.

Keywords: glial activity, manganese-enhanced magnetic resonance imaging, neuroarchitecture, neuronal activity, neuronal tract tracing, visual pathway, eye

Procedia PDF Downloads 34
12273 Photoimpedance Spectroscopy Analysis of Planar and Nano-Textured Thin-Film Silicon Solar Cells

Authors: P. Kumar, D. Eisenhauer, M. M. K. Yousef, Q. Shi, A. S. G. Khalil, M. R. Saber, C. Becker, T. Pullerits, K. J. Karki

Abstract:

In impedance spectroscopy (IS) the response of a photo-active device is analysed as a function of ac bias. It is widely applied in a broad class of material systems and devices. It gives access to fundamental mechanisms of operation of solar cells. We have implemented a method of IS where we modulate the light instead of the bias. This scheme allows us to analyze not only carrier dynamics but also impedance of device locally. Here, using this scheme, we have measured the frequency-dependent photocurrent response of the thin-film planar and nano-textured Si solar cells using this method. Photocurrent response is measured in range of 50 Hz to 50 kHz. Bode and Nyquist plots are used to determine characteristic lifetime of both the cells. Interestingly, the carrier lifetime of both planar and nano-textured solar cells depend on back and front contact positions. This is due to either heterogeneity of device or contacts are not optimized. The estimated average lifetime is found to be shorter for the nano-textured cell, which could be due to the influence of the textured interface on the carrier relaxation dynamics.

Keywords: carrier lifetime, impedance, nano-textured, photocurrent

Procedia PDF Downloads 229
12272 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change

Authors: Moustafa Osman Mohammed

Abstract:

Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.

Keywords: sustainability, environmental impact assessment, environemtal management, construction ecology

Procedia PDF Downloads 390
12271 Monitoring and Evaluation of the Distributed Agricultural Machinery of the Department of Agriculture Using a Web-Based Information System with a Short Messaging Service Technology

Authors: Jimmy L. Caldoza, Erlito M. Albina

Abstract:

Information Systems are increasingly being used to monitor and assess government projects as well as improve transparency and combat corruption. With reference to existing information systems relevant to monitoring and evaluation systems adopted by various government agencies from other countries, this research paper aims to help the Philippine government, particularly the Department of Agriculture, in assessing the impact of their programs and projects on their target beneficiaries through the development of the web-based Monitoring and Evaluation Information System with the application of a short messaging system (sms) technology.

Keywords: monitoring and evaluation system, web-based information system, short messaging system technology, database structure and management

Procedia PDF Downloads 140
12270 Design and Validation of Different Steering Geometries for an All-Terrain Vehicle

Authors: Prabhsharan Singh, Rahul Sindhu, Piyush Sikka

Abstract:

The steering system is an integral part and medium through which the driver communicates with the vehicle and terrain, hence the most suitable steering geometry as per requirements must be chosen. The function of the chosen steering geometry of an All-Terrain Vehicle (ATV) is to provide the desired understeer gradient, minimum tire slippage, expected weight transfer during turning as these are requirements for a good steering geometry of a BAJA ATV. This research paper focuses on choosing the best suitable steering geometry for BAJA ATV tracks by reasoning the working principle and using fundamental trigonometric functions for obtaining these geometries on the same vehicle itself, namely Ackermann, Anti- Ackermann, Parallel Ackermann. Full vehicle analysis was carried out on Adams Car Analysis software, and graphical results were obtained for various parameters. Steering geometries were achieved by using a single versatile knuckle for frontward and rearward tie-rod placement and were practically tested with the help of data acquisition systems set up on the ATV. Each was having certain characteristics, setup, and parameters were observed for the BAJA ATV, and correlations were created between analytical and practical values.

Keywords: all-terrain vehicle, Ackermann, Adams car, Baja Sae, steering geometry, steering system, tire slip, traction, understeer gradient

Procedia PDF Downloads 150
12269 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 124
12268 The Functions of Music in Animated Short Films: Analysing the Scores of the Skeleton Dance, Fox and the Whale and la Vieille Dame et les Pigeons

Authors: Shally Pais

Abstract:

Film music holds a special relationship with the narrative systems and dramaturgical operations in animation. Though the roles of cartoon music closely resemble those fulfilled by traditional film scores, which have been extensively studied, there is a large knowledge gap regarding non-mainstream or non-Hollywood animation music. This paper is an investigation of the understudied compositional materials and narrative contexts in three distinct films by exploring the main narrative and dramaturgical effects of music in The Skeleton Dance, Fox and The Whale, and La Vieille Dame et les Pigeons. The study uses a Neoformalist approach towards qualitative analysis of the music in these films to document ways in which music can be made to function differently depending on the individual films’ contexts and the desired effects to be had on the audience. Consequently, the paper highlights these factors’ influence on the films’ narratives and aims to widen the discourse on composition for animation film scores, suggesting the further study of non-mainstream film music.

Keywords: animation film music, film score analysis, Fox and The Whale, La Vieille Dame et les Pigeons, Neoformalist analysis, The Skeleton Dance

Procedia PDF Downloads 161
12267 Forecast Based on an Empirical Probability Function with an Adjusted Error Using Propagation of Error

Authors: Oscar Javier Herrera, Manuel Angel Camacho

Abstract:

This paper addresses a cutting edge method of business demand forecasting, based on an empirical probability function when the historical behavior of the data is random. Additionally, it presents error determination based on the numerical method technique ‘propagation of errors’. The methodology was conducted characterization and process diagnostics demand planning as part of the production management, then new ways to predict its value through techniques of probability and to calculate their mistake investigated, it was tools used numerical methods. All this based on the behavior of the data. This analysis was determined considering the specific business circumstances of a company in the sector of communications, located in the city of Bogota, Colombia. In conclusion, using this application it was possible to obtain the adequate stock of the products required by the company to provide its services, helping the company reduce its service time, increase the client satisfaction rate, reduce stock which has not been in rotation for a long time, code its inventory, and plan reorder points for the replenishment of stock.

Keywords: demand forecasting, empirical distribution, propagation of error, Bogota

Procedia PDF Downloads 626
12266 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 162
12265 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection

Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman

Abstract:

The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.

Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture

Procedia PDF Downloads 577
12264 Mass Polarization in Three-Body System with Two Identical Particles

Authors: Igor Filikhin, Vladimir M. Suslov, Roman Ya. Kezerashvili, Branislav Vlahivic

Abstract:

The mass-polarization term of the three-body kinetic energy operator is evaluated for different systems which include two identical particles: A+A+B. The term has to be taken into account for the analysis of AB- and AA-interactions based on experimental data for two- and three-body ground state energies. In this study, we present three-body calculations within the framework of a potential model for the kaonic clusters K−K−p and ppK−, nucleus 3H and hypernucleus 6 ΛΛHe. The systems are well clustering as A+ (A+B) with a ground state energy E2 for the pair A+B. The calculations are performed using the method of the Faddeev equations in configuration space. The phenomenological pair potentials were used. We show a correlation between the mass ratio mA/mB and the value δB of the mass-polarization term. For bosonic-like systems, this value is defined as δB = 2E2 − E3, where E3 is three-body energy when VAA = 0. For the systems including three particles with spin(isospin), the models with average AB-potentials are used. In this case, the Faddeev equations become a scalar one like for the bosonic-like system αΛΛ. We show that the additional energy conected with the mass-polarization term can be decomposite to a sum of the two parts: exchenge related and reduced mass related. The state of the system can be described as the following: the particle A1 is bound within the A + B pair with the energy E2, and the second particle A2 is bound with the pair with the energy E3 − E2. Due to the identity of A particles, the particles A1 and A2 are interchangeable in the pair A + B. We shown that the mass polarization δB correlates with a type of AB potential using the system αΛΛ as an example.

Keywords: three-body systems, mass polarization, Faddeev equations, nuclear interactions

Procedia PDF Downloads 369