Search results for: Recommendation engine
17 Efficient Utilization of Negative Half Wave of Regulator Rectifier Output to Drive Class D LED Headlamp
Authors: Lalit Ahuja, Nancy Das, Yashas Shetty
Abstract:
LED lighting has been increasingly adopted for vehicles in both domestic and foreign automotive markets. Although this miniaturized technology gives the best light output, low energy consumption, and cost-efficient solutions for driving, the same is the need of the hour. In this paper, we present a methodology for driving the highest class two-wheeler headlamp with regulator and rectifier (RR) output. Unlike usual LED headlamps, which are driven by a battery, regulator, and rectifier (RR) driven, a low-cost and highly efficient LED Driver Module (LDM) is proposed. The positive half of magneto output is regulated and used to charge batteries used for various peripherals. While conventionally, the negative half was used for operating bulb-based exterior lamps. But with advancements in LED-based headlamps, which are driven by a battery, this negative half pulse remained unused in most of the vehicles. Our system uses negative half-wave rectified DC output from RR to provide constant light output at all RPMs of the vehicle. With the negative rectified DC output of RR, we have the advantage of pulsating DC input which periodically goes to zero, thus helping us to generate a constant DC output equivalent to the required LED load, and with a change in RPM, additional active thermal bypass circuit help us to maintain the efficiency and thermal rise. The methodology uses the negative half wave output of the RR along with a linear constant current driver with significantly higher efficiency. Although RR output has varied frequency and duty cycles at different engine RPMs, the driver is designed such that it provides constant current to LEDs with minimal ripple. In LED Headlamps, a DC-DC switching regulator is usually used, which is usually bulky. But with linear regulators, we’re eliminating bulky components and improving the form factor. Hence, this is both cost-efficient and compact. Presently, output ripple-free amplitude drivers with fewer components and less complexity are limited to lower-power LED Lamps. The focus of current high-efficiency research is often on high LED power applications. This paper presents a method of driving LED load at both High Beam and Low Beam using the negative half wave rectified pulsating DC from RR with minimum components, maintaining high efficiency within the thermal limitations. Linear regulators are significantly inefficient, with efficiencies typically about 40% and reaching as low as 14%. This leads to poor thermal performance. Although they don’t require complex and bulky circuitry, powering high-power devices is difficult to realise with the same. But with the input being negative half wave rectified pulsating DC, this efficiency can be improved as this helps us to generate constant DC output equivalent to LED load minimising the voltage drop on the linear regulator. Hence, losses are significantly reduced, and efficiency as high as 75% is achieved. With a change in RPM, DC voltage increases, which can be managed by active thermal bypass circuitry, thus resulting in better thermal performance. Hence, the use of bulky and expensive heat sinks can be avoided. Hence, the methodology to utilize the unused negative pulsating DC output of RR to optimize the utilization of RR output power and provide a cost-efficient solution as compared to costly DC-DC drivers.Keywords: class D LED headlamp, regulator and rectifier, pulsating DC, low cost and highly efficient, LED driver module
Procedia PDF Downloads 6616 The Role of the New Silk Road (One Belt, One Road Initiative) in Connecting the Free Zones of Iran and Turkey: A Case Study of the Free Zones of Sarakhs and Maku to Anatolia and Europe
Authors: Morteza Ghourchi, Meraj Jafari, Atena Soheilazizi
Abstract:
Today, with the globalization of communications and the connection of countries within the framework of the global economy, free zones play the most important role as the engine of global economic development and globalization of countries. In this regard, corridors have a fundamental role in linking countries and free zones physically with each other. One of these corridors is the New Silk Road corridor (One Belt, One Road initiative), which is being built by China to connect with European countries. In connecting this corridor to European countries, Iran and Turkey are among the countries that play an important role in linking China to European countries through this corridor. The New Silk Road corridor, by connecting Iran’s free zones (Sarakhs and Maku) and Turkey’s free zones (Anatolia and Europe), can provide the best opportunity for expanding economic cooperation and regional development between Iran and Turkey. It can also provide economic links between Iran and Turkey with Central Asian countries and especially the port of Khorgos. On the other hand, it can expand Iran-Turkey economic relations more than ever before with Europe in a vast economic network. The research method was descriptive-analytical, using library resources, documents of Iranian free zones, and the Internet. In an interview with Fars News Agency, Mohammad Reza Kalaei, CEO of Sarakhs Free Zone, said that the main goal of Sarakhs Special Economic Zone is to connect Iran with the Middle East and create a transit corridor towards East Asian countries, including Turkey. Also, according to an interview with Hussein Gharousi, CEO of Maku Free Zone, the importance of this region is due to the fact that Maku Free Zone, due to its geographical location and its position on the China-Europe trade route, the East-West corridor, which is the closest point to the European Union through railway and transit routes, and also due to its proximity to Eurasian countries, is an ideal opportunity for industrial and technological companies. Creating a transit corridor towards East Asian countries, including Turkey, is one of the goals of this project Free zones between Iran and Turkey can sign an agreement within the framework of the New Silk Road to expand joint investments and economic cooperation towards regional convergence. The purpose of this research is to develop economic links between Iranian and Turkish free zones along the New Silk Road, which will lead to the expansion and development of regional cooperation between the two countries within the framework of neighboring policies. The findings of this research include the development of economic diplomacy between the Secretariat of the Supreme Council of Free Zones of Iran and the General Directorate of Free Zones of Turkey, the agreement to expand cooperation between the free zones of Sarakhs, Maku, Anatolia, and Europe, holding biennial conferences between Iranian free zones along the New Silk Road with Turkish free zones, creating a joint investment fund between Iran and Turkey in the field of developing free zones along the Silk Road, helping to attract tourism between Iranian and Turkish free zones located along the New Silk Road, improving transit infrastructure and transportation to better connect Iranian free zones to Turkish free zones, communicating with China, and creating joint collaborations between China’s dry ports and its free zones with Iranian and Turkish free zones.Keywords: network economy, new silk road (one belt, one road initiative), free zones (Sarakhs, Maku, Anatolia, Europe), regional development, neighborhood policies
Procedia PDF Downloads 6415 From Avatars to Humans: A Hybrid World Theory and Human Computer Interaction Experimentations with Virtual Reality Technologies
Authors: Juan Pablo Bertuzzi, Mauro Chiarella
Abstract:
Employing a communication studies perspective and a socio-technological approach, this paper introduces a theoretical framework for understanding the concept of hybrid world; the avatarization phenomena; and the communicational archetype of co-hybridization. This analysis intends to make a contribution to future design of virtual reality experimental applications. Ultimately, this paper presents an ongoing research project that proposes the study of human-avatar interactions in digital educational environments, as well as an innovative reflection on inner digital communication. The aforementioned project presents the analysis of human-avatar interactions, through the development of an interactive experience in virtual reality. The goal is to generate an innovative communicational dimension that could reinforce the hypotheses presented throughout this paper. Being thought for its initial application in educational environments, the analysis and results of this research are dependent and have been prepared in regard of a meticulous planning of: the conception of a 3D digital platform; the interactive game objects; the AI or computer avatars; the human representation as hybrid avatars; and lastly, the potential of immersion, ergonomics and control diversity that can provide the virtual reality system and the game engine that were chosen. The project is divided in two main axes: The first part is the structural one, as it is mandatory for the construction of an original prototype. The 3D model is inspired by the physical space that belongs to an academic institution. The incorporation of smart objects, avatars, game mechanics, game objects, and a dialogue system will be part of the prototype. These elements have all the objective of gamifying the educational environment. To generate a continuous participation and a large amount of interactions, the digital world will be navigable both, in a conventional device and in a virtual reality system. This decision is made, practically, to facilitate the communication between students and teachers; and strategically, because it will help to a faster population of the digital environment. The second part is concentrated to content production and further data analysis. The challenge is to offer a scenario’s diversity that compels users to interact and to question their digital embodiment. The multipath narrative content that is being applied is focused on the subjects covered in this paper. Furthermore, the experience with virtual reality devices proposes users to experiment in a mixture of a seemingly infinite digital world and a small physical area of movement. This combination will lead the narrative content and it will be crucial in order to restrict user’s interactions. The main point is to stimulate and to grow in the user the need of his hybrid avatar’s help. By building an inner communication between user’s physicality and user’s digital extension, the interactions will serve as a self-guide through the gameworld. This is the first attempt to make explicit the avatarization phenomena and to further analyze the communicational archetype of co-hybridization. The challenge of the upcoming years will be to take advantage from these forms of generalized avatarization, in order to create awareness and establish innovative forms of hybridization.Keywords: avatar, hybrid worlds, socio-technology, virtual reality
Procedia PDF Downloads 14214 SPARK: An Open-Source Knowledge Discovery Platform That Leverages Non-Relational Databases and Massively Parallel Computational Power for Heterogeneous Genomic Datasets
Authors: Thilina Ranaweera, Enes Makalic, John L. Hopper, Adrian Bickerstaffe
Abstract:
Data are the primary asset of biomedical researchers, and the engine for both discovery and research translation. As the volume and complexity of research datasets increase, especially with new technologies such as large single nucleotide polymorphism (SNP) chips, so too does the requirement for software to manage, process and analyze the data. Researchers often need to execute complicated queries and conduct complex analyzes of large-scale datasets. Existing tools to analyze such data, and other types of high-dimensional data, unfortunately suffer from one or more major problems. They typically require a high level of computing expertise, are too simplistic (i.e., do not fit realistic models that allow for complex interactions), are limited by computing power, do not exploit the computing power of large-scale parallel architectures (e.g. supercomputers, GPU clusters etc.), or are limited in the types of analysis available, compounded by the fact that integrating new analysis methods is not straightforward. Solutions to these problems, such as those developed and implemented on parallel architectures, are currently available to only a relatively small portion of medical researchers with access and know-how. The past decade has seen a rapid expansion of data management systems for the medical domain. Much attention has been given to systems that manage phenotype datasets generated by medical studies. The introduction of heterogeneous genomic data for research subjects that reside in these systems has highlighted the need for substantial improvements in software architecture. To address this problem, we have developed SPARK, an enabling and translational system for medical research, leveraging existing high performance computing resources, and analysis techniques currently available or being developed. It builds these into The Ark, an open-source web-based system designed to manage medical data. SPARK provides a next-generation biomedical data management solution that is based upon a novel Micro-Service architecture and Big Data technologies. The system serves to demonstrate the applicability of Micro-Service architectures for the development of high performance computing applications. When applied to high-dimensional medical datasets such as genomic data, relational data management approaches with normalized data structures suffer from unfeasibly high execution times for basic operations such as insert (i.e. importing a GWAS dataset) and the queries that are typical of the genomics research domain. SPARK resolves these problems by incorporating non-relational NoSQL databases that have been driven by the emergence of Big Data. SPARK provides researchers across the world with user-friendly access to state-of-the-art data management and analysis tools while eliminating the need for high-level informatics and programming skills. The system will benefit health and medical research by eliminating the burden of large-scale data management, querying, cleaning, and analysis. SPARK represents a major advancement in genome research technologies, vastly reducing the burden of working with genomic datasets, and enabling cutting edge analysis approaches that have previously been out of reach for many medical researchers.Keywords: biomedical research, genomics, information systems, software
Procedia PDF Downloads 26913 Optimizing Heavy-Duty Green Hydrogen Refueling Stations: A Techno-Economic Analysis of Turbo-Expander Integration
Authors: Christelle Rabbat, Carole Vouebou, Sary Awad, Alan Jean-Marie
Abstract:
Hydrogen has been proven to be a viable alternative to standard fuels as it is easy to produce and only generates water vapour and zero carbon emissions. However, despite the hydrogen benefits, the widespread adoption of hydrogen fuel cell vehicles and internal combustion engine vehicles is impeded by several challenges. The lack of refueling infrastructures remains one of the main hindering factors due to the high costs associated with their design, construction, and operation. Besides, the lack of hydrogen vehicles on the road diminishes the economic viability of investing in refueling infrastructure. Simultaneously, the absence of accessible refueling stations discourages consumers from adopting hydrogen vehicles, perpetuating a cycle of limited market uptake. To address these challenges, the implementation of adequate policies incentivizing the use of hydrogen vehicles and the reduction of the investment and operation costs of hydrogen refueling stations (HRS) are essential to put both investors and customers at ease. Even though the transition to hydrogen cars has been rather slow, public transportation companies have shown a keen interest in this highly promising fuel. Besides, their hydrogen demand is easier to predict and regulate than personal vehicles. Due to the reduced complexity of designing a suitable hydrogen supply chain for public vehicles, this sub-sector could be a great starting point to facilitate the adoption of hydrogen vehicles. Consequently, this study will focus on designing a chain of on-site green HRS for the public transportation network in Nantes Metropole leveraging the latest relevant technological advances aiming to reduce the costs while ensuring reliability, safety, and ease of access. To reduce the cost of HRS and encourage their widespread adoption, a network of 7 H35-T40 HRS has been designed, replacing the conventional J-T valves with turbo-expanders. Each station in the network has a daily capacity of 1,920 kg. Thus, the HRS network can produce up to 12.5 tH2 per day. The detailed cost analysis has revealed a CAPEX per station of 16.6 M euros leading to a network CAPEX of 116.2 M euros. The proposed station siting prioritized Nantes metropole’s 5 bus depots and included 2 city-centre locations. Thanks to the turbo-expander technology, the cooling capacity of the proposed HRS is 19% lower than that of a conventional station equipped with J-T valves, resulting in significant CAPEX savings estimated at 708,560 € per station, thus nearly 5 million euros for the whole HRS network. Besides, the turbo-expander power generation ranges from 7.7 to 112 kW. Thus, the power produced can be used within the station or sold as electricity to the main grid, which would, in turn, maximize the station’s profit. Despite the substantial initial investment required, the environmental benefits, cost savings, and energy efficiencies realized through the transition to hydrogen fuel cell buses and the deployment of HRS equipped with turbo-expanders offer considerable advantages for both TAN and Nantes Metropole. These initiatives underscore their enduring commitment to fostering green mobility and combatting climate change in the long term.Keywords: green hydrogen, refueling stations, turbo-expander, heavy-duty vehicles
Procedia PDF Downloads 5312 Sustainability in the Purchase of Airline Tickets: Analysis of Digital Communication from the Perspective of Neuroscience
Authors: Rodríguez Sánchez Carla, Sancho-Esper Franco, Guillen-Davo Marina
Abstract:
Tourism is one of the most important sectors worldwide since it is an important economic engine for today's society. It is also one of the sectors that most negatively affect the environment in terms of CO₂ emissions due to this expansion. In light of this, airlines are developing Voluntary Carbon Offset (VCO). There is important evidence focused on analyzing the features of these VCO programs and their efficacy in reducing CO₂ emissions, and findings are mixed without a clear consensus. Different research approaches have centered on analyzing factors and consequences of VCO programs, such as economic modelling based on panel data, survey research based on traveler responses or experimental research analyzing customer decisions in a simulated context. This study belongs to the latter group because it tries to understand how different characteristics of an online ticket purchase website affect the willingness of a traveler to choose a sustainable one. The proposed behavioral model is based on several theories, such as the nudge theory, the dual processing ELM and the cognitive dissonance theory. This randomized experiment aims at overcoming previous studies based on self-reported measures that mainly study sustainable behavioral intention rather than actual decision-making. It also complements traditional self-reported independent variables by gathering objective information from an eye-tracking device. This experiment analyzes the influence of two characteristics of the online purchase website: i) the type of information regarding flight CO₂ emissions (quantitative vs. qualitative) and the comparison framework related to the sustainable purchase decision (negative: alternative with more emissions than the average flight of the route vs. positive: alternative with less emissions than the average flight of the route), therefore it is a 2x2 experiment with four alternative scenarios. A pretest was run before the actual experiment to refine the experiment features and to check the manipulations. Afterward, a different sample of students answered the pre-test questionnaire aimed at recruiting the cases and measuring several pre-stimulus measures. One week later, students came to the neurolab at the University setting to be part of the experiment, made their decision regarding online purchases and answered the post-test survey. A final sample of 21 students was gathered. The committee of ethics of the institution approved the experiment. The results show that qualitative information generates more sustainable decisions (less contaminant alternative) than quantitative information. Moreover, evidence shows that subjects are more willing to choose the sustainable decision to be more ecological (comparison of the average with the less contaminant alternative) rather than to be less contaminant (comparison of the average with the more contaminant alternative). There are also interesting differences in the information processing variables from the eye tracker. Both the total time to make the choice and the specific times by area of interest (AOI) differ depending on the assigned scenario. These results allow for a better understanding of the factors that condition the decision of a traveler to be part of a VCO program and provide useful information for airline managers to promote these programs to reduce environmental impact.Keywords: voluntary carbon offset, airline, online purchase, carbon emission, sustainability, randomized experiment
Procedia PDF Downloads 7311 Medicompills Architecture: A Mathematical Precise Tool to Reduce the Risk of Diagnosis Errors on Precise Medicine
Authors: Adriana Haulica
Abstract:
Powered by Machine Learning, Precise medicine is tailored by now to use genetic and molecular profiling, with the aim of optimizing the therapeutic benefits for cohorts of patients. As the majority of Machine Language algorithms come from heuristics, the outputs have contextual validity. This is not very restrictive in the sense that medicine itself is not an exact science. Meanwhile, the progress made in Molecular Biology, Bioinformatics, Computational Biology, and Precise Medicine, correlated with the huge amount of human biology data and the increase in computational power, opens new healthcare challenges. A more accurate diagnosis is needed along with real-time treatments by processing as much as possible from the available information. The purpose of this paper is to present a deeper vision for the future of Artificial Intelligence in Precise medicine. In fact, actual Machine Learning algorithms use standard mathematical knowledge, mostly Euclidian metrics and standard computation rules. The loss of information arising from the classical methods prevents obtaining 100% evidence on the diagnosis process. To overcome these problems, we introduce MEDICOMPILLS, a new architectural concept tool of information processing in Precise medicine that delivers diagnosis and therapy advice. This tool processes poly-field digital resources: global knowledge related to biomedicine in a direct or indirect manner but also technical databases, Natural Language Processing algorithms, and strong class optimization functions. As the name suggests, the heart of this tool is a compiler. The approach is completely new, tailored for omics and clinical data. Firstly, the intrinsic biological intuition is different from the well-known “a needle in a haystack” approach usually used when Machine Learning algorithms have to process differential genomic or molecular data to find biomarkers. Also, even if the input is seized from various types of data, the working engine inside the MEDICOMPILLS does not search for patterns as an integrative tool. This approach deciphers the biological meaning of input data up to the metabolic and physiologic mechanisms, based on a compiler with grammars issued from bio-algebra-inspired mathematics. It translates input data into bio-semantic units with the help of contextual information iteratively until Bio-Logical operations can be performed on the base of the “common denominator “rule. The rigorousness of MEDICOMPILLS comes from the structure of the contextual information on functions, built to be analogous to mathematical “proofs”. The major impact of this architecture is expressed by the high accuracy of the diagnosis. Detected as a multiple conditions diagnostic, constituted by some main diseases along with unhealthy biological states, this format is highly suitable for therapy proposal and disease prevention. The use of MEDICOMPILLS architecture is highly beneficial for the healthcare industry. The expectation is to generate a strategic trend in Precise medicine, making medicine more like an exact science and reducing the considerable risk of errors in diagnostics and therapies. The tool can be used by pharmaceutical laboratories for the discovery of new cures. It will also contribute to better design of clinical trials and speed them up.Keywords: bio-semantic units, multiple conditions diagnosis, NLP, omics
Procedia PDF Downloads 6910 Aeroelastic Stability Analysis in Turbomachinery Using Reduced Order Aeroelastic Model Tool
Authors: Chandra Shekhar Prasad, Ludek Pesek Prasad
Abstract:
In the present day fan blade of aero engine, turboprop propellers, gas turbine or steam turbine low-pressure blades are getting bigger, lighter and thus, become more flexible. Therefore, flutter, forced blade response and vibration related failure of the high aspect ratio blade are of main concern for the designers, thus need to be address properly in order to achieve successful component design. At the preliminary design stage large number of design iteration is need to achieve the utter free safe design. Most of the numerical method used for aeroelastic analysis is based on field-based methods such as finite difference method, finite element method, finite volume method or coupled. These numerical schemes are used to solve the coupled fluid Flow-Structural equation based on full Naiver-Stokes (NS) along with structural mechanics’ equations. These type of schemes provides very accurate results if modeled properly, however, they are computationally very expensive and need large computing recourse along with good personal expertise. Therefore, it is not the first choice for aeroelastic analysis during preliminary design phase. A reduced order aeroelastic model (ROAM) with acceptable accuracy and fast execution is more demanded at this stage. Similar ROAM are being used by other researchers for aeroelastic and force response analysis of turbomachinery. In the present paper new medium fidelity ROAM is successfully developed and implemented in numerical tool to simulated the aeroelastic stability phenomena in turbomachinery and well as flexible wings. In the present, a hybrid flow solver based on 3D viscous-inviscid coupled 3D panel method (PM) and 3d discrete vortex particle method (DVM) is developed, viscous parameters are estimated using boundary layer(BL) approach. This method can simulate flow separation and is a good compromise between accuracy and speed compared to CFD. In the second phase of the research work, the flow solver (PM) will be coupled with ROM non-linear beam element method (BEM) based FEM structural solver (with multibody capabilities) to perform the complete aeroelastic simulation of a steam turbine bladed disk, propellers, fan blades, aircraft wing etc. The partitioned based coupling approach is used for fluid-structure interaction (FSI). The numerical results are compared with experimental data for different test cases and for the blade cascade test case, experimental data is obtained from in-house lab experiments at IT CAS. Furthermore, the results from the new aeroelastic model will be compared with classical CFD-CSD based aeroelastic models. The proposed methodology for the aeroelastic stability analysis of gas turbine or steam turbine blades, or propellers or fan blades will provide researchers and engineers a fast, cost-effective and efficient tool for aeroelastic (classical flutter) analysis for different design at preliminary design stage where large numbers of design iteration are required in short time frame.Keywords: aeroelasticity, beam element method (BEM), discrete vortex particle method (DVM), classical flutter, fluid-structure interaction (FSI), panel method, reduce order aeroelastic model (ROAM), turbomachinery, viscous-inviscid coupling
Procedia PDF Downloads 2649 Establishment of Farmed Fish Welfare Biomarkers Using an Omics Approach
Authors: Pedro M. Rodrigues, Claudia Raposo, Denise Schrama, Marco Cerqueira
Abstract:
Farmed fish welfare is a very recent concept, widely discussed among the scientific community. Consumers’ interest regarding farmed animal welfare standards has significantly increased in the last years posing a huge challenge to producers in order to maintain an equilibrium between good welfare principles and productivity, while simultaneously achieve public acceptance. The major bottleneck of standard aquaculture is to impair considerably fish welfare throughout the production cycle and with this, the quality of fish protein. Welfare assessment in farmed fish is undertaken through the evaluation of fish stress responses. Primary and secondary stress responses include release of cortisol and glucose and lactate to the blood stream, respectively, which are currently the most commonly used indicators of stress exposure. However, the reliability of these indicators is highly dubious, due to a high variability of fish responses to an acute stress and the adaptation of the animal to a repetitive chronic stress. Our objective is to use comparative proteomics to identify and validate a fingerprint of proteins that can present an more reliable alternative to the already established welfare indicators. In this way, the culture conditions will improve and there will be a higher perception of mechanisms and metabolic pathway involved in the produced organism’s welfare. Due to its high economical importance in Portuguese aquaculture Gilthead seabream will be the elected species for this study. Protein extracts from Gilthead Seabream fish muscle, liver and plasma, reared for a 3 month period under optimized culture conditions (control) and induced stress conditions (Handling, high densities, and Hipoxia) are collected and used to identify a putative fish welfare protein markers fingerprint using a proteomics approach. Three tanks per condition and 3 biological replicates per tank are used for each analisys. Briefly, proteins from target tissue/fluid are extracted using standard established protocols. Protein extracts are then separated using 2D-DIGE (Difference gel electrophoresis). Proteins differentially expressed between control and induced stress conditions will be identified by mass spectrometry (LC-Ms/Ms) using NCBInr (taxonomic level - Actinopterygii) databank and Mascot search engine. The statistical analysis is performed using the R software environment, having used a one-tailed Mann-Whitney U-test (p < 0.05) to assess which proteins were differentially expressed in a statistically significant way. Validation of these proteins will be done by comparison of the RT-qPCR (Quantitative reverse transcription polymerase chain reaction) expressed genes pattern with the proteomic profile. Cortisol, glucose, and lactate are also measured in order to confirm or refute the reliability of these indicators. The identified liver proteins under handling and high densities induced stress conditions are responsible and involved in several metabolic pathways like primary metabolism (i.e. glycolysis, gluconeogenesis), ammonia metabolism, cytoskeleton proteins, signalizing proteins, lipid transport. Validition of these proteins as well as identical analysis in muscle and plasma are underway. Proteomics is a promising high-throughput technique that can be successfully applied to identify putative welfare protein biomarkers in farmed fish.Keywords: aquaculture, fish welfare, proteomics, welfare biomarkers
Procedia PDF Downloads 1558 Modeling and Simulation of the Structural, Electronic and Magnetic Properties of Fe-Ni Based Nanoalloys
Authors: Ece A. Irmak, Amdulla O. Mekhrabov, M. Vedat Akdeniz
Abstract:
There is a growing interest in the modeling and simulation of magnetic nanoalloys by various computational methods. Magnetic crystalline/amorphous nanoparticles (NP) are interesting materials from both the applied and fundamental points of view, as their properties differ from those of bulk materials and are essential for advanced applications such as high-performance permanent magnets, high-density magnetic recording media, drug carriers, sensors in biomedical technology, etc. As an important magnetic material, Fe-Ni based nanoalloys have promising applications in the chemical industry (catalysis, battery), aerospace and stealth industry (radar absorbing material, jet engine alloys), magnetic biomedical applications (drug delivery, magnetic resonance imaging, biosensor) and computer hardware industry (data storage). The physical and chemical properties of the nanoalloys depend not only on the particle or crystallite size but also on composition and atomic ordering. Therefore, computer modeling is an essential tool to predict structural, electronic, magnetic and optical behavior at atomistic levels and consequently reduce the time for designing and development of new materials with novel/enhanced properties. Although first-principles quantum mechanical methods provide the most accurate results, they require huge computational effort to solve the Schrodinger equation for only a few tens of atoms. On the other hand, molecular dynamics method with appropriate empirical or semi-empirical inter-atomic potentials can give accurate results for the static and dynamic properties of larger systems in a short span of time. In this study, structural evolutions, magnetic and electronic properties of Fe-Ni based nanoalloys have been studied by using molecular dynamics (MD) method in Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) and Density Functional Theory (DFT) in the Vienna Ab initio Simulation Package (VASP). The effects of particle size (in 2-10 nm particle size range) and temperature (300-1500 K) on stability and structural evolutions of amorphous and crystalline Fe-Ni bulk/nanoalloys have been investigated by combining molecular dynamic (MD) simulation method with Embedded Atom Model (EAM). EAM is applicable for the Fe-Ni based bimetallic systems because it considers both the pairwise interatomic interaction potentials and electron densities. Structural evolution of Fe-Ni bulk and nanoparticles (NPs) have been studied by calculation of radial distribution functions (RDF), interatomic distances, coordination number, core-to-surface concentration profiles as well as Voronoi analysis and surface energy dependences on temperature and particle size. Moreover, spin-polarized DFT calculations were performed by using a plane-wave basis set with generalized gradient approximation (GGA) exchange and correlation effects in the VASP-MedeA package to predict magnetic and electronic properties of the Fe-Ni based alloys in bulk and nanostructured phases. The result of theoretical modeling and simulations for the structural evolutions, magnetic and electronic properties of Fe-Ni based nanostructured alloys were compared with experimental and other theoretical results published in the literature.Keywords: density functional theory, embedded atom model, Fe-Ni systems, molecular dynamics, nanoalloys
Procedia PDF Downloads 2427 A Case Study Report on Acoustic Impact Assessment and Mitigation of the Hyprob Research Plant
Authors: D. Bianco, A. Sollazzo, M. Barbarino, G. Elia, A. Smoraldi, N. Favaloro
Abstract:
The activities, described in the present paper, have been conducted in the framework of the HYPROB-New Program, carried out by the Italian Aerospace Research Centre (CIRA) promoted and funded by the Italian Ministry of University and Research (MIUR) in order to improve the National background on rocket engine systems for space applications. The Program has the strategic objective to improve National system and technology capabilities in the field of liquid rocket engines (LRE) for future Space Propulsion Systems applications, with specific regard to LOX/LCH4 technology. The main purpose of the HYPROB program is to design and build a Propulsion Test Facility (HIMP) allowing test activities on Liquid Thrusters. The development of skills in liquid rocket propulsion can only pass through extensive test campaign. Following its mission, CIRA has planned the development of new testing facilities and infrastructures for space propulsion characterized by adequate sizes and instrumentation. The IMP test cell is devoted to testing articles representative of small combustion chambers, fed with oxygen and methane, both in liquid and gaseous phase. This article describes the activities that have been carried out for the evaluation of the acoustic impact, and its consequent mitigation. The impact of the simulated acoustic disturbance has been evaluated, first, using an approximated method based on experimental data by Baumann and Coney, included in “Noise and Vibration Control Engineering” edited by Vér and Beranek. This methodology, used to evaluate the free-field radiation of jet in ideal acoustical medium, analyzes in details the jet noise and assumes sources acting at the same time. It considers as principal radiation sources the jet mixing noise, caused by the turbulent mixing of jet gas and the ambient medium. Empirical models, allowing a direct calculation of the Sound Pressure Level, are commonly used for rocket noise simulation. The model named after K. Eldred is probably one of the most exploited in this area. In this paper, an improvement of the Eldred Standard model has been used for a detailed investigation of the acoustical impact of the Hyprob facility. This new formulation contains an explicit expression for the acoustic pressure of each equivalent noise source, in terms of amplitude and phase, allowing the investigation of the sources correlation effects and their propagation through wave equations. In order to enhance the evaluation of the facility acoustic impact, including an assessment of the mitigation strategies to be set in place, a more advanced simulation campaign has been conducted using both an in-house code for noise propagation and scattering, and a commercial code for industrial noise environmental impact, CadnaA. The noise prediction obtained with the revised Eldred-based model has then been used for formulating an empirical/BEM (Boundary Element Method) hybrid approach allowing the evaluation of the barrier mitigation effect, at the design. This approach has been compared with the analogous empirical/ray-acoustics approach, implemented within CadnaA using a customized definition of sources and directivity factor. The resulting impact evaluation study is reported here, along with the design-level barrier optimization for noise mitigation.Keywords: acoustic impact, industrial noise, mitigation, rocket noise
Procedia PDF Downloads 1456 Sampling and Chemical Characterization of Particulate Matter in a Platinum Mine
Authors: Juergen Orasche, Vesta Kohlmeier, George C. Dragan, Gert Jakobi, Patricia Forbes, Ralf Zimmermann
Abstract:
Underground mining poses a difficult environment for both man and machines. At more than 1000 meters underneath the surface of the earth, ores and other mineral resources are still gained by conventional and motorised mining. Adding to the hazards caused by blasting and stone-chipping, the working conditions are best described by the high temperatures of 35-40°C and high humidity, at low air exchange rates. Separate ventilation shafts lead fresh air into a mine and others lead expended air back to the surface. This is essential for humans and machines working deep underground. Nevertheless, mines are widely ramified. Thus the air flow rate at the far end of a tunnel is sensed to be close to zero. In recent years, conventional mining was supplemented by mining with heavy diesel machines. These very flat machines called Load Haul Dump (LHD) vehicles accelerate and ease work in areas favourable for heavy machines. On the other hand, they emit non-filtered diesel exhaust, which constitutes an occupational hazard for the miners. Combined with a low air exchange, high humidity and inorganic dust from the mining it leads to 'black smog' underneath the earth. This work focuses on the air quality in mines employing LHDs. Therefore we performed personal sampling (samplers worn by miners during their work), stationary sampling and aethalometer (Microaeth MA200, Aethlabs) measurements in a platinum mine in around 1000 meters under the earth’s surface. We compared areas of high diesel exhaust emission with areas of conventional mining where no diesel machines were operated. For a better assessment of health risks caused by air pollution we applied a separated gas-/particle-sampling tool (or system), with first denuder section collecting intermediate VOCs. These multi-channel silicone rubber denuders are able to trap IVOCs while allowing particles ranged from 10 nm to 1 µm in diameter to be transmitted with an efficiency of nearly 100%. The second section is represented by a quartz fibre filter collecting particles and adsorbed semi-volatile organic compounds (SVOC). The third part is a graphitized carbon black adsorber – collecting the SVOCs that evaporate from the filter. The compounds collected on these three sections were analyzed in our labs with different thermal desorption techniques coupled with gas chromatography and mass spectrometry (GC-MS). VOCs and IVOCs were measured with a Shimadzu Thermal Desorption Unit (TD20, Shimadzu, Japan) coupled to a GCMS-System QP 2010 Ultra with a quadrupole mass spectrometer (Shimadzu). The GC was equipped with a 30m, BP-20 wax column (0.25mm ID, 0.25µm film) from SGE (Australia). Filters were analyzed with In-situ derivatization thermal desorption gas chromatography time-of-flight-mass spectrometry (IDTD-GC-TOF-MS). The IDTD unit is a modified GL sciences Optic 3 system (GL Sciences, Netherlands). The results showed black carbon concentrations measured with the portable aethalometers up to several mg per m³. The organic chemistry was dominated by very high concentrations of alkanes. Typical diesel engine exhaust markers like alkylated polycyclic aromatic hydrocarbons were detected as well as typical lubrication oil markers like hopanes.Keywords: diesel emission, personal sampling, aethalometer, mining
Procedia PDF Downloads 1565 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2104 Recrystallization Behavior and Microstructural Evolution of Nickel Base Superalloy AD730 Billet during Hot Forging at Subsolvus Temperatures
Authors: Marcos Perez, Christian Dumont, Olivier Nodin, Sebastien Nouveau
Abstract:
Nickel superalloys are used to manufacture high-temperature rotary engine parts such as high-pressure disks in gas turbine engines. High strength at high operating temperatures is required due to the levels of stress and heat the disk must withstand. Therefore it is necessary parts made from materials that can maintain mechanical strength at high temperatures whilst remain comparatively low in cost. A manufacturing process referred to as the triple melt process has made the production of cast and wrought (C&W) nickel superalloys possible. This means that the balance of cost and performance at high temperature may be optimized. AD730TM is a newly developed Ni-based superalloy for turbine disk applications, with reported superior service properties around 700°C when compared to Inconel 718 and several other alloys. The cast ingot is converted into billet during either cogging process or open die forging. The semi-finished billet is then further processed into its final geometry by forging, heat treating, and machining. Conventional ingot-to-billet conversion is an expensive and complex operation, requiring a significant amount of steps to break up the coarse as-cast structure and interdendritic regions. Due to the size of conventional ingots, it is difficult to achieve a uniformly high level of strain for recrystallization, resulting in non-recrystallized regions that retain large unrecrystallized grains. Non-uniform grain distributions will also affect the ultrasonic inspectability response, which is used to find defects in the final component. The main aim is to analyze the recrystallization behavior and microstructural evolution of AD730 at subsolvus temperatures from a semi-finished product (billet) under conditions representative of both cogging and hot forging operations. Special attention to the presence of large unrecrystallized grains was paid. Double truncated cones (DTCs) were hot forged at subsolvus temperatures in hydraulic press, followed by air cooling. SEM and EBSD analysis were conducted in the as-received (billet) and the as-forged conditions. AD730 from billet alloy presents a complex microstructure characterized by a mixture of several constituents. Large unrecrystallized grains present a substructure characterized by large misorientation gradients with the formation of medium to high angle boundaries in their interior, especially close to the grain boundaries, denoting inhomogeneous strain distribution. A fine distribution of intragranular precipitates was found in their interior, playing a key role on strain distribution and subsequent recrystallization behaviour during hot forging. Continuous dynamic recrystallization (CDRX) mechanism was found to be operating in the large unrecrystallized grains, promoting the formation intragranular DRX grains and the gradual recrystallization of these grains. Evidences that hetero-epitaxial recrystallization mechanism is operating in AD730 billet material were found. Coherent γ-shells around primary γ’ precipitates were found. However, no significant contribution to the overall recrystallization during hot forging was found. By contrast, strain presents the strongest effect on the microstructural evolution of AD730, increasing the recrystallization fraction and refining the structure. Regions with low level of deformation (ε ≤ 0.6) were translated into large fractions of unrecrystallized structures (strain accumulation). The presence of undissolved secondary γ’ precipitates (pinning effect), prior to hot forging operations, could explain these results.Keywords: AD730 alloy, continuous dynamic recrystallization, hot forging, γ’ precipitates
Procedia PDF Downloads 1983 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 692 Developing a Cloud Intelligence-Based Energy Management Architecture Facilitated with Embedded Edge Analytics for Energy Conservation in Demand-Side Management
Authors: Yu-Hsiu Lin, Wen-Chun Lin, Yen-Chang Cheng, Chia-Ju Yeh, Yu-Chuan Chen, Tai-You Li
Abstract:
Demand-Side Management (DSM) has the potential to reduce electricity costs and carbon emission, which are associated with electricity used in the modern society. A home Energy Management System (EMS) commonly used by residential consumers in a down-stream sector of a smart grid to monitor, control, and optimize energy efficiency to domestic appliances is a system of computer-aided functionalities as an energy audit for residential DSM. Implementing fault detection and classification to domestic appliances monitored, controlled, and optimized is one of the most important steps to realize preventive maintenance, such as residential air conditioning and heating preventative maintenance in residential/industrial DSM. In this study, a cloud intelligence-based green EMS that comes up with an Internet of Things (IoT) technology stack for residential DSM is developed. In the EMS, Arduino MEGA Ethernet communication-based smart sockets that module a Real Time Clock chip to keep track of current time as timestamps via Network Time Protocol are designed and implemented for readings of load phenomena reflecting on voltage and current signals sensed. Also, a Network-Attached Storage providing data access to a heterogeneous group of IoT clients via Hypertext Transfer Protocol (HTTP) methods is configured to data stores of parsed sensor readings. Lastly, a desktop computer with a WAMP software bundle (the Microsoft® Windows operating system, Apache HTTP Server, MySQL relational database management system, and PHP programming language) serves as a data science analytics engine for dynamic Web APP/REpresentational State Transfer-ful web service of the residential DSM having globally-Advanced Internet of Artificial Intelligence (AI)/Computational Intelligence. Where, an abstract computing machine, Java Virtual Machine, enables the desktop computer to run Java programs, and a mash-up of Java, R language, and Python is well-suited and -configured for AI in this study. Having the ability of sending real-time push notifications to IoT clients, the desktop computer implements Google-maintained Firebase Cloud Messaging to engage IoT clients across Android/iOS devices and provide mobile notification service to residential/industrial DSM. In this study, in order to realize edge intelligence that edge devices avoiding network latency and much-needed connectivity of Internet connections for Internet of Services can support secure access to data stores and provide immediate analytical and real-time actionable insights at the edge of the network, we upgrade the designed and implemented smart sockets to be embedded AI Arduino ones (called embedded AIduino). With the realization of edge analytics by the proposed embedded AIduino for data analytics, an Arduino Ethernet shield WizNet W5100 having a micro SD card connector is conducted and used. The SD library is included for reading parsed data from and writing parsed data to an SD card. And, an Artificial Neural Network library, ArduinoANN, for Arduino MEGA is imported and used for locally-embedded AI implementation. The embedded AIduino in this study can be developed for further applications in manufacturing industry energy management and sustainable energy management, wherein in sustainable energy management rotating machinery diagnostics works to identify energy loss from gross misalignment and unbalance of rotating machines in power plants as an example.Keywords: demand-side management, edge intelligence, energy management system, fault detection and classification
Procedia PDF Downloads 2491 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 4