Search results for: system engineers
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18067

Search results for: system engineers

17977 Development of a Miniature and Low-Cost IoT-Based Remote Health Monitoring Device

Authors: Sreejith Jayachandran, Mojtaba Ghods, Morteza Mohammadzaheri

Abstract:

The modern busy world is running behind new embedded technologies based on computers and software; meanwhile, some people forget to do their health condition and regular medical check-ups. Some of them postpone medical check-ups due to a lack of time and convenience, while others skip these regular evaluations and medical examinations due to huge medical bills and hospital expenses. Engineers and medical experts have come together to give birth to a new device in the telemonitoring system capable of monitoring, checking, and evaluating the health status of the human body remotely through the internet for the needs of all kinds of people. The remote health monitoring device is a microcontroller-based embedded unit. Various types of sensors in this device are connected to the human body, and with the help of an Arduino UNO board, the required analogue data is collected from the sensors. The microcontroller on the Arduino board processes the analogue data collected in this way into digital data and transfers that information to the cloud, and stores it there, and the processed digital data is instantly displayed through the LCD attached to the machine. By accessing the cloud storage with a username and password, the concerned person’s health care teams/doctors and other health staff can collect this data for the assessment and follow-up of that patient. Besides that, the family members/guardians can use and evaluate this data for awareness of the patient's current health status. Moreover, the system is connected to a Global Positioning System (GPS) module. In emergencies, the concerned team can position the patient or the person with this device. The setup continuously evaluates and transfers the data to the cloud, and also the user can prefix a normal value range for the evaluation. For example, the blood pressure normal value is universally prefixed between 80/120 mmHg. Similarly, the RHMS is also allowed to fix the range of values referred to as normal coefficients. This IoT-based miniature system (11×10×10) cm³ with a low weight of 500 gr only consumes 10 mW. This smart monitoring system is manufactured with 100 GBP, which can be used not only for health systems, it can be used for numerous other uses including aerospace and transportation sections.

Keywords: embedded technology, telemonitoring system, microcontroller, Arduino UNO, cloud storage, global positioning system, remote health monitoring system, alert system

Procedia PDF Downloads 90
17976 Fatigue Life Estimation of Tubular Joints - A Comparative Study

Authors: Jeron Maheswaran, Sudath C. Siriwardane

Abstract:

In fatigue analysis, the structural detail of tubular joint has taken great attention among engineers. The DNV-RP-C203 is covering this topic quite well for simple and clear joint cases. For complex joint and geometry, where joint classification isn’t available and limitation on validity range of non-dimensional geometric parameters, the challenges become a fact among engineers. The classification of joint is important to carry out through the fatigue analysis. These joint configurations are identified by the connectivity and the load distribution of tubular joints. To overcome these problems to some extent, this paper compare the fatigue life of tubular joints in offshore jacket according to the stress concentration factors (SCF) in DNV-RP-C203 and finite element method employed Abaqus/CAE. The paper presents the geometric details, material properties and considered load history of the jacket structure. Describe the global structural analysis and identification of critical tubular joints for fatigue life estimation. Hence fatigue life is determined based on the guidelines provided by design codes. Fatigue analysis of tubular joints is conducted using finite element employed Abaqus/CAE [4] as next major step. Finally, obtained SCFs and fatigue lives are compared and their significances are discussed.

Keywords: fatigue life, stress-concentration factor, finite element analysis, offshore jacket structure

Procedia PDF Downloads 453
17975 Reliability Modeling of Repairable Subsystems in Semiconductor Fabrication: A Virtual Age and General Repair Framework

Authors: Keshav Dubey, Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta

Abstract:

In the semiconductor capital equipment industry, effective modeling of repairable system reliability is crucial for optimizing maintenance strategies and ensuring operational efficiency. However, repairable system reliability modeling using a renewal process is not as popular in the semiconductor equipment industry as it is in the locomotive and automotive industries. Utilization of this approach will help optimize maintenance practices. This paper presents a structured framework that leverages both parametric and non-parametric approaches to model the reliability of repairable subsystems based on operational data, maintenance schedules, and system-specific conditions. Data is organized at the equipment ID level, facilitating trend testing to uncover failure patterns and system degradation over time. For non-parametric modeling, the Mean Cumulative Function (Mean Cumulative Function) approach is applied, offering a flexible method to estimate the cumulative number of failures over time without assuming an underlying statistical distribution. This allows for empirical insights into subsystem failure behavior based on historical data. On the parametric side, virtual age modeling, along with Homogeneous and Non-Homogeneous Poisson Process (Homogeneous Poisson Process and Non-Homogeneous Poisson Process) models, is employed to quantify the effect of repairs and the aging process on subsystem reliability. These models allow for a more structured analysis by characterizing repair effectiveness and system wear-out trends over time. A comparison of various Generalized Renewal Process (GRP) approaches highlights their utility in modeling different repair effectiveness scenarios. These approaches provide a robust framework for assessing the impact of maintenance actions on system performance and reliability. By integrating both parametric and non-parametric methods, this framework offers a comprehensive toolset for reliability engineers to better understand equipment behavior, assess the effectiveness of maintenance activities, and make data-driven decisions that enhance system availability and operational performance in semiconductor fabrication facilities.

Keywords: reliability, maintainability, homegenous poission process, repairable system

Procedia PDF Downloads 28
17974 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 162
17973 Modelling of Geotechnical Data Using Geographic Information System and MATLAB for Eastern Ahmedabad City, Gujarat

Authors: Rahul Patel

Abstract:

Ahmedabad, a city located in western India, is experiencing rapid growth due to urbanization and industrialization. It is projected to become a metropolitan city in the near future, resulting in various construction activities. Soil testing is necessary before construction can commence, requiring construction companies and contractors to periodically conduct soil testing. The focus of this study is on the process of creating a spatial database that is digitally formatted and integrated with geotechnical data and a Geographic Information System (GIS). Building a comprehensive geotechnical (Geo)-database involves three steps: collecting borehole data from reputable sources, verifying the accuracy and redundancy of the data, and standardizing and organizing the geotechnical information for integration into the database. Once the database is complete, it is integrated with GIS, allowing users to visualize, analyze, and interpret geotechnical information spatially. Using a Topographic to Raster interpolation process in GIS, estimated values are assigned to all locations based on sampled geotechnical data values. The study area was contoured for SPT N-Values, Soil Classification, Φ-Values, and Bearing Capacity (T/m2). Various interpolation techniques were cross-validated to ensure information accuracy. This GIS map enables the calculation of SPT N-Values, Φ-Values, and bearing capacities for different footing widths and various depths. This study highlights the potential of GIS in providing an efficient solution to complex phenomena that would otherwise be tedious to achieve through other means. Not only does GIS offer greater accuracy, but it also generates valuable information that can be used as input for correlation analysis. Furthermore, this system serves as a decision support tool for geotechnical engineers.

Keywords: ArcGIS, borehole data, geographic information system, geo-database, interpolation, SPT N-value, soil classification, Φ-Value, bearing capacity

Procedia PDF Downloads 74
17972 Quality Determinants of Client Satisfaction: A Case Study of ACE-Australian Consulting Engineers, Sydney, Australia

Authors: Elham S. Hasham, Anthony S. Hasham

Abstract:

The construction industry is one of Australia’s fastest growing industries and its success is a result of a firm’s client satisfaction with focus on product determinants such as price and quality. Ensuring quality at every phase is a must and building rapport with the client will go a long way. To capitalise on the growing demand for Engineering Consulting Firms (ECFs), we should “redefine the bottom line by allowing client satisfaction, high-quality standards, and profits to be the top priorities”. Consequently, the emphasis should be on improving employee skills through various training provisions. Clients seek consistency and thus expect that all services should be similar in respect to quality and the ability of the service to meet their needs. This calls for empowerment and comfortable work conditions to motivate employees and give them incentive to deliver quality and excellent output. The methodology utilized is triangulation-a combination of both quantitative and qualitative research. The case study-Australian Consulting Engineers (ACE) was established in 1995 and has operations throughout Australia, the Philippines, Europe, U.A.E., K.S.A., and Lebanon. ACE is affiliated with key agencies and support organizations in the engineering industry with International Organization for Standardization (ISO) certifications in Safety and Quality Management. The objective of this study is significant as it sheds light on employee motivation and client satisfaction as imperative determinants of the success of an organization.

Keywords: leadership, motivation, organizational behavior, satisfaction

Procedia PDF Downloads 66
17971 Programming without Code: An Approach and Environment to Conditions-On-Data Programming

Authors: Philippe Larvet

Abstract:

This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.

Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation

Procedia PDF Downloads 222
17970 Benefits of Social Justice Pedagogy and Ecofeminist Discourse for Engineering Education

Authors: Hollie M. Lewis

Abstract:

A large body of corroborating research provides evidence that traditional undergraduate engineering education fails to provide students with a role and identity that requires social concern and moral reasoning. Engineering students demonstrate a low level of engagement with social and political contexts, which further declines over the course of engineering education. This detachment is thought to stem from beliefs that the role of the engineer is purely to design machines, systems, and structures. In effect, engineers objectify the world. The purpose of this paper is to provide an ecofeminist critique of engineering education and pose the benefits of social justice pedagogies incorporating ecofeminist discourse. The challenges currently facing the world stem from anthropocentric industrialization, an agenda that is historically absent of Environmental, Feminist, People of Color, and Indigenous voices. A future in which the global collective achieves its Sustainable Development Goals requires its engineers to have a solid understanding of the broader social and political contexts in which they manage projects. Engineering education must convey the influence of the professional role of engineer and encourage the practice of critical reflection and social perspective-taking, priming students with the skills to engage with varying perspectives and discourses. There will be discussed the facets of social justice pedagogies that aid students in surpassing threshold concepts in social justice.

Keywords: feminism in engineering, sustainable development, engineering education, social justice pedagogies

Procedia PDF Downloads 64
17969 A Hybrid Classical-Quantum Algorithm for Boundary Integral Equations of Scattering Theory

Authors: Damir Latypov

Abstract:

A hybrid classical-quantum algorithm to solve boundary integral equations (BIE) arising in problems of electromagnetic and acoustic scattering is proposed. The quantum speed-up is due to a Quantum Linear System Algorithm (QLSA). The original QLSA of Harrow et al. provides an exponential speed-up over the best-known classical algorithms but only in the case of sparse systems. Due to the non-local nature of integral operators, matrices arising from discretization of BIEs, are, however, dense. A QLSA for dense matrices was introduced in 2017. Its runtime as function of the system's size N is bounded by O(√Npolylog(N)). The run time of the best-known classical algorithm for an arbitrary dense matrix scales as O(N².³⁷³). Instead of exponential as in case of sparse matrices, here we have only a polynomial speed-up. Nevertheless, sufficiently high power of this polynomial, ~4.7, should make QLSA an appealing alternative. Unfortunately for the QLSA, the asymptotic separability of the Green's function leads to high compressibility of the BIEs matrices. Classical fast algorithms such as Multilevel Fast Multipole Method (MLFMM) take advantage of this fact and reduce the runtime to O(Nlog(N)), i.e., the QLSA is only quadratically faster than the MLFMM. To be truly impactful for computational electromagnetics and acoustics engineers, QLSA must provide more substantial advantage than that. We propose a computational scheme which combines elements of the classical fast algorithms with the QLSA to achieve the required performance.

Keywords: quantum linear system algorithm, boundary integral equations, dense matrices, electromagnetic scattering theory

Procedia PDF Downloads 156
17968 Machine Learning Methods for Network Intrusion Detection

Authors: Mouhammad Alkasassbeh, Mohammad Almseidin

Abstract:

Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE.

Keywords: IDS, DDoS, MLP, KDD

Procedia PDF Downloads 235
17967 BEATRICE: A Low-Cost Manipulator Arm for an Educational Planetary Rover

Authors: T. Pakulski, L. Kryza, A. Linossier

Abstract:

The BEar Articulated TeleRobotic Inspection and Clasping Extremity is a lightweight, 5 DoF robotic manipulator for the Berlin Educational Assistant Rover (BEAR). BEAR is one of the educational planetary rovers developed under the Space Rover projects at the Chair of Space Technology of the Technische Universität Berlin. The projects serve to conduct research and train engineers by developing rovers for competitions like the European Rover Challenge and the DLR SpaceBot Cup. BEATRICE is the result of a cost-driven design process to deliver a simple but capable platform for a variety of competition tasks: object grasping and manipulation, inspection, instrument wielding and more. The manipulator’s simple mechatronic design, based on a combination of servomotors and stepper motors with planetary gearboxes, also makes it a practical tool for developing embedded control systems. The platform’s initial implementation relies on tele-operated control but is fully instrumented for future autonomous functionality. This paper describes BEATRICE’s development from its preliminary link model to its structural and mechatronic design, embedded control and AI and T. In parallel, it examines the influence of budget constraints and high personnel turnover commonly associated with student teams on the manipulator’s design. Finally, it comments on the utility of robot design projects for educating future engineers.

Keywords: education, low-cost, manipulator, robotics, rover

Procedia PDF Downloads 257
17966 Hierarchy and Weight of Influence Factors on Labor Productivity in the Construction Industry of the Nepal

Authors: Shraddha Palikhe, Sunkuk Kim

Abstract:

The construction industry is the most labor intensive in Nepal. It is obvious that construction is a major sector and any productivity enhancement activity in this sector will have a positive impact in the overall improvement of the national economy. Previous studies have stated that Nepal has poor labor productivity among other south Asian countries. Though considerable research has been done on productivity factors in other countries, no study has addressed labor productivity issues in Nepal. Therefore, the main objective of this study is to identify and hierarchy the influence factors for poor labor productivity. In this study, a questionnaire approach is chosen as a method of the survey from thirty experts involved in the construction industry, such as Architects, Civil Engineers, Project Engineers and Site Engineers. A survey was conducted in Nepal, to identify the major factors impacting construction labor productivity. Analytic Hierarchy Process (AHP) analysis method was used to understand the underlying relationships among the factors, categorized into five groups, namely (1) Labor-management group; (2) Material management group; (3) Human labor group; (4) Technological group and (5) External group and was divided into 33 subfactors. AHP was used to establish the relative importance of the criteria. The AHP makes pairwise comparisons of relative importance between hierarchy elements grouped by labor productivity decision criteria. Respondents were asked to answer based on their experience of construction works. On the basis of the respondent’s response, weight of all the factors were calculated and ranked it. The AHP results were tabulated based on weight and ranking of influence factors. AHP model consists of five main criteria and 33 sub-criteria. Among five main criteria, the scenario assigns a weight of highest influential factor i.e. 26.15% to human labor group followed by 23.01% to technological group, 22.97% to labor management group, 17.61% material management group and 10.25% to external group. While in 33 sub-criteria, the most influential factor for poor productivity in Nepal are lack of monetary incentive (20.53%) for human labor group, unsafe working condition (17.55%) for technological group, lack of leadership (18.43%) for labor management group, unavailability of tools at site (25.03%) for material management group and strikes (35.01%) for external group. The results show that AHP model associated criteria are helpful to predict the current situation of labor productivity. It is essential to consider these influence factors to improve the labor productivity in the construction industry of Nepal.

Keywords: construction, hierarchical analysis, influence factors, labor productivity

Procedia PDF Downloads 405
17965 Mathematics as the Foundation for the STEM Disciplines: Different Pedagogical Strategies Addressed

Authors: Marion G. Ben-Jacob, David Wang

Abstract:

There is a mathematics requirement for entry level college and university students, especially those who plan to study STEM (Science, Technology, Engineering and Mathematics). Most of them take College Algebra, and to continue their studies, they need to succeed in this course. Different pedagogical strategies are employed to promote the success of our students. There is, of course, the Traditional Method of teaching- lecture, examples, problems for students to solve. The Emporium Model, another pedagogical approach, replaces traditional lectures with a learning resource center model featuring interactive software and on-demand personalized assistance. This presentation will compare these two methods of pedagogy and the study done with its results on this comparison. Math is the foundation for science, technology, and engineering. Its work is generally used in STEM to find patterns in data. These patterns can be used to test relationships, draw general conclusions about data, and model the real world. In STEM, solutions to problems are analyzed, reasoned, and interpreted using math abilities in a assortment of real-world scenarios. This presentation will examine specific examples of how math is used in the different STEM disciplines. Math becomes practical in science when it is used to model natural and artificial experiments to identify a problem and develop a solution for it. As we analyze data, we are using math to find the statistical correlation between the cause of an effect. Scientists who use math include the following: data scientists, scientists, biologists and geologists. Without math, most technology would not be possible. Math is the basis of binary, and without programming, you just have the hardware. Addition, subtraction, multiplication, and division is also used in almost every program written. Mathematical algorithms are inherent in software as well. Mechanical engineers analyze scientific data to design robots by applying math and using the software. Electrical engineers use math to help design and test electrical equipment. They also use math when creating computer simulations and designing new products. Chemical engineers often use mathematics in the lab. Advanced computer software is used to aid in their research and production processes to model theoretical synthesis techniques and properties of chemical compounds. Mathematics mastery is crucial for success in the STEM disciplines. Pedagogical research on formative strategies and necessary topics to be covered are essential.

Keywords: emporium model, mathematics, pedagogy, STEM

Procedia PDF Downloads 76
17964 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 133
17963 Modeling the Performance of Natural Sand-Bentonite Barriers after Infiltration with Polar and Non-Polar Hydrocarbon Leachates

Authors: Altayeb Qasem, Mousa Bani Baker, Amani Nawafleh

Abstract:

The complexity of the sand-bentonite liner barrier system calls for an adequate model that reflects the conditions depending on the barrier materials and the characteristics of the permeates which lead to hydraulic conductivity changes when liners infiltrated with polar, no-polar, miscible and immiscible liquids. This paper is dedicated to developing a model for evaluating the hydraulic conductivity in the form of a simple indicator for the compatibility of the liner versus leachate. Based on two liner compositions (95% sand: 5% bentonite; and 90% sand: 10% bentonite), two pressures (40 kPa and 100 kPa), and three leachates: water, ethanol and biofuel. Two characteristics of the leacahtes were used: viscosity of permeate and its octanol-water partitioning coefficient (Kow). Three characteristics of the liners mixtures were evaluated which had impact on the hydraulic conductivity of the liner system: the initial content of bentonite (%), the free swelling index, and the shrinkage limit of the initial liner’s mixture. Engineers can use this modest tool to predict a potential liner failure in sand-bentonite barriers.

Keywords: liner performance, sand-bentonite barriers, viscosity, free swelling index, shrinkage limit, octanol-water partitioning coefficient, hydraulic conductivity, theoretical modeling

Procedia PDF Downloads 414
17962 Characterisation of Human Attitudes in Software Requirements Elicitation

Authors: Mauro Callejas-Cuervo, Andrea C. Alarcon-Aldana

Abstract:

It is evident that there has been progress in the development and innovation of tools, techniques and methods in the development of software. Even so, there are few methodologies that include the human factor from the point of view of motivation, emotions and impact on the work environment; aspects that, when mishandled or not taken into consideration, increase the iterations in the requirements elicitation phase. This generates a broad number of changes in the characteristics of the system during its developmental process and an overinvestment of resources to obtain a final product that, often, does not live up to the expectations and needs of the client. The human factors such as emotions or personality traits are naturally associated with the process of developing software. However, most of these jobs are oriented towards the analysis of the final users of the software and do not take into consideration the emotions and motivations of the members of the development team. Given that in the industry, the strategies to select the requirements engineers and/or the analysts do not take said factors into account, it is important to identify and describe the characteristics or personality traits in order to elicit requirements effectively. This research describes the main personality traits associated with the requirements elicitation tasks through the analysis of the existing literature on the topic and a compilation of our experiences as software development project managers in the academic and productive sectors; allowing for the characterisation of a suitable profile for this job. Moreover, a psychometric test is used as an information gathering technique, and it is applied to the personnel of some local companies in the software development sector. Such information has become an important asset in order to make a comparative analysis between the degree of effectiveness in the way their software development teams are formed and the proposed profile. The results show that of the software development companies studied: 53.58% have selected the personnel for the task of requirements elicitation adequately, 37.71% possess some of the characteristics to perform the task, and 10.71% are inadequate. From the previous information, it is possible to conclude that 46.42% of the requirements engineers selected by the companies could perform other roles more adequately; a change which could improve the performance and competitiveness of the work team and, indirectly, the quality of the product developed. Likewise, the research allowed for the validation of the pertinence and usefulness of the psychometric instrument as well as the accuracy of the characteristics for the profile of requirements engineer proposed as a reference.

Keywords: emotions, human attitudes, personality traits, psychometric tests, requirements engineering

Procedia PDF Downloads 264
17961 The Thermal Simulation of Hydraulic Cable Drum Trailers 15-Ton

Authors: Ahmad Abdul-Razzak Aboudi Al-Issa

Abstract:

Thermal is the main important aspect in any hydraulic system since it is affected on the hydraulic system performance. Therefore must be simulated the hydraulic system -that was designed- in this aspect before constructing it. In this study, an existed expert system was using to simulate the thermal aspect of a designed hydraulic system that will be used in an industrial field. The expert system which is used in this study is (Hydraulic System Calculations), and its symbol (HSC). HSC had been designed and coded in an interactive program userfriendly named (Microsoft Visual Basic 2010).

Keywords: fluid power, hydraulic system, thermal and hydrodynamic, expert system

Procedia PDF Downloads 501
17960 Prioritization Ranking for Managing Moisture Problems in a Building

Authors: Sai Amulya Gollapalli, Dilip A. Patel, Parth Patel K., Lukman E. Mansuri

Abstract:

Accumulation of moisture is one of the most worrisome aspects of a building. Architects and engineers tend to ignore its vitality during the designing and construction stage. Major fatalities in buildings can be caused by it. People avoid spending a lot of money on waterproofing. If the same mistake is repeated, no deep thinking is done. The quality of workmanship and construction is depleting due to negligence. It is important to do an analysis of the water maintenance issues happening in the current buildings and give a database for all the factors that are causing the defect. In this research, surveys are done with two waterproofing consultants, two client engineers, and two project managers. The survey was based on a matrix that was based on the causes of water maintenance issues. There were around 100 causes that were identified. The causes were categorized into six, namely, manpower, finance, method, management, environment, and material. In the matrices, the causes on the x-direction matched with the causes on the y-direction. 3 Likert scale was used to make a pairwise comparison between causes on each cell. Matrices were evaluated for the main categories and for each category separately. A final ranking was done by the weights achieved, and ‘cracks arriving from various construction joints’ was the highest with 0.57 relative significance, and ‘usage of the material’ was the lowest with 0.03 relative significance. Twelve defects due to water leakage were identified, and interviewees were asked to make a pairwise comparison of them, too, to understand the priorities. When the list of causes is achieved, the prioritization as per the stratification analysis is done. This will be beneficial to the consultants and contractors as they will get a primary idea of which causes to focus on.

Keywords: water leakage, survey, causes, matrices, prioritization

Procedia PDF Downloads 99
17959 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

Keywords: indirect vector control, induction motor, adaptive tabu search, control design, artificial intelligence

Procedia PDF Downloads 400
17958 Application of the State of the Art of Hydraulic Models to Manage Coastal Problems, Case Study: The Egyptian Mediterranean Coast Model

Authors: Al. I. Diwedar, Moheb Iskander, Mohamed Yossef, Ahmed ElKut, Noha Fouad, Radwa Fathy, Mustafa M. Almaghraby, Amira Samir, Ahmed Romya, Nourhan Hassan, Asmaa Abo Zed, Bas Reijmerink, Julien Groenenboom

Abstract:

Coastal problems are stressing the coastal environment due to its complexity. The dynamic interaction between the sea and the land results in serious problems that threaten coastal areas worldwide, in addition to human interventions and activities. This makes the coastal environment highly vulnerable to natural processes like flooding, erosion, and the impact of human activities as pollution. Protecting and preserving this vulnerable coastal zone with its valuable ecosystems calls for addressing the coastal problems. This, in the end, will support the sustainability of the coastal communities and maintain the current and future generations. Consequently applying suitable management strategies and sustainable development that consider the unique characteristics of the coastal system is a must. The coastal management philosophy aims to solve the conflicts of interest between human development activities and this dynamic nature. Modeling emerges as a successful tool that provides support to decision-makers, engineers, and researchers for better management practices. Modeling tools proved that it is accurate and reliable in prediction. With its capability to integrate data from various sources such as bathymetric surveys, satellite images, and meteorological data, it offers the possibility for engineers and scientists to understand this complex dynamic system and get in-depth into the interaction between both the natural and human-induced factors. This enables decision-makers to make informed choices and develop effective strategies for sustainable development and risk mitigation of the coastal zone. The application of modeling tools supports the evaluation of various scenarios by affording the possibility to simulate and forecast different coastal processes from the hydrodynamic and wave actions and the resulting flooding and erosion. The state-of-the-art application of modeling tools in coastal management allows for better understanding and predicting coastal processes, optimizing infrastructure planning and design, supporting ecosystem-based approaches, assessing climate change impacts, managing hazards, and finally facilitating stakeholder engagement. This paper emphasizes the role of hydraulic models in enhancing the management of coastal problems by discussing the diverse applications of modeling in coastal management. It highlights the modelling role in understanding complex coastal processes, and predicting outcomes. The importance of informing decision-makers with modeling results which gives technical and scientific support to achieve sustainable coastal development and protection.

Keywords: coastal problems, coastal management, hydraulic model, numerical model, physical model

Procedia PDF Downloads 30
17957 Utilization of Cloud-Based Learning Platform for the Enhancement of IT Onboarding System

Authors: Christian Luarca

Abstract:

The study aims to define the efficiency of e-Trainings by the use of cloud platform as part of the onboarding process for IT support engineers. Traditional lecture based trainings involves human resource to guide and assist new hires as part of onboarding which takes time and effort. The use of electronic medium as a platform for training provides a two-way basic communication that can be done in a repetitive manner. The study focuses on determining the most efficient manner of learning the basic knowledge on IT support in the shortest time possible. This was determined by conducting the same set of knowledge transfer categories in two different approaches, one being the e-Training and the other using the traditional method. Performance assessment will be done by the use of Service Tracker Assessment (STA) Tool and Service Manager. Data gathered from this ongoing study will promote the utilization of e-Trainings in the IT onboarding process.

Keywords: cloud platform, e-Training, efficiency, onboarding

Procedia PDF Downloads 151
17956 Development of Graph-Theoretic Model for Ranking Top of Rail Lubricants

Authors: Subhash Chandra Sharma, Mohammad Soleimani

Abstract:

Selection of the correct lubricant for the top of rail application is a complex process. In this paper, the selection of the proper lubricant for a Top-Of-Rail (TOR) lubrication system based on graph theory and matrix approach has been developed. Attributes influencing the selection process and their influence on each other has been represented through a digraph and an equivalent matrix. A matrix function which is called the Permanent Function is derived. By substituting the level of inherent contribution of the influencing parameters and their influence on each other qualitatively, a criterion called Suitability Index is derived. Based on these indices, lubricants can be ranked for their suitability. The proposed model can be useful for maintenance engineers in selecting the best lubricant for a TOR application. The proposed methodology is illustrated step–by-step through an example.

Keywords: lubricant selection, top of rail lubrication, graph-theory, Ranking of lubricants

Procedia PDF Downloads 296
17955 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities

Authors: Elke Mackensen

Abstract:

Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.

Keywords: educational systems engineering training, requirements analysis, system modelling, SysML

Procedia PDF Downloads 347
17954 Design Evaluation Tool for Small Wind Turbine Systems Based on the Simple Load Model

Authors: Jihane Bouabid

Abstract:

The urgency to transition towards sustainable energy sources has revealed itself imperative. Today, in the 21st Century, the intellectual society have imposed technological advancements and improvements, and anticipates expeditious outcomes as an integral component of its relentless pursuit of an elevated standard of living. As a part of empowering human development, driving economic growth and meeting social needs, the access to energy services has become a necessity. As a part of these improvements, we are introducing the project "Mywindturbine" - an interactive web user interface for design and analysis in the field of wind energy, with a particular adherence to the IEC (International Electrotechnical Commission) standard 61400-2 "Wind turbines – Part 2: Design requirements for small wind turbines". Wind turbines play a pivotal role in Morocco's renewable energy strategy, leveraging the nation's abundant wind resources. The IEC 61400-2 standard ensures the safety and design integrity of small wind turbines deployed in Morocco, providing guidelines for performance and safety protocols. The conformity with this standard ensures turbine reliability, facilitates standards alignment, and accelerates the integration of wind energy into Morocco's energy landscape. The aim of the GUI (Graphical User Interface) for engineers and professionals from the field of wind energy systems who would like to design a small wind turbine system following the safety requirements of the international standards IEC 61400-2. The interface provides an easy way to analyze the structure of the turbine machine under normal and extreme load conditions based on the specific inputs provided by the user. The platform introduces an overview to sustainability and renewable energy, with a focus on wind turbines. It features a cross-examination of the input parameters provided from the user for the SLM (Simple Load Model) of small wind turbines, and results in an analysis according to the IEC 61400-2 standard. The analysis of the simple load model encompasses calculations for fatigue loads on blades and rotor shaft, yaw error load on blades, etc. for the small wind turbine performance. Through its structured framework and adherence to the IEC standard, "Mywindturbine" aims to empower professionals, engineers, and intellectuals with the knowledge and tools necessary to contribute towards a sustainable energy future.

Keywords: small wind turbine, IEC 61400-2 standard, user interface., simple load model

Procedia PDF Downloads 63
17953 Knowledge Management Barriers: A Statistical Study of Hardware Development Engineering Teams within Restricted Environments

Authors: Nicholas S. Norbert Jr., John E. Bischoff, Christopher J. Willy

Abstract:

Knowledge Management (KM) is globally recognized as a crucial element in securing competitive advantage through building and maintaining organizational memory, codifying and protecting intellectual capital and business intelligence, and providing mechanisms for collaboration and innovation. KM frameworks and approaches have been developed and defined identifying critical success factors for conducting KM within numerous industries ranging from scientific to business, and for ranges of organization scales from small groups to large enterprises. However, engineering and technical teams operating within restricted environments are subject to unique barriers and KM challenges which cannot be directly treated using the approaches and tools prescribed for other industries. This research identifies barriers in conducting KM within Hardware Development Engineering (HDE) teams and statistically compares significance to barriers upholding the four KM pillars of organization, technology, leadership, and learning for HDE teams. HDE teams suffer from restrictions in knowledge sharing (KS) due to classification of information (national security risks), customer proprietary restrictions (non-disclosure agreement execution for designs), types of knowledge, complexity of knowledge to be shared, and knowledge seeker expertise. As KM evolved leveraging information technology (IT) and web-based tools and approaches from Web 1.0 to Enterprise 2.0, KM may also seek to leverage emergent tools and analytics including expert locators and hybrid recommender systems to enable KS across barriers of the technical teams. The research will test hypothesis statistically evaluating if KM barriers for HDE teams affect the general set of expected benefits of a KM System identified through previous research. If correlations may be identified, then generalizations of success factors and approaches may also be garnered for HDE teams. Expert elicitation will be conducted using a questionnaire hosted on the internet and delivered to a panel of experts including engineering managers, principal and lead engineers, senior systems engineers, and knowledge management experts. The feedback to the questionnaire will be processed using analysis of variance (ANOVA) to identify and rank statistically significant barriers of HDE teams within the four KM pillars. Subsequently, KM approaches will be recommended for upholding the KM pillars within restricted environments of HDE teams.

Keywords: engineering management, knowledge barriers, knowledge management, knowledge sharing

Procedia PDF Downloads 281
17952 Advancements in Truss Design for High-Performance Facades and Roof System: A Structural Analysis

Authors: Milind Anurag

Abstract:

This study investigates cutting-edge truss design improvements, which are specifically adapted to satisfy the structural demands and difficulties associated with high-performance facades and roofs in modern architectural environments. With a growing emphasis on sustainability, energy efficiency, and eye-catching architectural aesthetics, the structural components that support these characteristics play an important part in attaining the right balance of form and function. The paper seeks to contribute to the evolution of truss design methods by combining data from these investigations, giving significant insights for architects, engineers, and researchers interested in the creation of high-performance building envelopes. The findings of this study are meant to inform future design standards and practices, promoting the development of structures that seamlessly integrate architectural innovation with structural robustness and environmental responsibility.

Keywords: truss design, high-performance, facades, finite element analysis, structural efficiency

Procedia PDF Downloads 56
17951 Medical Imaging Fusion: A Teaching-Learning Simulation Environment

Authors: Cristina Maria Ribeiro Martins Pereira Caridade, Ana Rita Ferreira Morais

Abstract:

The use of computational tools has become essential in the context of interactive learning, especially in engineering education. In the medical industry, teaching medical image processing techniques is a crucial part of training biomedical engineers, as it has integrated applications with healthcare facilities and hospitals. The aim of this article is to present a teaching-learning simulation tool developed in MATLAB using a graphical user interface for medical image fusion that explores different image fusion methodologies and processes in combination with image pre-processing techniques. The application uses different algorithms and medical fusion techniques in real time, allowing you to view original images and fusion images, compare processed and original images, adjust parameters, and save images. The tool proposed in an innovative teaching and learning environment consists of a dynamic and motivating teaching simulation for biomedical engineering students to acquire knowledge about medical image fusion techniques and necessary skills for the training of biomedical engineers. In conclusion, the developed simulation tool provides real-time visualization of the original and fusion images and the possibility to test, evaluate and progress the student’s knowledge about the fusion of medical images. It also facilitates the exploration of medical imaging applications, specifically image fusion, which is critical in the medical industry. Teachers and students can make adjustments and/or create new functions, making the simulation environment adaptable to new techniques and methodologies.

Keywords: image fusion, image processing, teaching-learning simulation tool, biomedical engineering education

Procedia PDF Downloads 132
17950 Piezo-Extracted Model Based Chloride/ Carbonation Induced Corrosion Assessment in Reinforced Concrete Structures

Authors: Gupta. Ashok, V. talakokula, S. bhalla

Abstract:

Rebar corrosion is one of the main causes of damage and premature failure of the reinforced concrete (RC) structures worldwide, causing enormous costs for inspection, maintenance, restoration and replacement. Therefore, early detection of corrosion and timely remedial action on the affected portion can facilitate an optimum utilization of the structure, imparting longevity to it. The recent advent of the electro-mechanical impedance (EMI) technique using piezo sensors (PZT) for structural health monitoring (SHM) has provided a new paradigm to the maintenance engineers to diagnose the onset of the damage at the incipient stage itself. This paper presents a model based approach for corrosion assessment based on the equivalent parameters extracted from the impedance spectrum of concrete-rebar system using the EMI technique via the PZT sensors.

Keywords: impedance, electro-mechanical, stiffness, mass, damping, equivalent parameters

Procedia PDF Downloads 545
17949 Determines the Continuity of Void in Underground Mine Tunnel Using Ground Penetrating Radar

Authors: Farid Adisaputra Gumilang

Abstract:

Kucing Liar Underground Mine is a future mine of PT Freeport Indonesia PTFI that is currently being developed. In the development process, problems were found when blasting the tunnels; there were overbreak, and void occur caused by geological contact or poor rock conditions. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate the depth of rock mass yield within pillars. To prevent the potential hazard caused by void zones, geotechnical engineers must ensure the planned drift is mined in the best location where people can work safely. GPR, or Ground penetrating radar, is a geophysical method that can image the subsurface. This non-destructive method uses electromagnetic radiation and detects the reflected signals from subsurface structures. The GPR survey measurements are conducted 48 meters along the drift that has a poor ground condition with 150MHz antenna with several angles (roof, wall, and floor). Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. Concern grounds are determined by the continuity of reflector/low reflector in the radargram section. In this paper, processing data using instantaneous amplitude to identify the void zone. In order to have a good interpretation and result, it combines with the geological information and borehole camera data, so the calibrated GPR data allows the geotechnical engineer to determine the safe location to change the drift location.

Keywords: underground mine, ground penetrating radar, reflectivity, borehole camera

Procedia PDF Downloads 83
17948 Field Management Solutions Supporting Foreman Executive Tasks

Authors: Maroua Sbiti, Karim Beddiar, Djaoued Beladjine, Romuald Perrault

Abstract:

Productivity is decreasing in construction compared to the manufacturing industry. It seems that the sector is suffering from organizational problems and have low maturity regarding technological advances. High international competition due to the growing context of globalization, complex projects, and shorter deadlines increases these challenges. Field employees are more exposed to coordination problems than design officers. Execution collaboration is then a major issue that can threaten the cost, time, and quality completion of a project. Initially, this paper will try to identify field professional requirements as to address building management process weaknesses such as the unreliability of scheduling, the fickleness of monitoring and inspection processes, the inaccuracy of project’s indicators, inconsistency of building documents and the random logistic management. Subsequently, we will focus our attention on providing solutions to improve scheduling, inspection, and hours tracking processes using emerging lean tools and field mobility applications that bring new perspectives in terms of cooperation. They have shown a great ability to connect various field teams and make informations visual and accessible to planify accurately and eliminate at the source the potential defects. In addition to software as a service use, the adoption of the human resource module of the Enterprise Resource Planning system can allow a meticulous time accounting and thus make the faster decision making. The next step is to integrate external data sources received from or destined to design engineers, logisticians, and suppliers in a holistic system. Creating a monolithic system that consolidates planning, quality, procurement, and resources management modules should be our ultimate target to build the construction industry supply chain.

Keywords: lean, last planner system, field mobility applications, construction productivity

Procedia PDF Downloads 117