Search results for: extra trees classifier
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1506

Search results for: extra trees classifier

1416 A Supervised Approach for Word Sense Disambiguation Based on Arabic Diacritics

Authors: Alaa Alrakaf, Sk. Md. Mizanur Rahman

Abstract:

Since the last two decades’ Arabic natural language processing (ANLP) has become increasingly much more important. One of the key issues related to ANLP is ambiguity. In Arabic language different pronunciation of one word may have a different meaning. Furthermore, ambiguity also has an impact on the effectiveness and efficiency of Machine Translation (MT). The issue of ambiguity has limited the usefulness and accuracy of the translation from Arabic to English. The lack of Arabic resources makes ambiguity problem more complicated. Additionally, the orthographic level of representation cannot specify the exact meaning of the word. This paper looked at the diacritics of Arabic language and used them to disambiguate a word. The proposed approach of word sense disambiguation used Diacritizer application to Diacritize Arabic text then found the most accurate sense of an ambiguous word using Naïve Bayes Classifier. Our Experimental study proves that using Arabic Diacritics with Naïve Bayes Classifier enhances the accuracy of choosing the appropriate sense by 23% and also decreases the ambiguity in machine translation.

Keywords: Arabic natural language processing, machine learning, machine translation, Naive bayes classifier, word sense disambiguation

Procedia PDF Downloads 359
1415 Use of Dendrochronology in Estimation of Creep Velocity and Its Dependence on the Bulk Density of Soils

Authors: Mohammad Amjad Sabir, Ishtiaq Khan, Shahid Ali, Umar Shabbir, Aneel Ahmad

Abstract:

Creep, being the main silt contributor to the rivers, is a slow, downhill flow of soils. The creep velocity is measured in millimeters to a couple of centimeters per year and is determined with the help of tilt caused by creep in the vertical objects and needs at least ten years to get a reliable creep velocity. This project was devised to calculate creep velocity using dendrochronology and looking for the difference of creep velocity registered by different trees on the same slope. It was concluded that dendrochronology provides a very reliable procedure of creep velocity estimation if ‘J’ shaped trees are studied for their horizontal movement and age. The age of these trees was measured using tree coring, and the horizontal movement was measured with a conventional tape. Using this procedure it does not require decades and additionally the data reveals the creep velocity for up to 150 years and even more instead of just a decade. It was also concluded that the creep velocity does not only depend on bulk density of soil hence no pronounced effect of bulk density was detected.

Keywords: creep velocity, Galiyat, Pakistan, dendrochronology, Nagri Bala

Procedia PDF Downloads 316
1414 Daily Stress, Family Functioning, and Mental Health among Palestinian Couples in Israel During COVID-19: A Moderated Mediation Model

Authors: Niveen M. Hassan-Abbas

Abstract:

The COVID-19 pandemic created a range of stressors, among them difficulties related to work conditions, financial changes, lack of childcare, and confinement or isolation due to social distancing. Among families and married individuals, these stressors were often expressed in additional daily hassles, with an influence on mental health. This study examined two moderated mediation models based on Bodenmann’s systemic-transactional stress model. Specifically, the models tested the hypothesis that intra-dyadic stress mediates the association between extra-dyadic stress and mental health, while two measures of family functioning, cohesion, and flexibility, moderate the relationship between extra and intra-dyadic stress. Participants were 480 heterosexual married Palestinians from Israel who completed self-report questionnaires. The results showed partial mediation patterns supporting both models, indicating that family cohesion and flexibility weakened the mediating effect of intra-dyadic stress on the relationship between extra-dyadic stress and mental health. These findings increase our understanding of the variables that affected mental health during the pandemic and suggested that when faced with extra-dyadic stress, married individuals with good family environments are less likely to experience high levels of intra-dyadic stress, which is in turn associated with preserved mental health. Limitations and implications for planning interventions for couples and families during the pandemic are discussed.

Keywords: Palestinian families in Israel, COVID-19 pandemic, family cohesion and flexibility, extra-dyadic stress, intra-dyadic stress, mental health

Procedia PDF Downloads 96
1413 The Roles of Art Extra Activities in Promoting the Psychological Sides in the Higher Education Institutions and Its Challenges: Oman as a Case Study

Authors: Mohammed Hamood Al-Amri, Fakhriya Khalfan Al Yahyai

Abstract:

The current case study aimed to investigate the roles of art extra activities in promoting the psychological sides in the Higher Education Institutions in the Sultanate of Oman and its challenges. The sample of the study consisted of (331) students (111 males and 220 females) were chosen randomly from four higher education institutions in Oman. For the purpose of achieving the objectives of the study, the researchers prepared a questioner consisted of (52 items) divided into two main sections (psychological sides & challenges), and the validity and reliability were established. The results of the study showed that the important of the roles of art extra activities in promoting and supporting the psychologic sides in the Higher Education Institutions as the respondents scored highly in all study tool sections with means rated between (3.65 to 4.25). The results also indicated that there were statistically differences between the average scores of the study sample members regarding the roles of art extra activities in promoting the psychological sides in the Higher Education Institutions due to type of institution in favor of the private institutions as well as in favor of females' students. The results also show there is statistically significant differences in the type of accommodation regarding the psychological side due to inside compass accommodation. Regarding the challenges facing students to participating in art extra activities, the results showed that the challenges relating to the academic study become the first, followed by the personal challenges related to the students themselves. The results also indicated that there were statistically differences at (α=0.05) between the average scores of the study sample members regarding identify the challenges for students' reluctance in favour of the private institutions. The results also there were no statistically significant differences among the sample responds due to the agenda, year of study, and type of accommodations. This study ended up with some recommendations and suggestions to activate the roles of art extra activities in promoting the psychological sides in the Higher Education Institutions with references to some solutions for the challenges.

Keywords: art activities, psychological sides, higher education institutions, challenges and oman

Procedia PDF Downloads 93
1412 Improving University Operations with Data Mining: Predicting Student Performance

Authors: Mladen Dragičević, Mirjana Pejić Bach, Vanja Šimičević

Abstract:

The purpose of this paper is to develop models that would enable predicting student success. These models could improve allocation of students among colleges and optimize the newly introduced model of government subsidies for higher education. For the purpose of collecting data, an anonymous survey was carried out in the last year of undergraduate degree student population using random sampling method. Decision trees were created of which two have been chosen that were most successful in predicting student success based on two criteria: Grade Point Average (GPA) and time that a student needs to finish the undergraduate program (time-to-degree). Decision trees have been shown as a good method of classification student success and they could be even more improved by increasing survey sample and developing specialized decision trees for each type of college. These types of methods have a big potential for use in decision support systems.

Keywords: data mining, knowledge discovery in databases, prediction models, student success

Procedia PDF Downloads 408
1411 Mass Pheromone Trapping on Red Palm Weevil, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Oil Palm Plantations of Terengganu

Authors: Wahizatul Afzan Azmi, Nur Ain Farhah Ros Saidon Khudri, Mohamad Haris Hussain, Tse Seng Chuah

Abstract:

Malaysia houses a broad range of palm trees species and some of these palm trees are very crucial for the country’s social and economic development, especially the oil palm trees. However, the destructive pest of the various palms species, Rhynchophorus ferrugineus (Coleoptera: Curculionidae) or known as Red Palm Weevil (RPW) was first detected in Terengganu in 2007. Recently, the pattern of infestation has move from coastal lines toward inland areas. After the coconut plantations, it is presumed that the RPW will be a serious threat to the oil palm plantations in Malaysia. Thus, this study was carried out to detect the presence and distribution of Red Palm Weevil (RPW) in selected oil palm plantations of Terengganu. A total of 42 traps were installed in the three oil palm plantations in Terengganu and were inspected every week for two months. Oil palm plantation A collected significantly higher adults RPW compared to the other locations. Generally, females of RPW were significantly higher than male individuals. Females were collected more as the synthetic aggregation pheromone used, ferrugineol was synthesized from the male aggregation pheromone of adult RPW. Oil palm plantation A collected the highest number of RPW might be due to the abundance of soft part in the host plant as the oil palm trees age ranged between 6 to 10 years old. As a conclusion, RPW presence was detected in some oil palm plantations of Terengganu and immediate action is crucially needed before it is too late.

Keywords: red palm weevil, pest, oil palm, pheromone

Procedia PDF Downloads 213
1410 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia

Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos

Abstract:

Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.

Keywords: logging, growth model, cutting cycle, minimum logging diameter

Procedia PDF Downloads 89
1409 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 327
1408 Carbon Stock Estimation of Urban Forests in Selected Public Parks in Addis Ababa

Authors: Meseret Habtamu, Mekuria Argaw

Abstract:

Urban forests can help to improve the microclimate and air quality. Urban forests in Addis Ababa are important sinks for GHGs as the number of vehicles and the traffic constrain is steadily increasing. The objective of this study was to characterize the vegetation types in selected public parks and to estimate the carbon stock potential of urban forests by assessing carbon in the above, below ground biomass, in the litter and soil. Species which vegetation samples were taken using a systematic transect sampling within value DBH ≥ 5cm were recorded to measure the above, the below ground biomass and the amount of C stored. Allometric models (Y= 34.4703 - 8.0671(DBH) + 0.6589(DBH2) were used to calculate the above ground and Below ground biomass (BGB) = AGB × 0.2 and sampling of soil and litter was based on quadrates. There were 5038 trees recorded from the selected study sites with DBH ≥ 5cm. Most of the Parks had large number of indigenous species, but the numbers of exotic trees are much larger than the indigenous trees. The mean above ground and below ground biomass is 305.7 ± 168.3 and 61.1± 33.7 respectively and the mean carbon in the above ground and below ground biomass is 143.3±74.2 and 28.1 ± 14.4 respectively. The mean CO2 in the above ground and below ground biomass is 525.9 ± 272.2 and 103.1 ± 52.9 respectively. The mean carbon in dead litter and soil carbon were 10.5 ± 2.4 and 69.2t ha-1 respectively. Urban trees reduce atmospheric carbon dioxide (CO2) through sequestration which is important for climate change mitigation, they are also important for recreational, medicinal value and aesthetic and biodiversity conservation.

Keywords: biodiversity, carbon sequestration, climate change, urban forests

Procedia PDF Downloads 233
1407 Interactive Effects of Challenge-Hindrance Stressors and Core Self-Evaluations on In-Role and Extra-Role Performance

Authors: Khansa Hayat

Abstract:

Organizational stress is one of the vital phenomena which is having its roots deep down in has deep roots in management, psychology, and organizational behavior research. In the meanwhile, keeping its focus on the positive strength of humans rather than the traditional negativity oriented research, positive psychology has emerged as a separate branch of organizational behavior. The current study investigates the interactive effects of Challenge and hindrance stressors and core Self Evaluations (CSE’s) of the individual on job performances including the in-role performance and extra role performances. The study also aims to investigate the supporting/buffering role of the human dispositions (i.e., self esteem, self efficacy, locus of control and emotional stability). The results show that Challenge stressors have a significant positive effect on in role performance and extra role performance of the individual. The findings of the study indicate that Core Self evaluations strengthen the relationship between challenge stressors and in role performance of the individual. In case of Hindrance Stressors the Core self Evaluations lessen the negative impact of Hindrance stressors and they let the individual perform at a better and normal position even when the Hindrance stressors are high. The relationship and implication of conservation of resource theory are also discussed. The limitations, future research directions and implications of the study are also discussed.

Keywords: challenge-hindrance stressors, core self evaluations, in-role performance, extra-role performance

Procedia PDF Downloads 279
1406 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera

Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser

Abstract:

The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.

Keywords: anemia, palpebral conjunctiva, SVM, smartphone

Procedia PDF Downloads 507
1405 Adversarial Disentanglement Using Latent Classifier for Pose-Independent Representation

Authors: Hamed Alqahtani, Manolya Kavakli-Thorne

Abstract:

The large pose discrepancy is one of the critical challenges in face recognition during video surveillance. Due to the entanglement of pose attributes with identity information, the conventional approaches for pose-independent representation lack in providing quality results in recognizing largely posed faces. In this paper, we propose a practical approach to disentangle the pose attribute from the identity information followed by synthesis of a face using a classifier network in latent space. The proposed approach employs a modified generative adversarial network framework consisting of an encoder-decoder structure embedded with a classifier in manifold space for carrying out factorization on the latent encoding. It can be further generalized to other face and non-face attributes for real-life video frames containing faces with significant attribute variations. Experimental results and comparison with state of the art in the field prove that the learned representation of the proposed approach synthesizes more compelling perceptual images through a combination of adversarial and classification losses.

Keywords: disentanglement, face detection, generative adversarial networks, video surveillance

Procedia PDF Downloads 130
1404 Experimental Evaluation of Succinct Ternary Tree

Authors: Dmitriy Kuptsov

Abstract:

Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.

Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation

Procedia PDF Downloads 163
1403 Neural Network Based Decision Trees Using Machine Learning for Alzheimer's Diagnosis

Authors: P. S. Jagadeesh Kumar, Tracy Lin Huan, S. Meenakshi Sundaram

Abstract:

Alzheimer’s disease is one of the prevalent kind of ailment, expected for impudent reconciliation or an effectual therapy is to be accredited hitherto. Probable detonation of patients in the upcoming years, and consequently an enormous deal of apprehension in early discovery of the disorder, this will conceivably chaperon to enhanced healing outcomes. Complex impetuosity of the brain is an observant symbolic of the disease and a unique recognition of genetic sign of the disease. Machine learning alongside deep learning and decision tree reinforces the aptitude to absorb characteristics from multi-dimensional data’s and thus simplifies automatic classification of Alzheimer’s disease. Susceptible testing was prophesied and realized in training the prospect of Alzheimer’s disease classification built on machine learning advances. It was shrewd that the decision trees trained with deep neural network fashioned the excellent results parallel to related pattern classification.

Keywords: Alzheimer's diagnosis, decision trees, deep neural network, machine learning, pattern classification

Procedia PDF Downloads 298
1402 Myers-Briggs Type Index Personality Type Classification Based on an Individual’s Spotify Playlists

Authors: Sefik Can Karakaya, Ibrahim Demir

Abstract:

In this study, the relationship between musical preferences and personality traits has been investigated in terms of Spotify audio analysis features. The aim of this paper is to build such a classifier capable of segmenting people into their Myers-Briggs Type Index (MBTI) personality type based on their Spotify playlists. Music takes an important place in the lives of people all over the world and online music streaming platforms make it easier to reach musical contents. In this context, the motivation to build such a classifier is allowing people to gain access to their MBTI personality type and perhaps for more reliably and more quickly. For this purpose, logistic regression and deep neural networks have been selected for classifier and their performances are compared. In conclusion, it has been found that musical preferences differ statistically between personality traits, and evaluated models are able to distinguish personality types based on given musical data structure with over %60 accuracy rate.

Keywords: myers-briggs type indicator, music psychology, Spotify, behavioural user profiling, deep neural networks, logistic regression

Procedia PDF Downloads 145
1401 Intelligent Rheumatoid Arthritis Identification System Based Image Processing and Neural Classifier

Authors: Abdulkader Helwan

Abstract:

Rheumatoid joint inflammation is characterized as a perpetual incendiary issue which influences the joints by hurting body tissues Therefore, there is an urgent need for an effective intelligent identification system of knee Rheumatoid arthritis especially in its early stages. This paper is to develop a new intelligent system for the identification of Rheumatoid arthritis of the knee utilizing image processing techniques and neural classifier. The system involves two principle stages. The first one is the image processing stage in which the images are processed using some techniques such as RGB to gryascale conversion, rescaling, median filtering, background extracting, images subtracting, segmentation using canny edge detection, and features extraction using pattern averaging. The extracted features are used then as inputs for the neural network which classifies the X-ray knee images as normal or abnormal (arthritic) based on a backpropagation learning algorithm which involves training of the network on 400 X-ray normal and abnormal knee images. The system was tested on 400 x-ray images and the network shows good performance during that phase, resulting in a good identification rate 97%.

Keywords: rheumatoid arthritis, intelligent identification, neural classifier, segmentation, backpropoagation

Procedia PDF Downloads 534
1400 Biophysically Motivated Phylogenies

Authors: Catherine Felce, Lior Pachter

Abstract:

Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.

Keywords: phylogenetics, single-cell, biophysical modeling, transcription

Procedia PDF Downloads 56
1399 Approximately Similarity Measurement of Web Sites Using Genetic Algorithms and Binary Trees

Authors: Doru Anastasiu Popescu, Dan Rădulescu

Abstract:

In this paper, we determine the similarity of two HTML web applications. We are going to use a genetic algorithm in order to determine the most significant web pages of each application (we are not going to use every web page of a site). Using these significant web pages, we will find the similarity value between the two applications. The algorithm is going to be efficient because we are going to use a reduced number of web pages for comparisons but it will return an approximate value of the similarity. The binary trees are used to keep the tags from the significant pages. The algorithm was implemented in Java language.

Keywords: Tag, HTML, web page, genetic algorithm, similarity value, binary tree

Procedia PDF Downloads 355
1398 Coal Preparation Plant:Technology Overview and New Adaptations

Authors: Amit Kumar Sinha

Abstract:

A coal preparation plant typically operates with multiple beneficiation circuits to process individual size fractions of coal obtained from mine so that the targeted overall plant efficiency in terms of yield and ash is achieved. Conventional coal beneficiation plant in India or overseas operates generally in two methods of processing; coarse beneficiation with treatment in dense medium cyclones or in baths and fines beneficiation with treatment in flotation cell. This paper seeks to address the proven application of intermediate circuit along with coarse and fines circuit in Jamadoba New Coal Preparation Plant of capacity 2 Mt/y to treat -0.5 mm+0.25 mm size particles in reflux classifier. Previously this size of particles was treated directly in Flotation cell which had operational and metallurgical limitations which will be discussed in brief in this paper. The paper also details test work results performed on the representative samples of TSL coal washeries to determine the top size of intermediate and fines circuit and discusses about the overlapping process of intermediate circuit and how it is process wise suitable to beneficiate misplaced particles from coarse circuit and fines circuit. This paper also compares the separation efficiency (Ep) of various intermediate circuit process equipment and tries to validate the use of reflux classifier over fine coal DMC or spirals. An overview of Modern coal preparation plant treating Indian coal especially Washery Grade IV coal with reference to Jamadoba New Coal Preparation Plant which was commissioned in 2018 with basis of selection of equipment and plant profile, application of reflux classifier in intermediate circuit and process design criteria is also outlined in this paper.

Keywords: intermediate circuit, overlapping process, reflux classifier

Procedia PDF Downloads 136
1397 Identification of Cocoa-Based Agroforestry Systems in Northern Madagascar: Pillar of Sustainable Management

Authors: Marizia Roberta Rasoanandrasana, Hery Lisy Tiana. Ranarijaona, Herintsitohaina Razakamanarivo, Eric Delaitre, Nandrianina Ramifehiarivo

Abstract:

Madagascar is one of the producer’s countries of world's fine cocoa. Cocoa-based agroforestry systems (CBAS) plays a very important economic role for over 75% of the population in the north of Madagascar, the island's main cocoa-producing area. It is also viewed as a key factor in the deforestation of local protected areas. It is therefore urgent to establish a compromise between cocoa production and forest conservation in this region which is difficult due to a lack of accurate cocoa agro-systems data. In order to fill these gaps and to response to these socio-economic and environmental concerns, this study aims to describe CBAS by providing precise data on their characteristics and to establish a typology. To achieve this, 150 farms were surveyed and observed to characterize CBAS based on 11 agronomic and 6 socio-economic data. Also, 30 representative plots of CBAS among the 150 farms were inventoried for providing accurate ecological data (6 variables) as an additional data for the typology determination. The results showed that Madagascar’s CBAS systems are generally extensive and practiced by smallholders. Four types of cocoa-based agroforestry system were identified, with significant differences between the following variables: yield, planting age, cocoa density, density of associated trees, preceding crop, associated crops, Shannon-Wiener indices and species richness in the upper stratum. Type 1 is characterized by old systems (>45 years) with low crop density (425 cocoa trees/ha), installed after conversion of crops other than coffee (> 50%) and giving low yields (427 kg/ha/year). Type 2 consists of simple agroforestry systems (no associated crop 0%), fairly young (20 years) with low density of associated trees (77 trees/ha) and low species diversity (H'=1.17). Type 3 is characterized by high crop density (778 trees/ha and 175 trees/ha for cocoa and associated trees respectively) and a medium level of species diversity (H'=1.74, 8 species). Type 4 is particularly characterized by orchard regeneration method involving replanting and tree lopping (100%). Analysis of the potential of these four types has identified Type 4 as a promising practice for sustainable agriculture.

Keywords: conservation, practices, productivity, protect areas, smallholder, trade-off, typology

Procedia PDF Downloads 117
1396 Least-Square Support Vector Machine for Characterization of Clusters of Microcalcifications

Authors: Baljit Singh Khehra, Amar Partap Singh Pharwaha

Abstract:

Clusters of Microcalcifications (MCCs) are most frequent symptoms of Ductal Carcinoma in Situ (DCIS) recognized by mammography. Least-Square Support Vector Machine (LS-SVM) is a variant of the standard SVM. In the paper, LS-SVM is proposed as a classifier for classifying MCCs as benign or malignant based on relevant extracted features from enhanced mammogram. To establish the credibility of LS-SVM classifier for classifying MCCs, a comparative evaluation of the relative performance of LS-SVM classifier for different kernel functions is made. For comparative evaluation, confusion matrix and ROC analysis are used. Experiments are performed on data extracted from mammogram images of DDSM database. A total of 380 suspicious areas are collected, which contain 235 malignant and 145 benign samples, from mammogram images of DDSM database. A set of 50 features is calculated for each suspicious area. After this, an optimal subset of 23 most suitable features is selected from 50 features by Particle Swarm Optimization (PSO). The results of proposed study are quite promising.

Keywords: clusters of microcalcifications, ductal carcinoma in situ, least-square support vector machine, particle swarm optimization

Procedia PDF Downloads 354
1395 Evaluation of Ensemble Classifiers for Intrusion Detection

Authors: M. Govindarajan

Abstract:

One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed with homogeneous ensemble classifier using bagging and heterogeneous ensemble classifier using arcing and their performances are analyzed in terms of accuracy. A Classifier ensemble is designed using Radial Basis Function (RBF) and Support Vector Machine (SVM) as base classifiers. The feasibility and the benefits of the proposed approaches are demonstrated by the means of standard datasets of intrusion detection. The main originality of the proposed approach is based on three main parts: preprocessing phase, classification phase, and combining phase. A wide range of comparative experiments is conducted for standard datasets of intrusion detection. The performance of the proposed homogeneous and heterogeneous ensemble classifiers are compared to the performance of other standard homogeneous and heterogeneous ensemble methods. The standard homogeneous ensemble methods include Error correcting output codes, Dagging and heterogeneous ensemble methods include majority voting, stacking. The proposed ensemble methods provide significant improvement of accuracy compared to individual classifiers and the proposed bagged RBF and SVM performs significantly better than ECOC and Dagging and the proposed hybrid RBF-SVM performs significantly better than voting and stacking. Also heterogeneous models exhibit better results than homogeneous models for standard datasets of intrusion detection. 

Keywords: data mining, ensemble, radial basis function, support vector machine, accuracy

Procedia PDF Downloads 249
1394 Proposed Anticipating Learning Classifier System for Cloud Intrusion Detection (ALCS-CID)

Authors: Wafa' Slaibi Alsharafat

Abstract:

Cloud computing is a modern approach in network environment. According to increased number of network users and online systems, there is a need to help these systems to be away from unauthorized resource access and detect any attempts for privacy contravention. For that purpose, Intrusion Detection System is an effective security mechanism to detect any attempts of attacks for cloud resources and their information. In this paper, Cloud Intrusion Detection System has been proposed in term of reducing or eliminating any attacks. This model concerns about achieving high detection rate after conducting a set of experiments using benchmarks dataset called KDD'99.

Keywords: IDS, cloud computing, anticipating classifier system, intrusion detection

Procedia PDF Downloads 474
1393 Handshake Algorithm for Minimum Spanning Tree Construction

Authors: Nassiri Khalid, El Hibaoui Abdelaaziz et Hajar Moha

Abstract:

In this paper, we introduce and analyse a probabilistic distributed algorithm for a construction of a minimum spanning tree on network. This algorithm is based on the handshake concept. Firstly, each network node is considered as a sub-spanning tree. And at each round of the execution of our algorithm, a sub-spanning trees are merged. The execution continues until all sub-spanning trees are merged into one. We analyze this algorithm by a stochastic process.

Keywords: Spanning tree, Distributed Algorithm, Handshake Algorithm, Matching, Probabilistic Analysis

Procedia PDF Downloads 660
1392 Dependence of Free Fatty Acid and Chlorophyll Content on Thermal Stability of Extra Virgin Olive Oil

Authors: Yongjun Ahn, Sung Gyu Choi, Seung-Yeop Kwak

Abstract:

Selective removal of free fatty acid (FFA) and chlorophyll in extra virgin olive oil (EVOO) is necessary to enhance the thermal stability in the condition of the deep frying. In this work, we demonstrated improving the thermal stability of EVOO by selective removal of free fatty acid and chlorophyll using (3-Aminopropyl)trimethoxysilane (APTMS) functionalized mesoporous silica with controlled pore size. The adsorption kinetics of free fatty acid and chlorophyll into the mesoporous silica were quantitatively analyzed by Freundlich and Langmuir model. The highest chlorophyll adsorption efficiency was shown in the pore size at 5 nm, suggesting that the interaction between the silica and the chlorophyll could be optimized at this point. The amino-functionalized mesoporous silica showed drastically improved removal efficiency of FFA than the bare silica. Moreover, beneficial compounds like tocopherol and phenolic compounds maintained even after adsorptive removal. Extra virgin olive oil treated by aminopropyl-functionalized silica had a smoke point high enough to be used as commercial frying oil. Based on these results, it is expected to attract the considerable amount of interest toward facile adsorptive refining process of EVOO using pore size controlled and amino-functionalized mesoporous silica.

Keywords: mesoporous silica, extra virgin olive oil, selective adsorption, thermal stability

Procedia PDF Downloads 241
1391 Effect of Scattered Vachellia Tortilis (Umbrella Torn) and Vachellia nilotica (Gum Arabic) Trees on Selected Physio-Chemical Properties of the Soil and Yield of Sorghum (Sorghum bicolor (L.) Moench) in Ethiopia

Authors: Sisay Negash, Zebene Asfaw, Kibreselassie Daniel, Michael Zech

Abstract:

A significant portion of the Ethiopian landscape features scattered trees that are deliberately managed in crop fields to enhance soil fertility and crop yield in which the compatibility of crops with these trees varies depending on location, tree species, and annual crop type. This study aimed to examine the effects of scattered Vachellia tortilis and Vachellia nilotica trees on selected physico-chemical properties of the soil, as well as the yield and yield components of sorghum in Ethiopia. Vachellia tortilis and Vachellia nilotica were selected on abundance occurrence and managed in crop fields. A randomized complete block design was used, with a distance from the tree canopy (middle, edge, and outside) as a treatment, and five trees of each species served as replications. Sorghum was planted up to 15 meters in the east, west, south, and north directions from the tree trunk to assess growth and yield. Soil samples were collected from the two tree species, three distance factors, three soil depths(0-20cm, 20-40cm, and 40-60cm), and five replications, totaling 45 samples for each tree species. These samples were analyzed for physical and chemical properties. The results indicated that both V. tortilis and V. nilotica significantly affected soil physico-chemical properties and sorghum yield. Specifically, soil moisture content, EC, total nitrogen, organic carbon, available phosphorus and potassium, CEC, sorghum plant height, panicle length, biomass, and yield decreased with increasing distance from the canopy. Conversely, bulk density and pH increased. Under the canopy, sorghum yield increased by 66.4% and 53.5% for V. tortilis and V. nilotica, respectively, due to higher soil moisture and nutrient availability. The study recommends promoting trees in crop fields, management options for new saplings, and further research on root decomposition and nutrient supply.

Keywords: canopy, crop yield, soil nutrient, soil organic matter, yield components

Procedia PDF Downloads 28
1390 The Key Role of a Bystander Improving the Effectiveness of Cardiopulmonary Resuscitation Performed in Extra-Urban Areas

Authors: Leszek Szpakowski, Daniel Celiński, Sławomir Pilip, Grzegorz Michalak

Abstract:

The aim of the study was to analyse the usefulness of the 'E-rescuer' pilot project planned to be implemented in a chosen area of Eastern Poland in the cases of suspected sudden cardiac arrests in the extra-urban areas. Inventing an application allowing to dispatch simultaneously both Medical Emergency Teams and the E-rescuer to the place of the accident is the crucial assumption of the mentioned pilot project. The E-rescuer is defined to be the trained person able to take effective basic life support and to use automated external defibrillator. Having logged in using a smartphone, the E-rescuer's readiness is reported online to provide cardiopulmonary resuscitation exactly at the given location. Due to the accurately defined location of the E-rescuer, his arrival time is possible to be precisely fixed, and the substantive support through the displayed algorithms is capable of being provided as well. Having analysed the medical records in the years 2015-2016, cardiopulmonary resuscitation was considered to be effective when an early indication of circulation was provided, and the patient was taken to hospital. In the mentioned term, there were 2.291 cases of a sudden cardiac arrest. Cardiopulmonary resuscitation was taken in 621 patients in total including 205 people in the urban area and 416 in the extra-urban areas. The effectiveness of cardiopulmonary resuscitation in the extra-urban areas was much lower (33,8%) than in the urban (50,7%). The average ambulance arrival time was respectively longer in the extra-urban areas, and it was 12,3 minutes while in the urban area 3,3 minutes. There was no significant difference in the average age of studied patients - 62,5 and 64,8 years old. However, the average ambulance arrival time was 7,6 minutes for effective resuscitations and 10,5 minutes for ineffective ones. Hence, the ambulance arrival time is a crucial factor influencing on the effectiveness of cardiopulmonary resuscitation, especially in the extra-urban areas where it is much longer than in the urban. The key role of trained E-rescuers being nearby taking basic life support before the ambulance arrival can effectively support Emergency Medical Services System in Poland.

Keywords: basic life support, bystander, effectiveness, resuscitation

Procedia PDF Downloads 203
1389 Trend and Incidence of Tuberculosis, Yemen, 2019 to 2021

Authors: Zainab A. Alaghbri, Labiba A., Esam A.

Abstract:

Tuberculosis (TB) is the fourth leading cause of death in Yemen and is considered a major priority by the Ministry of Public Health. The war in Yemen has led to the emergence of one of the worst humanitarian crises in the world. These circumstances may lead to exacerbate the situation of tuberculosis. This study aims to describe the trend and incidence of TB in north and east governorates, Yemen 2019-2021 and provide recommendations for interventions. A descriptive analysis was conducted during July to September 2022. Data of TB cases were obtained from the national tuberculosis program as soft copy. The Data included the TB case collected and diagnosed during 2019-2021. The data contains the following variables: Sex, age, governorates, smear-positive cases, extra-pulmonary cases, and treatment outcomes. 16791 TB cases were notified for an overall case notification rate 65.5/100000 for all forms (smear positive and Extra-pulmonary), There was a slightly declined in 2020 and 2021 by 1%. Both the pulmonary smear positive and Extra pulmonary rates were slightly decreased from 8.8 to 7.7 and 13.5 to 12.8 / 100, 000 populations respectively. For Tuberculosis cases by type of patient, the incidence of extra-pulmonary was the highest (12,9, 11.3 and 12,2/100000) over the three years. However, the incidence of pulmonary failure was the lowest. The majority of cases were in the age group 25-34. The overall treatment success rate for smear-positive patients was 88%. Of the 627 patients with documented unsuccessful outcomes (e.g., failure, death, and default), 165 (23%) died, 52 (8.3%) failed treatment, and 410 (65%) defaulted. Overall, the magnitude of tuberculosis decreased over the periods reviewed. The proportion of Extra-pulmonary TB was the highest. The success rate achieved after treatment was below the levels established by the WHO End Tuberculosis Strategy (90%). Failure to complete treatment may be responsible for the low success rate. Monitoring and addressing the risk factors that were associated with treatment outcomes and duration may help improve the likelihood of achieving favorable outcomes among cases of smear-positive pulmonary TB.

Keywords: tuberculosis, trend, incidence, yemen

Procedia PDF Downloads 98
1388 Date Palm Insects and Mite Pests at Biskra Oasis, South Algeria

Authors: N. Tarai, S. Seighi, S. Doumandji

Abstract:

The date palm trees Phoenix dactylifera L. are subject to infestation with a variety of insect pests and mite associated, the Carob moth Ectomyelois ceatoniae (Zeller)(Lepidoptera, Pyralidae) is a key pest. Survey of the insect and mite pests associated with date palm trees in the seven stations at Biskra Oasis, throughout two successive years, from October 2011 until September 2012 revealed twelve insect pests belonging to ten families and six orders in addition to one mite belonging to one family from order Acari.

Keywords: date palm, insect, pests, infestation, mit, Biskra, Oasis

Procedia PDF Downloads 456
1387 Status of Alien Invasive Trees on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Sopani Sichinga, Paston Simkoko, George Nxumayo, Cosmas, V. B. Dambo

Abstract:

Early detection of plant invasions is a necessary prerequisite for effective invasive plant management in protected areas. This study was conducted to determine the distribution and abundance of alien invasive trees in Nyika National Park (NNP). Data on species' presence and abundance were collected from belt transects (n=31) in a 100 square kilometer area on the central plateau. The data were tested for normality using the Shapiro-Wilk test; Mann-Whitney test was carried out to compare frequencies and abundances between the species, and geographical information systems were used for spatial analyses. Results revealed that Black Wattle (Acacia mearnsii), Mexican Pine (Pinus patula) and Himalayan Raspberry (Rubus ellipticus) were the main alien invasive trees on the plateau. A. mearnsii was localized in the areas where it was first introduced, whereas P. patula and R. ellipticus were spread out beyond original points of introduction. R. ellipticus occurred as dense, extensive (up to 50 meters) thickets on the margins of forest patches and pine stands, whilst P. patula trees were frequent in the valleys, occurring most densely (up to 39 stems per 100 square meters) south-west of Chelinda camp on the central plateau with high variation in tree heights. Additionally, there were no significant differences in abundance between R. ellipticus (48) and P. patula (48) in the study area (p > 0.05) It was concluded that R. ellipticus and P. patula require more attention as compared to A. mearnsii. Howbeit, further studies into the invasion ecology of both P. patula and R. ellipticus on the Nyika plateau are highly recommended so as to assess the threat posed by the species on biodiversity, and recommend appropriate conservation measures in the national park.

Keywords: alien-invasive trees, Himalayan raspberry, Nyika National Park, Mexican pine

Procedia PDF Downloads 210