Search results for: Spacecraft’s trajectory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 533

Search results for: Spacecraft’s trajectory

443 Numerical Investigation of Wire Mesh Heat Pipe for Spacecraft Applications

Authors: Jayesh Mahitkar, V. K. Singh, Surendra Singh Kachhwaha

Abstract:

Wire Mesh Heat Pipe (WMHP) as an effective component of thermal control system in the payload of spacecraft, utilizing ammonia to transfer efficient amount of heat. One dimensional generic and robust mathematical model with partial-analytical hydraulic approach (PAHA) is developed to study inside behaviour of WMHP. In this model, inside performance during operation is investigated like mass flow rate, and velocity along the wire mesh as well as vapour core is modeled respectively. This numerical model investigate heat flow along length, pressure drop along wire mesh as well as vapour line in axial direction. Furthermore, WMHP is modeled into equivalent resistance network such that total thermal resistance of heat pipe, temperature drop across evaporator end and condenser end is evaluated. This numerical investigation should be carried out for single layer and double layer wire mesh each with heat input at evaporator section is 10W, 20 W and 30 W at condenser temperature maintained at 20˚C.

Keywords: ammonia, heat transfer, modeling, wire mesh

Procedia PDF Downloads 248
442 Synthesis of Balanced 3-RRR Planar Parallel Manipulators

Authors: Arakelian Vigen, Geng Jing, Le Baron Jean-Paul

Abstract:

The paper deals with the design of parallel manipulators with balanced inertia forces and moments. The balancing of the resultant of the inertia forces of 3-RRR planar parallel manipulators is carried out through mass redistribution and centre of mass acceleration minimization. The proposed balancing technique is achieved in two steps: at first, optimal redistribution of the masses of input links is accomplished, which ensures the similarity of the end-effector trajectory and the manipulator’s common centre of mass trajectory, then, optimal trajectory planning of the end-effector by 'bang-bang' profile is reached. In such a way, the minimization of the magnitude of the acceleration of the centre of mass of the manipulator brings about a minimization of shaking force. To minimize the resultant of the inertia moments (shaking moment), the active balancing via inertia flywheel is applied. However, in this case, the active balancing is quite different from previous applications because it provides only a partial cancellation of the shaking moment due to the incomplete balancing of shaking force.

Keywords: dynamic balancing, inertia force minimization, inertia moment minimization, 3-RRR planar parallel manipulator

Procedia PDF Downloads 433
441 Disturbance Observer for Lateral Trajectory Tracking Control for Autonomous and Cooperative Driving

Authors: Christian Rathgeber, Franz Winkler, Dirk Odenthal, Steffen Müller

Abstract:

In this contribution a structure for high level lateral vehicle tracking control based on the disturbance observer is presented. The structure is characterized by stationary compensating side forces disturbances and guaranteeing a cooperative behavior at the same time. Driver inputs are not compensated by the disturbance observer. Moreover the structure is especially useful as it robustly stabilizes the vehicle. Therefore the parameters are selected using the Parameter Space Approach. The implemented algorithms are tested in real world scenarios.

Keywords: disturbance observer, trajectory tracking, robust control, autonomous driving, cooperative driving

Procedia PDF Downloads 529
440 Identification of Vehicle Dynamic Parameters by Using Optimized Exciting Trajectory on 3- DOF Parallel Manipulator

Authors: Di Yao, Gunther Prokop, Kay Buttner

Abstract:

Dynamic parameters, including the center of gravity, mass and inertia moments of vehicle, play an essential role in vehicle simulation, collision test and real-time control of vehicle active systems. To identify the important vehicle dynamic parameters, a systematic parameter identification procedure is studied in this work. In the first step of the procedure, a conceptual parallel manipulator (virtual test rig), which possesses three rotational degrees-of-freedom, is firstly proposed. To realize kinematic characteristics of the conceptual parallel manipulator, the kinematic analysis consists of inverse kinematic and singularity architecture is carried out. Based on the Euler's rotation equations for rigid body dynamics, the dynamic model of parallel manipulator and derivation of measurement matrix for parameter identification are presented subsequently. In order to reduce the sensitivity of parameter identification to measurement noise and other unexpected disturbances, a parameter optimization process of searching for optimal exciting trajectory of parallel manipulator is conducted in the following section. For this purpose, the 321-Euler-angles defined by parameterized finite-Fourier-series are primarily used to describe the general exciting trajectory of parallel manipulator. To minimize the condition number of measurement matrix for achieving better parameter identification accuracy, the unknown coefficients of parameterized finite-Fourier-series are estimated by employing an iterative algorithm based on MATLAB®. Meanwhile, the iterative algorithm will ensure the parallel manipulator still keeps in an achievable working status during the execution of optimal exciting trajectory. It is showed that the proposed procedure and methods in this work can effectively identify the vehicle dynamic parameters and could be an important application of parallel manipulator in the fields of parameter identification and test rig development.

Keywords: parameter identification, parallel manipulator, singularity architecture, dynamic modelling, exciting trajectory

Procedia PDF Downloads 239
439 Fiscal Stability Indicators and Public Debt Trajectory in Croatia

Authors: Hrvoje Simovic

Abstract:

Paper analyses the key problems of fiscal sustainability in Croatia. To point out key challenges of fiscal sustainability, the public debt sustainability is analyzed using standard indicators of fiscal stability, accompanied with the identification of regime changes approach in the public debt trajectory using switching regression approach. The analysis is conducted for the period from 2001 to 2016. Results show huge vulnerability in recession period (2009-14), so key challenges in current fiscal policy and public debt management are recognized in maturity prolongation, interest rates trends, and credit rating expectations.

Keywords: fiscal sustainability, public debt, Croatia, budget deficit

Procedia PDF Downloads 236
438 The Use of the Limit Cycles of Dynamic Systems for Formation of Program Trajectories of Points Feet of the Anthropomorphous Robot

Authors: A. S. Gorobtsov, A. S. Polyanina, A. E. Andreev

Abstract:

The movement of points feet of the anthropomorphous robot in space occurs along some stable trajectory of a known form. A large number of modifications to the methods of control of biped robots indicate the fundamental complexity of the problem of stability of the program trajectory and, consequently, the stability of the control for the deviation for this trajectory. Existing gait generators use piecewise interpolation of program trajectories. This leads to jumps in the acceleration at the boundaries of sites. Another interpolation can be realized using differential equations with fractional derivatives. In work, the approach to synthesis of generators of program trajectories is considered. The resulting system of nonlinear differential equations describes a smooth trajectory of movement having rectilinear sites. The method is based on the theory of an asymptotic stability of invariant sets. The stability of such systems in the area of localization of oscillatory processes is investigated. The boundary of the area is a bounded closed surface. In the corresponding subspaces of the oscillatory circuits, the resulting stable limit cycles are curves having rectilinear sites. The solution of the problem is carried out by means of synthesis of a set of the continuous smooth controls with feedback. The necessary geometry of closed trajectories of movement is obtained due to the introduction of high-order nonlinearities in the control of stabilization systems. The offered method was used for the generation of trajectories of movement of point’s feet of the anthropomorphous robot. The synthesis of the robot's program movement was carried out by means of the inverse method.

Keywords: control, limits cycle, robot, stability

Procedia PDF Downloads 305
437 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking

Authors: Soheib Fergani

Abstract:

This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.

Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation

Procedia PDF Downloads 20
436 Simulation with Uncertainties of Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Ziraguen O. Williams

Abstract:

In a task to assist NASA in analyzing the dynamic forces caused by operational countermeasures of an astronaut’s exercise platform impacting the spacecraft, an active proportional-integral-derivative controller commanding a linear actuator is proposed in a vibration isolation system to regulate the movement of the exercise platform. Computer simulation shows promising results that most exciter forces can be reduced or even eliminated. This paper emphasizes on parameter uncertainties, variations and exciter force variations. Drift and variations of system parameters in the vibration isolation system for astronaut’s exercise platform are analyzed. An active controlled scheme is applied with the goals to reduce the platform displacement and to minimize the force being transmitted to the spacecraft structure. The controller must be robust enough to accommodate the wide variations of system parameters and exciter forces. Computer simulation for the vibration isolation system was performed via MATLAB/Simulink and Trick. The simulation results demonstrate the achievement of force reduction with small platform displacement under wide ranges of variations in system parameters.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 117
435 Influence of Peripheral Vision Restrictions on the Walking Trajectory When Texting While Walking

Authors: Macky Kato, Takeshi Sato, Mizuki Nakajima

Abstract:

One major problem related to the use of smartphones is texting while simultaneously engaging in other things, resulting in serious road accidents. Apart from texting while driving being one of the most dangerous behaviors, texting while walking is also dangerous because it narrows the pedestrians’ field of vision. However, many of pedestrian text while walking very habitually. Smartphone users often overlook the potential harm associated with this behavior even while crossing roads. The successful texting while walking make them think that they are safe. The purpose of this study is to reveal of the influence of peripheral vision to the stability of walking trajectory with texting while walking. In total, 9 healthy male university students participated in the experiment. Their mean age was 21.4 years, and standard deviation was 0.7 years. They attempted to walk 10 m in three conditions. First one is the control (CTR) condition, with no phone and no restriction. The second one is the texting while walking (TWG) with no restrictions. The third one is restriction condition (PRS), with phone restricted by experimental peripheral goggles. The horizontal distances (HDS) and directions are measured as the scale of horizontal stability. The longitudinal distances (LDS) between the footprints were measured as the scale of the walking rhythm. The results showed that the HDS of the footprints from the straight line increased as the participants walked in the TWG and PRS conditions. In the PRS condition, this tendency was particularly remarkable. In addition, the LDS between the footprints decreased in the order of the CTR, TWG, and PRS conditions. The ANOVA results showed significant differences in the three conditions with respect to HDS. The differences among these conditions showed that the narrowing of the Pedestrian's vision because of smartphone use influences the walking trajectory and rhythm. It can be said that the pedestrians seem to use their peripheral vision marginally on texting while walking. Therefore, we concluded that the texting while walking narrows the peripheral vision so danger to increase the risk of the accidents.

Keywords: peripheral vision, stability, texting while walking, walking trajectory

Procedia PDF Downloads 232
434 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 386
433 A Tutorial on Model Predictive Control for Spacecraft Maneuvering Problem with Theory, Experimentation and Applications

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper discusses the recent advances and future prospects of spacecraft position and attitude control using Model Predictive Control (MPC). First, the challenges of the space missions are summarized, in particular, taking into account the errors, uncertainties, and constraints imposed by the mission, spacecraft and, onboard processing capabilities. The summary of space mission errors and uncertainties provided in categories; initial condition errors, unmodeled disturbances, sensor, and actuator errors. These previous constraints are classified into two categories: physical and geometric constraints. Last, real-time implementation capability is discussed regarding the required computation time and the impact of sensor and actuator errors based on the Hardware-In-The-Loop (HIL) experiments. The rationales behind the scenarios’ are also presented in the scope of space applications as formation flying, attitude control, rendezvous and docking, rover steering, and precision landing. The objectives of these missions are explained, and the generic constrained MPC problem formulations are summarized. Three key design elements used in MPC design: the prediction model, the constraints formulation and the objective cost function are discussed. The prediction models can be linear time invariant or time varying depending on the geometry of the orbit, whether it is circular or elliptic. The constraints can be given as linear inequalities for input or output constraints, which can be written in the same form. Moreover, the recent convexification techniques for the non-convex geometrical constraints (i.e., plume impingement, Field-of-View (FOV)) are presented in detail. Next, different objectives are provided in a mathematical framework and explained accordingly. Thirdly, because MPC implementation relies on finding in real-time the solution to constrained optimization problems, computational aspects are also examined. In particular, high-speed implementation capabilities and HIL challenges are presented towards representative space avionics. This covers an analysis of future space processors as well as the requirements of sensors and actuators on the HIL experiments outputs. The HIL tests are investigated for kinematic and dynamic tests where robotic arms and floating robots are used respectively. Eventually, the proposed algorithms and experimental setups are introduced and compared with the authors' previous work and future plans. The paper concludes with a conjecture that MPC paradigm is a promising framework at the crossroads of space applications while could be further advanced based on the challenges mentioned throughout the paper and the unaddressed gap.

Keywords: convex optimization, model predictive control, rendezvous and docking, spacecraft autonomy

Procedia PDF Downloads 87
432 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 311
431 Time Optimal Control Mode Switching between Detumbling and Pointing in the Early Orbit Phase

Authors: W. M. Ng, O. B. Iskender, L. Simonini, J. M. Gonzalez

Abstract:

A multitude of factors, including mechanical imperfections of the deployment system and separation instance of satellites from launchers, oftentimes results in highly uncontrolled initial tumbling motion immediately after deployment. In particular, small satellites which are characteristically launched as a piggyback to a large rocket, are generally allocated a large time window to complete detumbling within the early orbit phase. Because of the saturation risk of the actuators, current algorithms are conservative to avoid draining excessive power in the detumbling phase. This work aims to enable time-optimal switching of control modes during the early phase, reducing the time required to transit from launch to sun-pointing mode for power budget conscious satellites. This assumes the usage of B-dot controller for detumbling and PD controller for pointing. Nonlinear Euler's rotation equations are used to represent the attitude dynamics of satellites and Commercial-off-the-shelf (COTS) reaction wheels and magnetorquers are used to perform the manoeuver. Simulation results will be based on a spacecraft attitude simulator and the use case will be for multiple orbits of launch deployment general to Low Earth Orbit (LEO) satellites.

Keywords: attitude control, detumbling, small satellites, spacecraft autonomy, time optimal control

Procedia PDF Downloads 94
430 Study of Water Cluster-Amorphous Silica Collisions in the Extreme Space Environment Using the ReaxFF Reactive Force Field Molecular Dynamics Simulation Method

Authors: Ali Rahnamoun, Adri van Duin

Abstract:

The concept of high velocity particle impact on the spacecraft surface materials has been one of the important issues in the design of such materials. Among these particles, water clusters might be the most abundant and the most important particles to be studied. The importance of water clusters is that upon impact on the surface of the materials, they can cause damage to the material and also if they are sub-cooled water clusters, they can attach to the surface of the materials and cause ice accumulation on the surface which is very problematic in spacecraft and also aircraft operations. The dynamics of the collisions between amorphous silica structures and water clusters with impact velocities of 1 km/s to 10 km/s are studied using the ReaxFF reactive molecular dynamics simulation method. The initial water clusters include 150 water molecules and the water clusters are collided on the surface of amorphous fully oxidized and suboxide silica structures. These simulations show that the most abundant molecules observed on the silica surfaces, other than reflecting water molecules, are H3O+ and OH- for the water cluster impacts on suboxide and fully oxidized silica structures, respectively. The effect of impact velocity on the change of silica mass is studied. At high impact velocities the water molecules attach to the silica surface through a chemisorption process meaning that water molecule dissociates through the interaction with silica surface. However, at low impact velocities, physisorbed water molecules are also observed, which means water molecule attaches and accumulates on the silica surface. The amount of physisorbed waters molecules at low velocities is higher on the suboxide silica surfaces. The evolution of the temperatures of the water clusters during the collisions indicates that the possibility of electron excitement at impact velocities less than 10 km/s is minimal and ReaxFF reactive molecular dynamics simulation can predict the chemistry of these hypervelocity impacts. However, at impact velocities close to 10 km/s the average temperature of the impacting water clusters increase to about 2000K, with individual molecules oocasionally reaching temperatures of over 8000K and thus will be prudent to consider the concept of electron excitation at these higher impact velocities which goes beyond the current ReaxFF ability.

Keywords: spacecraft materials, hypervelocity impact, reactive molecular dynamics simulation, amorphous silica

Procedia PDF Downloads 386
429 Solar Panel Design Aspects and Challenges for a Lunar Mission

Authors: Mannika Garg, N. Srinivas Murthy, Sunish Nair

Abstract:

TeamIndus is only Indian team participated in the Google Lunar X Prize (GLXP). GLXP is an incentive prize space competition which is organized by the XPrize Foundation and sponsored by Google. The main objective of the mission is to soft land a rover on the moon surface, travel minimum displacement of 500 meters and transmit HD and NRT videos and images to the Earth. Team Indus is designing a Lunar Lander which carries Rover with it and deliver onto the surface of the moon with a soft landing. For lander to survive throughout the mission, energy is required to operate all attitude control sensors, actuators, heaters and other necessary components. Photovoltaic solar array systems are the most common and primary source of power generation for any spacecraft. The scope of this paper is to provide a system-level approach for designing the solar array systems of the lander to generate required power to accomplish the mission. For this mission, the direction of design effort is to higher efficiency, high reliability and high specific power. Towards this approach, highly efficient multi-junction cells have been considered. The design is influenced by other constraints also like; mission profile, chosen spacecraft attitude, overall lander configuration, cost effectiveness and sizing requirements. This paper also addresses the various solar array design challenges such as operating temperature, shadowing, radiation environment and mission life and strategy of supporting required power levels (peak and average). The challenge to generate sufficient power at the time of surface touchdown, due to low sun elevation (El) and azimuth (Az) angle which depends on Lunar landing site, has also been showcased in this paper. To achieve this goal, energy balance analysis has been carried out to study the impact of the above-mentioned factors and to meet the requirements and has been discussed in this paper.

Keywords: energy balance analysis, multi junction solar cells, photovoltaic, reliability, spacecraft attitude

Procedia PDF Downloads 206
428 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning

Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza

Abstract:

The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.

Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library

Procedia PDF Downloads 152
427 Analysis of Dynamics Underlying the Observation Time Series by Using a Singular Spectrum Approach

Authors: O. Delage, H. Bencherif, T. Portafaix, A. Bourdier

Abstract:

The main purpose of time series analysis is to learn about the dynamics behind some time ordered measurement data. Two approaches are used in the literature to get a better knowledge of the dynamics contained in observation data sequences. The first of these approaches concerns time series decomposition, which is an important analysis step allowing patterns and behaviors to be extracted as components providing insight into the mechanisms producing the time series. As in many cases, time series are short, noisy, and non-stationary. To provide components which are physically meaningful, methods such as Empirical Mode Decomposition (EMD), Empirical Wavelet Transform (EWT) or, more recently, Empirical Adaptive Wavelet Decomposition (EAWD) have been proposed. The second approach is to reconstruct the dynamics underlying the time series as a trajectory in state space by mapping a time series into a set of Rᵐ lag vectors by using the method of delays (MOD). Takens has proved that the trajectory obtained with the MOD technic is equivalent to the trajectory representing the dynamics behind the original time series. This work introduces the singular spectrum decomposition (SSD), which is a new adaptive method for decomposing non-linear and non-stationary time series in narrow-banded components. This method takes its origin from singular spectrum analysis (SSA), a nonparametric spectral estimation method used for the analysis and prediction of time series. As the first step of SSD is to constitute a trajectory matrix by embedding a one-dimensional time series into a set of lagged vectors, SSD can also be seen as a reconstruction method like MOD. We will first give a brief overview of the existing decomposition methods (EMD-EWT-EAWD). The SSD method will then be described in detail and applied to experimental time series of observations resulting from total columns of ozone measurements. The results obtained will be compared with those provided by the previously mentioned decomposition methods. We will also compare the reconstruction qualities of the observed dynamics obtained from the SSD and MOD methods.

Keywords: time series analysis, adaptive time series decomposition, wavelet, phase space reconstruction, singular spectrum analysis

Procedia PDF Downloads 81
426 Augmented ADRC for Trajectory Tracking of a Novel Hydraulic Spherical Motion Mechanism

Authors: Bin Bian, Liang Wang

Abstract:

A hydraulic spherical motion mechanism (HSMM) is proposed. Unlike traditional systems using serial or parallel mechanisms for multi-DOF rotations, the HSMM is capable of implementing continuous 2-DOF rotational motions in a single joint without the intermediate transmission mechanisms. It has some advantages of compact structure, low inertia and high stiffness. However, as HSMM is a nonlinear and multivariable system, it is very complicate to realize accuracy control. Therefore, an augmented active disturbance rejection controller (ADRC) is proposed in this paper. Compared with the traditional PD control method, three compensation items, i.e., dynamics compensation term, disturbance compensation term and nonlinear error elimination term, are added into the proposed algorithm to improve the control performance. The ADRC algorithm aims at offsetting the effects of external disturbance and realizing accurate control. Euler angles are applied to describe the orientation of rotor. Lagrange equations are utilized to establish the dynamic model of the HSMM. The stability of this algorithm is validated with detailed derivation. Simulation model is formulated in Matlab/Simulink. The results show that the proposed control algorithm has better competence of trajectory tracking in the presence of uncertainties.

Keywords: hydraulic spherical motion mechanism, dynamic model, active disturbance rejection control, trajectory tracking

Procedia PDF Downloads 79
425 Design of Robust and Intelligent Controller for Active Removal of Space Debris

Authors: Shabadini Sampath, Jinglang Feng

Abstract:

With huge kinetic energy, space debris poses a major threat to astronauts’ space activities and spacecraft in orbit if a collision happens. The active removal of space debris is required in order to avoid frequent collisions that would occur. In addition, the amount of space debris will increase uncontrollably, posing a threat to the safety of the entire space system. But the safe and reliable removal of large-scale space debris has been a huge challenge to date. While capturing and deorbiting space debris, the space manipulator has to achieve high control precision. However, due to uncertainties and unknown disturbances, there is difficulty in coordinating the control of the space manipulator. To address this challenge, this paper focuses on developing a robust and intelligent control algorithm that controls joint movement and restricts it on the sliding manifold by reducing uncertainties. A neural network adaptive sliding mode controller (NNASMC) is applied with the objective of finding the control law such that the joint motions of the space manipulator follow the given trajectory. A computed torque control (CTC) is an effective motion control strategy that is used in this paper for computing space manipulator arm torque to generate the required motion. Based on the Lyapunov stability theorem, the proposed intelligent controller NNASMC and CTC guarantees the robustness and global asymptotic stability of the closed-loop control system. Finally, the controllers used in the paper are modeled and simulated using MATLAB Simulink. The results are presented to prove the effectiveness of the proposed controller approach.

Keywords: GNC, active removal of space debris, AI controllers, MatLabSimulink

Procedia PDF Downloads 94
424 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters

Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert

Abstract:

In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.

Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage

Procedia PDF Downloads 60
423 1G2A IMU\GPS Integration Algorithm for Land Vehicle Navigation

Authors: O. Maklouf, Ahmed Abdulla

Abstract:

A general decline in the cost, size, and power requirements of electronics is accelerating the adoption of integrated GPS/INS technologies in consumer applications such Land Vehicle Navigation. Researchers are looking for ways to eliminate additional components from product designs. One possibility is to drop one or more of the relatively expensive gyroscopes from microelectromechanical system (MEMS) versions of inertial measurement units (IMUs). For land vehicular use, the most important gyroscope is the vertical gyro that senses the heading of the vehicle and two horizontal accelerometers for determining the velocity of the vehicle. This paper presents a simplified integration algorithm for strap down (ParIMU)\GPS combination, with data post processing for the determination of 2-D components of position (trajectory), velocity and heading. In the present approach we have neglected earth rotation and gravity variations, because of the poor gyroscope sensitivities of the low-cost IMU and because of the relatively small area of the trajectory.

Keywords: GPS, ParIMU, INS, Kalman filter

Procedia PDF Downloads 486
422 Visual Odometry and Trajectory Reconstruction for UAVs

Authors: Sandro Bartolini, Alessandro Mecocci, Alessio Medaglini

Abstract:

The growing popularity of systems based on unmanned aerial vehicles (UAVs) is highlighting their vulnerability, particularly in relation to the positioning system used. Typically, UAV architectures use the civilian GPS, which is exposed to a number of different attacks, such as jamming or spoofing. This is why it is important to develop alternative methodologies to accurately estimate the actual UAV position without relying on GPS measurements only. In this paper, we propose a position estimate method for UAVs based on monocular visual odometry. We have developed a flight control system capable of keeping track of the entire trajectory travelled, with a reduced dependency on the availability of GPS signals. Moreover, the simplicity of the developed solution makes it applicable to a wide range of commercial drones. The final goal is to allow for safer flights in all conditions, even under cyber-attacks trying to deceive the drone.

Keywords: visual odometry, autonomous uav, position measurement, autonomous outdoor flight

Procedia PDF Downloads 194
421 Application and Regeneration of CuMnCeO Catalyst Supporting K₂CO₃ Sorbent Adapted to CO Oxidation and CO₂ Absorption

Authors: Jin Lin, Shouxiang Lu, Kim Meow Liew

Abstract:

The requirement for the long-term mission of the submarine and spacecraft has made the removal of CO₂ and trace CO the critical technology to ensure the health and life of the crews. In this work, CuMnCe, a metal oxide catalyst, supporting K₂CO₃ sorbent was prepared by the wet-solid state impregnation method to realize the integrated CO and CO₂ removal, which might also reduce the volume/mass load of the purification units in the limited space. The as-prepared samples with different addition amount of K₂CO₃ were tested using the fixed bed reactor to reveal the CO oxidation and CO₂ absorption behavior. And the regeneration and stability experiments were also conducted. The results showed that the samples realized the catalyst and sorbent integration to capture CO and CO₂ at the same time. The addition amount of the sorbent had a weak influence on the CO oxidation performance. While the addition amount affected the CO₂ sorption efficiency and capacity significantly. Meanwhile, the presence of water vapor could reduce the CO oxidation activity of the samples similarly, whether with K2CO3 sorbent addition or not. Furtherly, regeneration and stability experiment results showed that the samples after 3-5 times regeneration exhibited almost the same performance of CO and CO₂ removal. Summarily, CuMnCe catalyst supporting K₂CO₃ sorbent could be a good attempt to control CO and CO₂ pollutants generated from the daily equipment running and staff breathing in the confined space such as submarine and spacecraft.

Keywords: CO oxidation, CO₂ absorptio, potassium carbonate, CuMnCe metal oxide, confined space

Procedia PDF Downloads 101
420 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 87
419 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 416
418 Longitudinal Static and Dynamic Stability of a Typical Reentry Body in Subsonic Conditions Using Computational Fluid Dynamics

Authors: M. Jathaveda, Joben Leons, G. Vidya

Abstract:

Reentry from orbit is a critical phase in the entry trajectory. For a non-propulsive ballistic entry, static and dynamic stability play an important role in the trajectory, especially for the safe deployment of parachutes, typically at subsonic Mach numbers. Static stability of flight vehicles are being estimated through CFD techniques routinely. Advances in CFD software as well as computational facilities have enabled the estimation of the dynamic stability derivatives also through CFD techniques. Longitudinal static and dynamic stability of a typical reentry body for subsonic Mach number of 0.6 is predicted using commercial software CFD++ and presented here. Steady state simulations are carried out for α = 2° on an unstructured grid using SST k-ω model. Transient simulation using forced oscillation method is used to compute pitch damping derivatives.

Keywords: stability, typical reentry body, subsonic, static and dynamic

Procedia PDF Downloads 83
417 Exploring the Psychosocial Brain: A Retrospective Analysis of Personality, Social Networks, and Dementia Outcomes

Authors: Felicia N. Obialo, Aliza Wingo, Thomas Wingo

Abstract:

Psychosocial factors such as personality traits and social networks influence cognitive aging and dementia outcomes both positively and negatively. The inherent complexity of these factors makes defining the underlying mechanisms of their influence difficult; however, exploring their interactions affords promise in the field of cognitive aging. The objective of this study was to elucidate some of these interactions by determining the relationship between social network size and dementia outcomes and by determining whether personality traits mediate this relationship. The longitudinal Alzheimer’s Disease (AD) database provided by Rush University’s Religious Orders Study/Memory and Aging Project was utilized to perform retrospective regression and mediation analyses on 3,591 participants. Participants who were cognitively impaired at baseline were excluded, and analyses were adjusted for age, sex, common chronic diseases, and vascular risk factors. Dementia outcome measures included cognitive trajectory, clinical dementia diagnosis, and postmortem beta-amyloid plaque (AB), and neurofibrillary tangle (NT) accumulation. Personality traits included agreeableness (A), conscientiousness (C), extraversion (E), neuroticism (N), and openness (O). The results show a positive correlation between social network size and cognitive trajectory (p-value = 0.004) and a negative relationship between social network size and odds of dementia diagnosis (p = 0.024/ Odds Ratio (OR) = 0.974). Only neuroticism mediates the positive relationship between social network size and cognitive trajectory (p < 2e-16). Agreeableness, extraversion, and neuroticism all mediate the negative relationship between social network size and dementia diagnosis (p=0.098, p=0.054, and p < 2e-16, respectively). All personality traits are independently associated with dementia diagnosis (A: p = 0.016/ OR = 0.959; C: p = 0.000007/ OR = 0.945; E: p = 0.028/ OR = 0.961; N: p = 0.000019/ OR = 1.036; O: p = 0.027/ OR = 0.972). Only conscientiousness and neuroticism are associated with postmortem AD pathologies; specifically, conscientiousness is negatively associated (AB: p = 0.001, NT: p = 0.025) and neuroticism is positively associated with pathologies (AB: p = 0.002, NT: p = 0.002). These results support the study’s objectives, demonstrating that social network size and personality traits are strongly associated with dementia outcomes, particularly the odds of receiving a clinical diagnosis of dementia. Personality traits interact significantly and beneficially with social network size to influence the cognitive trajectory and future dementia diagnosis. These results reinforce previous literature linking social network size to dementia risk and provide novel insight into the differential roles of individual personality traits in cognitive protection.

Keywords: Alzheimer’s disease, cognitive trajectory, personality traits, social network size

Procedia PDF Downloads 101
416 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach

Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik

Abstract:

Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.

Keywords: center of pressure (CoP), method of developed statokinesigram trajectory (MDST), model of postural system behavior, retroreflective marker data

Procedia PDF Downloads 317
415 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 372
414 Investigation of the Effect of Grid Size on External Store Separation Trajectory Using CFD

Authors: Alaa A. Osman, Amgad M. Bayoumy Aly, Ismail El baialy, Osama E. Abdellatif, Essam E. Khallil

Abstract:

In this paper, a numerical simulation of a finned store separating from a wing-pylon configuration has been studied and validated. A dynamic unstructured tetrahedral mesh approach is accomplished by using three grid sizes to numerically solving the discretized three dimensional, inviscid and compressible Navier-stokes equations. The method used for computations of separation of an external store assuming quasi-steady flow condition. Computations of quasi-steady flow have been directly coupled to a six degree-of-freedom (6DOF) rigid-body motion code to generate store trajectories. The pressure coefficients at four different angular cuts and time histories of various trajectory parameters during the store separation are compared for every grid size with published experimental data.

Keywords: CFD modelling, transonic store separation, quasi-steady flow, moving-body trajectories

Procedia PDF Downloads 366