Search results for: Penny Congcong Wang
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1364

Search results for: Penny Congcong Wang

1274 Characteristic Composition and Sensory Contributions of Acidic Aroma in Mainstream Cigarette Smoke of Cherry-Red Tobacco

Authors: Tian Yangyang, Xu Zihe, Lu Junping, Yang Jizhou, Xu Yiqun, Wang Jiansong, Chen Chao, Yang Mengmeng, Guo Jianhua, Mu Wenjun, Wang Guiyao, Xue Chaoqun, Liang Taibo, Hu Liwei

Abstract:

Cherry-red tobacco is receiving constant attention from cigarette enterprises because of its special flavor. This study aims to explore the material basis for the formation of the characteristic flavor of cherry-red tobacco and to clarify the distribution characteristics of the acidic aroma component groups in its mainstream smoke. In order to reach the aims of current study, this study employs GC/MS to examine the differences of distribution characteristics in particulate matter of mainstream cigarette smoke between cherry-red and common tobacco, meanwhile the aroma activity values (OVA) was used to compare the contribution of acidic aroma of cherry-red tobacco. The results showed that: 1) Isovaleric acid, acetic acid and butyric acid were the key acidic components in the mainstream smoke of the samples, followed by 3-methylvaleric acid, 4-methylvaleric acid and n-valeric acid. 2)Analysis of the release of these key sour fragrance components showed that the acidic aroma of "YUN 85" mainstream smoke was stronger than the leaf group, cherry-red tobacco was the weakest. In addition, aging had the effect of reducing the acidic components of cherry-red tobacco and the addition of cherry-red tobacco had little effect on the acidic components of the original leaf group. 3) For 14 acidic aroma(OAV>1) in smoke of cherry-red tobacco, 3-methylpentanoic acid, 4-methylpentanoic acid, pentanoic acid, and isovaleric acid were very prominent in contributing to acidic aroma, while pyruvic acid, 2-methylbutyric acid, hydrogenated acid, and propionic acid were less contribution.

Keywords: cherry-red tobacco, acidic aroma, GC/MS, mainstream cigarette smoke, odor activity value

Procedia PDF Downloads 136
1273 Proton Nuclear Magnetic Resonance Based Metabolomics and 13C Isotopic Ratio Evaluation to Differentiate Conventional and Organic Soy Sauce

Authors: Ghulam Mustafa Kamal, Xiaohua Wang, Bin Yuan, Abdullah Ijaz Hussain, Jie Wang, Shahzad Ali Shahid Chatha, Xu Zhang, Maili Liu

Abstract:

Organic food products are becoming increasingly popular in recent years, as consumers have turned more health conscious and environmentally aware. A lot of consumers have understood that the organic foods are healthier than conventionally produced food stuffs. Price difference between conventional and organic foods is very high. So, it is very common to cheat the consumers by mislabeling and adulteration. Our study describes the 1H NMR based approach to characterize and differentiate soy sauce prepared from organically and conventionally grown raw materials (wheat and soybean). Commercial soy sauce samples fermented from organic and conventional raw materials were purchased from local markets. Principal component analysis showed clear separation among organic and conventional soy sauce samples. Orthogonal partial least squares discriminant analysis showed a significant (p < 0.01) separation among two types of soy sauce yielding leucine, isoleucine, ethanol, glutamate, lactate, acetate, β-glucose, sucrose, choline, valine, phenylalanine and tyrosine as important metabolites contributing towards this separation. Abundance ratio of 13C to 12C was also evaluated by 1H NMR spectroscopy which showed an increased ratio of 13C isotope in organic soy sauce samples indicating the organically grown wheat and soybean used for the preparation of organic soy sauce. Results of the study can be helpful to the end users to select the soy sauce of their choice. This information could also pave the way to further trace and authenticate the raw materials used in production of soy sauce.

Keywords: 1H NMR, multivariate analysis, organic, conventional, 13C isotopic ratio, soy sauce

Procedia PDF Downloads 262
1272 Public Preferences for Lung Cancer Screening in China: A Discrete Choice Experiment

Authors: Zixuan Zhao, Lingbin Du, Le Wang, Youqing Wang, Yi Yang, Jingjun Chen, Hengjin Dong

Abstract:

Objectives: Few results from public attitudes for lung cancer screening are available both in China and abroad. This study aimed to identify preferred lung cancer screening modalities in a Chinese population and predict uptake rates of different modalities. Materials and Methods: A discrete choice experiment questionnaire was administered to 392 Chinese individuals aged 50–74 years who were at high risk for lung cancer. Each choice set had two lung screening options and an option to opt-out, and respondents were asked to choose the most preferred one. Both mixed logit analysis and stepwise logistic analysis were conducted to explore whether preferences were related to respondent characteristics and identify which kinds of respondents were more likely to opt out of any screening. Results: On mixed logit analysis, attributes that were predictive of choice at 1% level of statistical significance included the screening interval, screening venue, and out-of-pocket costs. The preferred screening modality seemed to be screening by low-dose computed tomography (LDCT) + blood test once a year in a general hospital at a cost of RMB 50; this could increase the uptake rate by 0.40 compared to the baseline setting. On stepwise logistic regression, those with no endowment insurance were more likely to opt out; those who were older and housewives/househusbands, and those with a health check habit and with commercial endowment insurance were less likely to opt out from a screening programme. Conclusions: There was considerable variance between real risk and self-perceived risk of lung cancer among respondents, and further research is required in this area. Lung cancer screening uptake can be increased by offering various screening modalities, so as to help policymakers further design the screening modality.

Keywords: lung cancer, screening, China., discrete choice experiment

Procedia PDF Downloads 259
1271 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid

Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang

Abstract:

Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.

Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid

Procedia PDF Downloads 432
1270 Historical Analysis of the Landscape Changes and the Eco-Environment Effects on the Coastal Zone of Bohai Bay, China

Authors: Juan Zhou, Lusan Liu, Yanzhong Zhu, Kuixuan Lin, Wenqian Cai, Yu Wang, Xing Wang

Abstract:

During the past few decades, there has been an increase in the number of coastal land reclamation projects for residential, commercial and industrial purposes in more and more coastal cities of China, which led to the destruction of the wetlands and loss of the sensitive marine habitats. Meanwhile, the influences and nature of these projects attract widespread public and academic concern. For identifying the trend of landscape (esp. Coastal reclamation) and ecological environment changes, understanding of which interacted, and offering a general science for the development of regional plans. In the paper, a case study was carried out in Bohai Bay area, based on the analysis of remote sensing data. Land use maps were created for 1954, 1970, 1981, 1990, 2000 and 2010. Landscape metrics were calculated and illustrated that the degree of reclamation changes was linked to the hydrodynamic environment and macrobenthos community. The results indicated that the worst of the loss of initial areas occurred during 1954-1970, with 65.6% lost mostly to salt field; to 2010, Coastal reclamation area increased more than 200km² as artificial landscape. The numerical simulation of tidal current field in 2003 and 2010 respectively showed that the flow velocity in offshore became faster (from 2-5 cm/s to 10-20 cm/s), and the flow direction seem to go astray. These significant changes of coastline were not conducive to the spread of pollutants and degradation. Additionally, the dominant macrobenthos analysis from 1958 to 2012 showed that Musculus senhousei (Benson, 1842) spread very fast and had been the predominant species in the recent years, which was a disturbance tolerant species.

Keywords: Bohai Bay, coastal reclamation, landscape change, spatial patterns

Procedia PDF Downloads 290
1269 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology

Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi

Abstract:

The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.

Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology

Procedia PDF Downloads 304
1268 In Ovo Injection of N-Carbamylglutamate Improves Growth Performance, Muscle Fiber Development, and Meat Quality in Broiler Chickens

Authors: Wang Yuan-hao, Habtamu Ayalew, Jing Wang, Shugeng Wu, Kai Qiu, Guanghai Qi, Haijun Zhang

Abstract:

N-carbamylglutamate (NCG) has emerged as a promising candidate for regulating endogenous arginine synthesis, thereby promoting desirable growth, carcass traits, and muscle development in broilers. Thus, this study aimed to investigate the effects of NCG in ovo feeding on the growth performance, growth hormones, and meat quality of Ross 308 breeder broilers. A total of 1680 embryo eggs were equally allocated into three treatment groups: non punctured control (NC), saline-injected control (SC; 100μL/egg), and N-carbamylglutamate injected group (NCG; 2 mg/egg). The treatment solution was injected into the amniotic cavity of the embryo at 17.5 days of incubation (DOI). For the subsequent 42 days of post hatch experimental sampling, a total of 360 broiler chicks with 6 replications per treatment and 15 chicks per replication were used. Chickens in the NCG group showed significantly higher (P<0.05) body weight gain (BWG) and final body weight (FBW) at both 21 and 42 days after hatch (DAH), while feed conversion efficiency (FCE) was significantly improved (P<0.05) at 42 DAH. The weight and percentage of drums at 21 DAH and the weight and percentage of breast muscle at 42 DAH were significantly higher (P<0.05) in the NCG group. In addition, insulin (INS), growth hormone (GH), and testosterone (T) levels were significantly higher (P<0.05) in the NCG groups at 21 and 42 DAH. Furthermore, triiodothyronine (T3) and tetraiodothyronine (T4) levels were significantly higher (P<0.05) in the NCG treatment group. Interestingly, meat color values were also significantly higher (P<0.05) in the NCG group at 24 hrs postmortem. Collectively, these findings show that 2 mg NCG in ovo injection improves the growth performance and meat quality of broilers; even the effects extend into the market age of the chickens.

Keywords: N-carbamylglutamate, broiler, in ovo injection, growth performance, meat quality

Procedia PDF Downloads 78
1267 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
1266 The Complex Relationship Between IQ and Attention Deficit Hyperactivity Disorder Symptoms: Insights From Behaviors, Cognition, and Brain in 5,138 Children With Attention Deficit Hyperactivity Disorder

Authors: Ningning Liu, Gaoding Jia, Yinshan Wang, Haimei Li, Xinian Zuo, Yufeng Wang, Lu Liu, Qiujin Qian

Abstract:

Background: There has been speculation that a high IQ may not necessarily provide protection against attention deficit hyperactivity disorder (ADHD), and there may be a U-shaped correlation between IQ and ADHD symptoms. However, this speculation has not been validated in the ADHD population in any study so far. Method: We conducted a study with 5,138 children who have been professionally diagnosed with ADHD and have a wide range of IQ levels. General Linear Models were used to determine the optimal model between IQ and ADHD core symptoms with sex and age as covariates. The ADHD symptoms we looked at included the total scores (TO), inattention (IA) and hyperactivity/impulsivity (HI). Wechsler Intelligence scale were used to assess IQ [Full-Scale IQ (FSIQ), Verbal IQ (VIQ), and Performance IQ (PIQ)]. Furthermore, we examined the correlation between IQ and the execution function [Behavior Rating Inventory of Executive Function (BRIEF)], as well as between IQ and brain surface area, to determine if the associations between IQ and ADHD symptoms are reflected in executive functions and brain structure. Results: Consistent with previous research, the results indicated that FSIQ and VIQ both showed a linear negative correlation with the TO and IA scores of ADHD. However, PIQ showed an inverted U-shaped relationship with the TO and HI scores of ADHD, with 103 as the peak point. These findings were also partially reflected in the relationship between IQ and executive functions, as well as IQ and brain surface area. Conclusion: To sum up, the relationship between IQ and ADHD symptoms is not straightforward. Our study confirms long-standing academic hypotheses and finds that PIQ exhibits an inverted U-shaped relationship with ADHD symptoms. This study enhances our understanding of symptoms and behaviors of ADHD with varying IQ characteristics and provides some evidence for targeted clinical intervention.

Keywords: ADHD, IQ, execution function, brain imaging

Procedia PDF Downloads 64
1265 LaMn₁₋ₓNiₓO₃ Perovskites as Oxygen Carriers for Chemical Looping Partial Oxidation of Methane

Authors: Xianglei Yin, Shen Wang, Baoyi Wang, Laihong Shen

Abstract:

Chemical looping partial oxidation of methane (CLPOM) is a novel technology to produce high-quality syngas with an auto-thermic process and low equipment investment. The development of oxygen carriers is important for the improvement of the CLPOM performance. In this work, the effect of the nickel-substitution proportion on the performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was studied in the aspect of reactivity, syngas selectivity, resistance towards carbon deposition and thermal stability in cyclic redox process. The LaMn₁₋ₓNiₓO₃ perovskite oxides with x = 0, 0.1, 0.2 were prepared by the sol-gel method. The performance of LaMn₁₋ᵧNiᵧO₃₊δ perovskites for CLPOM was investigated through the characterization of XRD, H₂-TPR, XPS, and fixed-bed experiments. The characterization and test results suggest that the doping of nickel enhances the generation rate of syngas, leading to high syngas yield, methane conversion, and syngas selectivity. This is attributed to the that the introduction of nickel provides active sites to promote the methane activation on the surface and causes the addition of oxygen vacancies to accelerate the migration of oxygen anion in the bulk of oxygen carrier particles. On the other hand, the introduction of nickel causes carbon deposition to occur earlier. The best substitution proportion of nickel is y=0.1 and LaMn₀.₉Ni₀.₁O₃₊δ could produce high-quality syngas with a yield of 3.54 mmol·g⁻¹, methane conversion of 80.7%, and CO selectivity of 84.8% at 850℃. In addition, the LaMn₀.₉Ni₀.₁O₃₊δ oxygen carrier exhibits superior and stable performance in the cyclic redox process.

Keywords: chemical looping partial oxidation of methane, LaMnO₃₊δ, Ni doping, syngas, carbon deposition

Procedia PDF Downloads 97
1264 Study on the Mechanism of CO₂-Viscoelastic Fluid Synergistic Oil Displacement in Tight Sandstone Reservoirs

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Tight oil reservoirs have poor physical properties, insufficient formation energy, and low natural productivity; it is necessary to effectively improve their crude oil recovery. CO₂ flooding is an important technical means to enhance oil recovery and achieve effective CO₂ storage in tight oil reservoirs, but its heterogeneity is strong, which makes CO₂ flooding prone to gas channeling and poor recovery. Aiming at the problem of gas injection channeling, combined with the excellent performance of low interfacial tension viscoelastic fluid (GOBTK), the research on CO₂-low interfacial tension viscoelastic fluid synergistic oil displacement in tight reservoirs was carried out, and the synergy of CO₂ and low interfacial tension viscoelastic fluid was discussed. Oil displacement mechanism. Experiments show that GOBTK has good injectability in tight oil reservoirs (Kg=0.141~0.793mD); CO₂-0.4% GOBTK synergistic flooding can improve the recovery factor of low permeability layers (31.41%) under heterogeneous (gradient difference of 10) conditions the) effect is better than that of CO₂ flooding (0.56%) and 0.4% GOBT-water flooding (20.99%); CO₂-GOBT synergistic oil displacement mechanism includes: 1) The formation of CO₂ foam increases the flow resistance of viscoelastic fluid, forcing the displacement fluid to flow 2) GOBTK can emulsify and disperse residual oil into small oil droplets, and smoothly pass through narrow pores to produce; 3) CO₂ dissolved in GOBTK synergistically enhances the water wettability of the core, and the use of viscosity Elastomeric fluid injection and stripping of residual oil; 4) CO₂-GOBTK synergy superimposes multiple mechanisms, effectively improving the swept volume and oil washing efficiency of the injected fluid to the reservoir.

Keywords: tight oil reservoir, CO₂ flooding, low interfacial tension viscoelastic fluid flooding, synergistic oil displacement, EOR mechanism

Procedia PDF Downloads 183
1263 Alternative General Formula to Estimate and Test Influences of Early Diagnosis on Cancer Survival

Authors: Li Yin, Xiaoqin Wang

Abstract:

Background and purpose: Cancer diagnosis is part of a complex stochastic process, in which patients' personal and social characteristics influence the choice of diagnosing methods, diagnosing methods, in turn, influence the initial assessment of cancer stage, the initial assessment, in turn, influences the choice of treating methods, and treating methods in turn influence cancer outcomes such as cancer survival. To evaluate diagnosing methods, one needs to estimate and test the causal effect of a regime of cancer diagnosis and treatments. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to estimate and test these causal effects via point effects. The purpose of the work is to estimate and test causal effects under various regimes of cancer diagnosis and treatments via point effects. Challenges and solutions: The cancer stage has influences from earlier diagnosis as well as on subsequent treatments. As a consequence, it is highly difficult to estimate and test the causal effects via standard parameters, that is, the conditional survival given all stationary covariates, diagnosing methods, cancer stage and prognosis factors, treating methods. Instead of standard parameters, we use the point effects of cancer diagnosis and treatments to estimate and test causal effects under various regimes of cancer diagnosis and treatments. We are able to use familiar methods in the framework of single-point causal inference to accomplish the task. Achievements: we have applied this method to stomach cancer survival from a clinical study in Sweden. We have studied causal effects under various regimes, including the optimal regime of diagnosis and treatments and the effect moderation of the causal effect by age and gender.

Keywords: cancer diagnosis, causal effect, point effect, G-formula, sequential causal effect

Procedia PDF Downloads 195
1262 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte

Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan

Abstract:

Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.

Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile

Procedia PDF Downloads 296
1261 Solving LWE by Pregressive Pumps and Its Optimization

Authors: Leizhang Wang, Baocang Wang

Abstract:

General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.

Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free

Procedia PDF Downloads 60
1260 Cross-Sectional Association between Socio-Demographic Factors and Paid Blood Donation in Half Million Chinese Population

Authors: Jiashu Shen, Guoting Zhang, Zhicheng Wang, Yu Wang, Yun Liang, Siyu Zou, Fan Yang, Kun Tang

Abstract:

Objectives: This study aims to enhance the understanding of paid blood donors’ characteristics in Chinese population and devise strategies to protect these paid donors. Background: Paid blood donation was the predominant mode of blood donation in China from the 1970s to 1998 and caused several health and social problems including largely increased the risk of infectious diseases with nonstandard operation in unhygienic conditions. Methods: This study utilized the cross-sectional data from the China Kadoorie Biobank with about 0.5 million people from 10 regions of China from 2004 to 2008. Multivariable logistic regression was performed to examine the associations between socio-demographic factors and paid blood donation. Furthermore, a stratified analysis was applied in education level and annual household income by rural and urban areas. Results: The prevalence of paid blood donation was 0.50% in China and males were more likely to donate blood than females (Adjusted odds ratio (AOR) =0.81, 95%Confident Intervals (CI): 0.75-0.88). Urban people had much lower odds than rural people (AOR =0.24, 95%CI: 0.21-0.27). People with a high annual household income had lower odds of paid blood donation compared with that of people with low income (AOR=0.37, 95%CI: 0.31-0.44). Compared with people who didn’t receive school education, people in a higher level of education had increased odds of paid blood donation (AOR=2.31, 95%CI: 1.94-2.74). Conclusion: Paid blood donors in China were associated with those who were males, living in rural areas, with low annual household income and educational background.

Keywords: China Kadoorie Biobank, Chinese population, paid blood donation, socio-demographic factors

Procedia PDF Downloads 152
1259 Numerical Simulation on Two Components Particles Flow in Fluidized Bed

Authors: Wang Heng, Zhong Zhaoping, Guo Feihong, Wang Jia, Wang Xiaoyi

Abstract:

Flow of gas and particles in fluidized beds is complex and chaotic, which is difficult to measure and analyze by experiments. Some bed materials with bad fluidized performance always fluidize with fluidized medium. The material and the fluidized medium are different in many properties such as density, size and shape. These factors make the dynamic process more complex and the experiment research more limited. Numerical simulation is an efficient way to describe the process of gas-solid flow in fluidized bed. One of the most popular numerical simulation methods is CFD-DEM, i.e., computational fluid dynamics-discrete element method. The shapes of particles are always simplified as sphere in most researches. Although sphere-shaped particles make the calculation of particle uncomplicated, the effects of different shapes are disregarded. However, in practical applications, the two-component systems in fluidized bed also contain sphere particles and non-sphere particles. Therefore, it is needed to study the two component flow of sphere particles and non-sphere particles. In this paper, the flows of mixing were simulated as the flow of molding biomass particles and quartz in fluidized bad. The integrated model was built on an Eulerian–Lagrangian approach which was improved to suit the non-sphere particles. The constructed methods of cylinder-shaped particles were different when it came to different numerical methods. Each cylinder-shaped particle was constructed as an agglomerate of fictitious small particles in CFD part, which means the small fictitious particles gathered but not combined with each other. The diameter of a fictitious particle d_fic and its solid volume fraction inside a cylinder-shaped particle α_fic, which is called the fictitious volume fraction, are introduced to modify the drag coefficient β by introducing the volume fraction of the cylinder-shaped particles α_cld and sphere-shaped particles α_sph. In a computational cell, the void ε, can be expressed as ε=1-〖α_cld α〗_fic-α_sph. The Ergun equation and the Wen and Yu equation were used to calculate β. While in DEM method, cylinder-shaped particles were built by multi-sphere method, in which small sphere element merged with each other. Soft sphere model was using to get the connect force between particles. The total connect force of cylinder-shaped particle was calculated as the sum of the small sphere particles’ forces. The model (size=1×0.15×0.032 mm3) contained 420000 sphere-shaped particles (diameter=0.8 mm, density=1350 kg/m3) and 60 cylinder-shaped particles (diameter=10 mm, length=10 mm, density=2650 kg/m3). Each cylinder-shaped particle was constructed by 2072 small sphere-shaped particles (d=0.8 mm) in CFD mesh and 768 sphere-shaped particles (d=3 mm) in DEM mesh. The length of CFD and DEM cells are 1 mm and 2 mm. Superficial gas velocity was changed in different models as 1.0 m/s, 1.5 m/s, 2.0m/s. The results of simulation were compared with the experimental results. The movements of particles were regularly as fountain. The effect of superficial gas velocity on cylinder-shaped particles was stronger than that of sphere-shaped particles. The result proved this present work provided a effective approach to simulation the flow of two component particles.

Keywords: computational fluid dynamics, discrete element method, fluidized bed, multiphase flow

Procedia PDF Downloads 326
1258 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 357
1257 Delay-Dependent Passivity Analysis for Neural Networks with Time-Varying Delays

Authors: H. Y. Jung, Jing Wang, J. H. Park, Hao Shen

Abstract:

This brief addresses the passivity problem for neural networks with time-varying delays. The aim is focus on establishing the passivity condition of the considered neural networks.

Keywords: neural networks, passivity analysis, time-varying delays, linear matrix inequality

Procedia PDF Downloads 570
1256 A Corpus-Based Study on the Styles of Three Translators

Authors: Wang Yunhong

Abstract:

The present paper is preoccupied with the different styles of three translators in their translating a Chinese classical novel Shuihu Zhuan. Based on a parallel corpus, it adopts a target-oriented approach to look into whether and what stylistic differences and shifts the three translations have revealed. The findings show that the three translators demonstrate different styles concerning their word choices and sentence preferences, which implies that identification of recurrent textual patterns may be a basic step for investigating the style of a translator.

Keywords: corpus, lexical choices, sentence characteristics, style

Procedia PDF Downloads 268
1255 The Analysis of the Challenge China’s Energy Transition Faces and Proposed Solutions

Authors: Yuhang Wang

Abstract:

As energy is vital to industrial productivity and human existence, ensuring energy security becomes a critical government responsibility. The Chinese government has implemented the energy transition to safeguard China’s energy security. Throughout this progression, the Chinese government has faced numerous obstacles. This article seeks to describe the causes of China’s energy transition barriers and the steps taken by the Chinese government to overcome them.

Keywords: energy transition, energy market, fragmentation, path dependency

Procedia PDF Downloads 101
1254 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory

Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang

Abstract:

To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.

Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume

Procedia PDF Downloads 140
1253 The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere

Authors: Yan Wang, Guowei Chen, Gang Wang

Abstract:

Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices.

Keywords: tillage methods, biomarker, biodiversity, rhizosphere

Procedia PDF Downloads 163
1252 Evaluating Gene-Gene Interaction among Nicotine Dependence Genes on the Risk of Oral Clefts

Authors: Mengying Wang, Dongjing Liu, Holger Schwender, Ping Wang, Hongping Zhu, Tao Wu, Terri H Beaty

Abstract:

Background: Maternal smoking is a recognized risk factor for nonsyndromic cleft lip with or without cleft palate (NSCL/P). It has been reported that the effect of maternal smoking on oral clefts is mediated through genes that influence nicotine dependence. The polymorphisms of cholinergic receptor nicotinic alpha (CHRNA) and beta (CHRNB) subunits genes have previously shown strong associations with nicotine dependence. Here, we attempted to investigate whether the above genes are associated with clefting risk through testing for potential gene-gene (G×G) and gene-environment (G×E) interaction. Methods: We selected 120 markers in 14 genes associated with nicotine dependence to conduct transmission disequilibrium tests among 806 Chinese NSCL/P case-parent trios ascertained in an international consortium which conducted a genome-wide association study (GWAS) of oral clefts. We applied Cordell’s method using “TRIO” package in R to explore G×G as well as G×E interaction involving environmental tobacco smoke (ETS) based on conditional logistic regression model. Results: while no SNP showed significant association with NSCL/P after Bonferroni correction, we found signals for G×G interaction between 10 pairs of SNPs in CHRNA3, CHRNA5, and CHRNB4 (p<10-8), among which the most significant interaction was found between RS3743077 (CHRNA3) and RS11636753 (CHRNB4, p<8.2×10-12). Linkage disequilibrium (LD) analysis revealed only low level of LD between these markers. However, there were no significant results for G×ETS interaction. Conclusion: This study fails to detect association between nicotine dependence genes and NSCL/P, but illustrates the importance of taking into account potential G×G interaction for genetic association analysis in NSCL/P. This study also suggests nicotine dependence genes should be considered as important candidate genes for NSCL/P in future studies.

Keywords: Gene-Gene Interaction, Maternal Smoking, Nicotine Dependence, Non-Syndromic Cleft Lip with or without Cleft Palate

Procedia PDF Downloads 337
1251 Evaluation of the Execution Effect of the Minimum Grain Purchase Price in Rural Areas

Authors: Zhaojun Wang, Zongdi Sun, Yongjie Chen, Manman Chen, Linghui Wang

Abstract:

This paper uses the analytic hierarchy process to study the execution effect of the minimum purchase price of grain in different regions and various grain crops. Firstly, for different regions, five indicators including grain yield, grain sown area, gross agricultural production, grain consumption price index, and disposable income of rural residents were selected to construct an evaluation index system. We collect data of six provinces including Hebei Province, Heilongjiang Province and Shandong Province from 2006 to 2017. Then, the judgment matrix is constructed, and the hierarchical single ordering and consistency test are carried out to determine the scoring standard for the minimum purchase price of grain. The ranking of the execution effect from high to low is: Heilongjiang Province, Shandong Province, Hebei Province, Guizhou Province, Shaanxi Province, and Guangdong Province. Secondly, taking Shandong Province as an example, we collect the relevant data of sown area and yield of cereals, beans, potatoes and other crops from 2006 to 2017. The weight of area and yield index is determined by expert scoring method. And the average sown area and yield of cereals, beans and potatoes in 2006-2017 were calculated, respectively. On this basis, according to the sum of products of weights and mean values, the execution effects of different grain crops are determined. It turns out that among the cereals, the minimum purchase price had the best execution effect on paddy, followed by wheat and finally maize. Moreover, among major categories of crops, cereals perform best, followed by beans and finally potatoes. Lastly, countermeasures are proposed for different regions, various categories of crops, and different crops of the same category.

Keywords: analytic hierarchy process, grain yield, grain sown area, minimum grain purchase price

Procedia PDF Downloads 140
1250 Source Identification Model Based on Label Propagation and Graph Ordinary Differential Equations

Authors: Fuyuan Ma, Yuhan Wang, Junhe Zhang, Ying Wang

Abstract:

Identifying the sources of information dissemination is a pivotal task in the study of collective behaviors in networks, enabling us to discern and intercept the critical pathways through which information propagates from its origins. This allows for the control of the information’s dissemination impact in its early stages. Numerous methods for source detection rely on pre-existing, underlying propagation models as prior knowledge. Current models that eschew prior knowledge attempt to harness label propagation algorithms to model the statistical characteristics of propagation states or employ Graph Neural Networks (GNNs) for deep reverse modeling of the diffusion process. These approaches are either deficient in modeling the propagation patterns of information or are constrained by the over-smoothing problem inherent in GNNs, which limits the stacking of sufficient model depth to excavate global propagation patterns. Consequently, we introduce the ODESI model. Initially, the model employs a label propagation algorithm to delineate the distribution density of infected states within a graph structure and extends the representation of infected states from integers to state vectors, which serve as the initial states of nodes. Subsequently, the model constructs a deep architecture based on GNNs-coupled Ordinary Differential Equations (ODEs) to model the global propagation patterns of continuous propagation processes. Addressing the challenges associated with solving ODEs on graphs, we approximate the analytical solutions to reduce computational costs. Finally, we conduct simulation experiments on two real-world social network datasets, and the results affirm the efficacy of our proposed ODESI model in source identification tasks.

Keywords: source identification, ordinary differential equations, label propagation, complex networks

Procedia PDF Downloads 20
1249 Modelling Causal Effects from Complex Longitudinal Data via Point Effects of Treatments

Authors: Xiaoqin Wang, Li Yin

Abstract:

Background and purpose: In many practices, one estimates causal effects arising from a complex stochastic process, where a sequence of treatments are assigned to influence a certain outcome of interest, and there exist time-dependent covariates between treatments. When covariates are plentiful and/or continuous, statistical modeling is needed to reduce the huge dimensionality of the problem and allow for the estimation of causal effects. Recently, Wang and Yin (Annals of statistics, 2020) derived a new general formula, which expresses these causal effects in terms of the point effects of treatments in single-point causal inference. As a result, it is possible to conduct the modeling via point effects. The purpose of the work is to study the modeling of these causal effects via point effects. Challenges and solutions: The time-dependent covariates often have influences from earlier treatments as well as on subsequent treatments. Consequently, the standard parameters – i.e., the mean of the outcome given all treatments and covariates-- are essentially all different (null paradox). Furthermore, the dimension of the parameters is huge (curse of dimensionality). Therefore, it can be difficult to conduct the modeling in terms of standard parameters. Instead of standard parameters, we have use point effects of treatments to develop likelihood-based parametric approach to the modeling of these causal effects and are able to model the causal effects of a sequence of treatments by modeling a small number of point effects of individual treatment Achievements: We are able to conduct the modeling of the causal effects from a sequence of treatments in the familiar framework of single-point causal inference. The simulation shows that our method achieves not only an unbiased estimate for the causal effect but also the nominal level of type I error and a low level of type II error for the hypothesis testing. We have applied this method to a longitudinal study of COVID-19 mortality among Scandinavian countries and found that the Swedish approach performed far worse than the other countries' approach for COVID-19 mortality and the poor performance was largely due to its early measure during the initial period of the pandemic.

Keywords: causal effect, point effect, statistical modelling, sequential causal inference

Procedia PDF Downloads 205
1248 Research and Development of Net-Centric Information Sharing Platform

Authors: Wang Xiaoqing, Fang Youyuan, Zheng Yanxing, Gu Tianyang, Zong Jianjian, Tong Jinrong

Abstract:

Compared with traditional distributed environment, the net-centric environment brings on more demanding challenges for information sharing with the characteristics of ultra-large scale and strong distribution, dynamic, autonomy, heterogeneity, redundancy. This paper realizes an information sharing model and a series of core services, through which provides an open, flexible and scalable information sharing platform.

Keywords: net-centric environment, information sharing, metadata registry and catalog, cross-domain data access control

Procedia PDF Downloads 570
1247 An Analysis of Mongolian Possessive Markers

Authors: Yaxuan Wang

Abstract:

It has long been a mystery that why the Mongolian possessive suffix, which is constrained by Condition A of binding theory, has the ability to probe a potential antecedent outside of its binding domain. This squib argues that binding theory alone is not sufficient to explain the linguistic facts and proposes an analysis adopting the Agree operation. The current analysis correctly predicts all the possible and impossible structures, with an additional hypothesis that Mongolian possessive suffixes serve as an antecedent for PROs in adjunct. The findings thus provide insights into how Agree operates in Mongolian language.

Keywords: syntax, Mongolian, agreement, possessive particles

Procedia PDF Downloads 101
1246 Research on Low interfacial Tension Viscoelastic Fluid Oil Displacement System in Unconventional Reservoir

Authors: Long Long Chen, Xinwei Liao, Shanfa Tang, Shaojing Jiang, Ruijia Tang, Rui Wang, Shu Yun Feng, Si Yao Wang

Abstract:

Unconventional oil reservoirs have the characteristics of strong heterogeneity and poor injectability, and traditional chemical flooding technology is not effective in such reservoirs; polymer flooding in the production of heavy oil reservoirs is difficult to handle produced fluid and easy to block oil wells, etc. Therefore, a viscoelastic fluid flooding system with good adaptability, low interfacial tension, plugging, and diverting capabilities was studied. The viscosity, viscoelasticity, surface/interfacial activity, wettability, emulsification, and oil displacement performance of the anionic Gemini surfactant flooding system were studied, and the adaptability of the system to the reservoir environment was evaluated. The oil displacement effect of the system in low-permeability and high-permeability (heavy oil) reservoirs was investigated, and the mechanism of the system to enhance water flooding recovery was discussed. The results show that the system has temperature resistance and viscosity increasing performance (65℃, 4.12mPa•s), shear resistance and viscoelasticity; at a lower concentration (0.5%), the oil-water interfacial tension can be reduced to ultra-low (10-3mN/m); has good emulsifying ability for heavy oil, and is easy to break demulsification (4.5min); has good adaptability to reservoirs with high salinity (30000mg/L). Oil flooding experiments show that this system can increase the water flooding recovery rate of low-permeability homogeneous and heterogeneous cores by 13% and 15%, respectively, and can increase the water-flooding recovery rate of high-permeability heavy oil reservoirs by 40%. The anionic Gemini surfactant flooding system studied in this paper is a viscoelastic fluid, has good emulsifying and oil washing ability, can effectively improve sweep efficiency, reduce injection pressure, and has broad application in unconventional reservoirs to enhance oil recovery prospect.

Keywords: oil displacement system, recovery factor, rheology, interfacial activity, environmental adaptability

Procedia PDF Downloads 124
1245 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: aesthetics, crease line, cropped straight leg pants, knee width

Procedia PDF Downloads 186