Search results for: grid sensor networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4883

Search results for: grid sensor networks

3773 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System

Authors: Safia Bashir, Zulfiqar Memon

Abstract:

During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.

Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system

Procedia PDF Downloads 158
3772 A Neuro-Automata Decision Support System for the Control of Late Blight in Tomato Crops

Authors: Gizelle K. Vianna, Gustavo S. Oliveira, Gabriel V. Cunha

Abstract:

The use of decision support systems in agriculture may help monitoring large fields of crops by automatically detecting the symptoms of foliage diseases. In our work, we designed and implemented a decision support system for small tomatoes producers. This work investigates ways to recognize the late blight disease from the analysis of digital images of tomatoes, using a pair of multilayer perceptron neural networks. The networks outputs are used to generate repainted tomato images in which the injuries on the plant are highlighted, and to calculate the damage level of each plant. Those levels are then used to construct a situation map of a farm where a cellular automata simulates the outbreak evolution over the fields. The simulator can test different pesticides actions, helping in the decision on when to start the spraying and in the analysis of losses and gains of each choice of action.

Keywords: artificial neural networks, cellular automata, decision support system, pattern recognition

Procedia PDF Downloads 455
3771 Segmented Pupil Phasing with Deep Learning

Authors: Dumont Maxime, Correia Carlos, Sauvage Jean-François, Schwartz Noah, Gray Morgan

Abstract:

Context: The concept of the segmented telescope is unavoidable to build extremely large telescopes (ELT) in the quest for spatial resolution, but it also allows one to fit a large telescope within a reduced volume of space (JWST) or into an even smaller volume (Standard Cubesat). Cubesats have tight constraints on the computational burden available and the small payload volume allowed. At the same time, they undergo thermal gradients leading to large and evolving optical aberrations. The pupil segmentation comes nevertheless with an obvious difficulty: to co-phase the different segments. The CubeSat constraints prevent the use of a dedicated wavefront sensor (WFS), making the focal-plane images acquired by the science detector the most practical alternative. Yet, one of the challenges for the wavefront sensing is the non-linearity between the image intensity and the phase aberrations. Plus, for Earth observation, the object is unknown and unrepeatable. Recently, several studies have suggested Neural Networks (NN) for wavefront sensing; especially convolutional NN, which are well known for being non-linear and image-friendly problem solvers. Aims: We study in this paper the prospect of using NN to measure the phasing aberrations of a segmented pupil from the focal-plane image directly without a dedicated wavefront sensing. Methods: In our application, we take the case of a deployable telescope fitting in a CubeSat for Earth observations which triples the aperture size (compared to the 10cm CubeSat standard) and therefore triples the angular resolution capacity. In order to reach the diffraction-limited regime in the visible wavelength, typically, a wavefront error below lambda/50 is required. The telescope focal-plane detector, used for imaging, will be used as a wavefront-sensor. In this work, we study a point source, i.e. the Point Spread Function [PSF] of the optical system as an input of a VGG-net neural network, an architecture designed for image regression/classification. Results: This approach shows some promising results (about 2nm RMS, which is sub lambda/50 of residual WFE with 40-100nm RMS of input WFE) using a relatively fast computational time less than 30 ms which translates a small computation burder. These results allow one further study for higher aberrations and noise.

Keywords: wavefront sensing, deep learning, deployable telescope, space telescope

Procedia PDF Downloads 104
3770 Analysis and Evaluation of Both AC and DC Standalone Photovoltaic Supply to Ethio-Telecom Access Layer Devices: The Case of Multi-Service Access Gateway in Adama

Authors: Frie Ayalew, Seada Hussen

Abstract:

Ethio-telecom holds a variety of telecom devices that needs a consistent power source to be operational. The company got this power mainly from the national grid and used this power source alone or with a generator and/or batteries as a backup. In addition, for off-grid or remote areas, the company commonly uses generators and batteries. But unstable diesel prices, huge expenses of fuel and transportation, and high carbon emissions are the main problems associated with fuel energy. So, the design of solar power with battery backup is a highly recommended and advantageous source for the next coming years. This project designs the AC and DC standalone photovoltaic supply to Ethio-telecom access layer devices for the case of multi-service access gateway in Adama. The design is done by using Homer software for both AC and DC loads. The project shows that the design of a solar based microgrid is the best option for the designed area.

Keywords: solar power, battery, inverter, Ethio-telecom, solar radiation

Procedia PDF Downloads 82
3769 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 169
3768 An Approach for Ensuring Data Flow in Freight Delivery and Management Systems

Authors: Aurelija Burinskienė, Dalė Dzemydienė, Arūnas Miliauskas

Abstract:

This research aims at developing the approach for more effective freight delivery and transportation process management. The road congestions and the identification of causes are important, as well as the context information recognition and management. The measure of many parameters during the transportation period and proper control of driver work became the problem. The number of vehicles per time unit passing at a given time and point for drivers can be evaluated in some situations. The collection of data is mainly used to establish new trips. The flow of the data is more complex in urban areas. Herein, the movement of freight is reported in detail, including the information on street level. When traffic density is extremely high in congestion cases, and the traffic speed is incredibly low, data transmission reaches the peak. Different data sets are generated, which depend on the type of freight delivery network. There are three types of networks: long-distance delivery networks, last-mile delivery networks and mode-based delivery networks; the last one includes different modes, in particular, railways and other networks. When freight delivery is switched from one type of the above-stated network to another, more data could be included for reporting purposes and vice versa. In this case, a significant amount of these data is used for control operations, and the problem requires an integrated methodological approach. The paper presents an approach for providing e-services for drivers by including the assessment of the multi-component infrastructure needed for delivery of freights following the network type. The construction of such a methodology is required to evaluate data flow conditions and overloads, and to minimize the time gaps in data reporting. The results obtained show the possibilities of the proposing methodological approach to support the management and decision-making processes with functionality of incorporating networking specifics, by helping to minimize the overloads in data reporting.

Keywords: transportation networks, freight delivery, data flow, monitoring, e-services

Procedia PDF Downloads 125
3767 Renewable Energy and Hydrogen On-Site Generation for Drip Irrigation and Agricultural Machinery

Authors: Javier Carroquino, Nieves García-Casarejos, Pilar Gargallo, F. Javier García-Ramos

Abstract:

The energy used in agriculture is a source of global emissions of greenhouse gases. The two main types of this energy are electricity for pumping and diesel for agricultural machinery. In order to reduce these emissions, the European project LIFE REWIND addresses the supply of this demand from renewable sources. First of all, comprehensive data on energy demand and available renewable resources have been obtained in several case studies. Secondly, a set of simulations and optimizations have been performed, in search of the best configuration and sizing, both from an economic and emission reduction point of view. For this purpose, it was used software based on genetic algorithms. Thirdly, a prototype has been designed and installed, that it is being used for the validation in a real case. Finally, throughout a year of operation, various technical and economic parameters are being measured for further analysis. The prototype is not connected to the utility grid, avoiding the cost and environmental impact of a grid extension. The system includes three kinds of photovoltaic fields. One is located on a fixed structure on the terrain. Another one is floating on an irrigation raft. The last one is mounted on a two axis solar tracker. Each has its own solar inverter. The total amount of nominal power is 44 kW. A lead acid battery with 120 kWh of capacity carries out the energy storage. Three isolated inverters support a three phase, 400 V 50 Hz micro-grid, the same characteristics of the utility grid. An advanced control subsystem has been constructed, using free hardware and software. The electricity produced feeds a set of seven pumps used for purification, elevation and pressurization of water in a drip irrigation system located in a vineyard. Since the irrigation season does not include the whole year, as well as a small oversize of the generator, there is an amount of surplus energy. With this surplus, a hydrolyser produces on site hydrogen by electrolysis of water. An off-road vehicle with fuel cell feeds on that hydrogen and carries people in the vineyard. The only emission of the process is high purity water. On the one hand, the results show the technical and economic feasibility of stand-alone renewable energy systems to feed seasonal pumping. In this way, the economic costs, the environmental impacts and the landscape impacts of grid extensions are avoided. The use of diesel gensets and their associated emissions are also avoided. On the other hand, it is shown that it is possible to replace diesel in agricultural machinery, substituting it for electricity or hydrogen of 100% renewable origin and produced on the farm itself, without any external energy input. In addition, it is expected to obtain positive effects on the rural economy and employment, which will be quantified through interviews.

Keywords: drip irrigation, greenhouse gases, hydrogen, renewable energy, vineyard

Procedia PDF Downloads 341
3766 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation

Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque

Abstract:

Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.

Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method

Procedia PDF Downloads 378
3765 Detection of Glyphosate Using Disposable Sensors for Fast, Inexpensive and Reliable Measurements by Electrochemical Technique

Authors: Jafar S. Noori, Jan Romano-deGea, Maria Dimaki, John Mortensen, Winnie E. Svendsen

Abstract:

Pesticides have been intensively used in agriculture to control weeds, insects, fungi, and pest. One of the most commonly used pesticides is glyphosate. Glyphosate has the ability to attach to the soil colloids and degraded by the soil microorganisms. As glyphosate led to the appearance of resistant species, the pesticide was used more intensively. As a consequence of the heavy use of glyphosate, residues of this compound are increasingly observed in food and water. Recent studies reported a direct link between glyphosate and chronic effects such as teratogenic, tumorigenic and hepatorenal effects although the exposure was below the lowest regulatory limit. Today, pesticides are detected in water by complicated and costly manual procedures conducted by highly skilled personnel. It can take up to several days to get an answer regarding the pesticide content in water. An alternative to this demanding procedure is offered by electrochemical measuring techniques. Electrochemistry is an emerging technology that has the potential of identifying and quantifying several compounds in few minutes. It is currently not possible to detect glyphosate directly in water samples, and intensive research is underway to enable direct selective and quantitative detection of glyphosate in water. This study focuses on developing and modifying a sensor chip that has the ability to selectively measure glyphosate and minimize the signal interference from other compounds. The sensor is a silicon-based chip that is fabricated in a cleanroom facility with dimensions of 10×20 mm. The chip is comprised of a three-electrode configuration. The deposited electrodes consist of a 20 nm layer chromium and 200 nm gold. The working electrode is 4 mm in diameter. The working electrodes are modified by creating molecularly imprinted polymers (MIP) using electrodeposition technique that allows the chip to selectively measure glyphosate at low concentrations. The modification included using gold nanoparticles with a diameter of 10 nm functionalized with 4-aminothiophenol. This configuration allows the nanoparticles to bind to the working electrode surface and create the template for the glyphosate. The chip was modified using electrodeposition technique. An initial potential for the identification of glyphosate was estimated to be around -0.2 V. The developed sensor was used on 6 different concentrations and it was able to detect glyphosate down to 0.5 mgL⁻¹. This value is below the accepted pesticide limit of 0.7 mgL⁻¹ set by the US regulation. The current focus is to optimize the functionalizing procedure in order to achieve glyphosate detection at the EU regulatory limit of 0.1 µgL⁻¹. To the best of our knowledge, this is the first attempt to modify miniaturized sensor electrodes with functionalized nanoparticles for glyphosate detection.

Keywords: pesticides, glyphosate, rapid, detection, modified, sensor

Procedia PDF Downloads 177
3764 Highly Sensitive Fiber-Optic Curvature Sensor Based on Four Mode Fiber

Authors: Qihang Zeng, Wei Xu, Ying Shen, Changyuan Yu

Abstract:

In this paper, a highly sensitive fiber-optic curvature sensor based on four mode fiber (FMF) is presented and investigated. The proposed sensing structure is constructed by fusing a section of FMF into two standard single mode fibers (SMFs) concatenated with two no core fiber (NCF), i.e., SMF-NCF-FMF-NCF-SMF structure is fabricated. The length of the NCF is very short about 1 millimeter acting as exciting/recoupling the light from/into the core of the SMF, while the FMF is with 3 centimeters long supporting four eigenmodes including LP₀₁, LP₁₁, LP₂₁ and LP₀₂. High core modes in FMF can be effectively stimulated owing to mismatched mode field distribution and the mainly sensing principle is based on modal interferometer spectrum analysis. Different curvatures induce different strains on the FMF such that affecting the modal excitation, resulting spectrum shifts. One can get the curvature value by tracking the wavelength shifting. Experiments have been done to address the sensing performance, which is about 7.8 nm/m⁻¹ within a range of 1.90 m⁻¹~3.18 m⁻¹.

Keywords: curvature, four mode fiber, highly sensitive, modal interferometer

Procedia PDF Downloads 191
3763 Performance Evaluation of Packet Scheduling with Channel Conditioning Aware Based on Wimax Networks

Authors: Elmabruk Laias, Abdalla M. Hanashi, Mohammed Alnas

Abstract:

Worldwide Interoperability for Microwave Access (WiMAX) became one of the most challenging issues, since it was responsible for distributing available resources of the network among all users this leaded to the demand of constructing and designing high efficient scheduling algorithms in order to improve the network utilization, to increase the network throughput, and to minimize the end-to-end delay. In this study, the proposed algorithm focuses on an efficient mechanism to serve non-real time traffic in congested networks by considering channel status.

Keywords: WiMAX, Quality of Services (QoS), OPNE, Diff-Serv (DS).

Procedia PDF Downloads 285
3762 Graph Neural Networks and Rotary Position Embedding for Voice Activity Detection

Authors: YingWei Tan, XueFeng Ding

Abstract:

Attention-based voice activity detection models have gained significant attention in recent years due to their fast training speed and ability to capture a wide contextual range. The inclusion of multi-head style and position embedding in the attention architecture are crucial. Having multiple attention heads allows for differential focus on different parts of the sequence, while position embedding provides guidance for modeling dependencies between elements at various positions in the input sequence. In this work, we propose an approach by considering each head as a node, enabling the application of graph neural networks (GNN) to identify correlations among the different nodes. In addition, we adopt an implementation named rotary position embedding (RoPE), which encodes absolute positional information into the input sequence by a rotation matrix, and naturally incorporates explicit relative position information into a self-attention module. We evaluate the effectiveness of our method on a synthetic dataset, and the results demonstrate its superiority over the baseline CRNN in scenarios with low signal-to-noise ratio and noise, while also exhibiting robustness across different noise types. In summary, our proposed framework effectively combines the strengths of CNN and RNN (LSTM), and further enhances detection performance through the integration of graph neural networks and rotary position embedding.

Keywords: voice activity detection, CRNN, graph neural networks, rotary position embedding

Procedia PDF Downloads 71
3761 Effect of Corrugating Bottom Surface on Natural Convection in a Square Porous Enclosure

Authors: Khedidja Bouhadef, Imene Said Kouadri, Omar Rahli

Abstract:

In this paper numerical investigation is performed to analyze natural convection heat transfer characteristics within a wavy-wall enclosure filled with fluid-saturated porous medium. The bottom wall which has the wavy geometry is maintained at a constant high temperature, while the top wall is straight and is maintained at a constant lower temperature. The left and right walls of the enclosure are both straight and insulated. The governing differential equations are solved by Finite-volume approach and grid generation is used to transform the physical complex domain to a computational regular space. The aim is to examine flow field, temperature distribution and heat transfer evolutions inside the cavity when Darcy number, Rayleigh number and undulations number values are varied. The results mainly indicate that the heat transfer is rather affected by the permeability and Rayleigh number values since increasing these values enhance the Nusselt number; although the exchanges are not highly affected by the undulations number.

Keywords: grid generation, natural convection, porous medium, wavy wall enclosure

Procedia PDF Downloads 264
3760 Error Correction Method for 2D Ultra-Wideband Indoor Wireless Positioning System Using Logarithmic Error Model

Authors: Phornpat Chewasoonthorn, Surat Kwanmuang

Abstract:

Indoor positioning technologies have been evolved rapidly. They augment the Global Positioning System (GPS) which requires line-of-sight to the sky to track the location of people or objects. This study developed an error correction method for an indoor real-time location system (RTLS) based on an ultra-wideband (UWB) sensor from Decawave. Multiple stationary nodes (anchor) were installed throughout the workspace. The distance between stationary and moving nodes (tag) can be measured using a two-way-ranging (TWR) scheme. The result has shown that the uncorrected ranging error from the sensor system can be as large as 1 m. To reduce ranging error and thus increase positioning accuracy, This study purposes an online correction algorithm using the Kalman filter. The results from experiments have shown that the system can reduce ranging error down to 5 cm.

Keywords: indoor positioning, ultra-wideband, error correction, Kalman filter

Procedia PDF Downloads 160
3759 Understanding Social Networks in Community's Coping Capacity with Floods: A Case Study of a Community in Cambodia

Authors: Ourn Vimoil, Kallaya Suntornvongsagul

Abstract:

Cambodia is considered as one of the most disaster prone countries in South East Asia, and most of natural disasters are related to floods. Cambodia, a developing country, faces significant impacts from floods, such as environmental, social, and economic losses. Using data accessed from focus group discussions and field surveys with villagers in Ba Baong commune, prey Veng province, Cambodia, the research would like to examine roles of social networks in raising community’s coping capacity with floods. The findings indicate that social capital play crucial roles in three stages of floods, namely preparedness, response, and recovery to overcome the crisis. People shared their information and resources, and extent their assistances to one another in order to adapt to floods. The study contribute to policy makers, national and international agencies working on this issue to pay attention on social networks as one factors to accelerate flood coping capacity at community level.

Keywords: social network, community, coping capacity, flood, Cambodia

Procedia PDF Downloads 365
3758 A Network-Theorical Perspective on Music Analysis

Authors: Alberto Alcalá-Alvarez, Pablo Padilla-Longoria

Abstract:

The present paper describes a framework for constructing mathematical networks encoding relevant musical information from a music score for structural analysis. These graphs englobe statistical information about music elements such as notes, chords, rhythms, intervals, etc., and the relations among them, and so become helpful in visualizing and understanding important stylistic features of a music fragment. In order to build such networks, musical data is parsed out of a digital symbolic music file. This data undergoes different analytical procedures from Graph Theory, such as measuring the centrality of nodes, community detection, and entropy calculation. The resulting networks reflect important structural characteristics of the fragment in question: predominant elements, connectivity between them, and complexity of the information contained in it. Music pieces in different styles are analyzed, and the results are contrasted with the traditional analysis outcome in order to show the consistency and potential utility of this method for music analysis.

Keywords: computational musicology, mathematical music modelling, music analysis, style classification

Procedia PDF Downloads 102
3757 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework

Authors: Annu Sheokand, Vinay Kumar

Abstract:

Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.

Keywords: detection limit, doping, MOF, sensitivity, sensor

Procedia PDF Downloads 13
3756 On the Use of Reliability Factors to Reduce Conflict between Information Sources in Dempster-Shafer Theory

Authors: A. Alem, Y. Dahmani, A. Hadjali, A. Boualem

Abstract:

Managing the problem of the conflict, either by using the Dempster-Shafer theory, or by the application of the fusion process to push researchers in recent years to find ways to get to make best decisions especially; for information systems, vision, robotic and wireless sensor networks. In this paper we are interested to take account of the conflict in the combination step that took the conflict into account and tries to manage such a way that it does not influence the decision step, the conflict what from reliable sources. According to [1], the conflict lead to erroneous decisions in cases where was with strong degrees between sources of information, if the conflict is more than the maximum of the functions of belief mass K > max1...n (mi (A)), then the decision becomes impossible. We will demonstrate in this paper that the multiplication of mass functions by coefficients of reliability is a decreasing function; it leads to the reduction of conflict and a good decision. The definition of reliability coefficients accurately and multiply them by the mass functions of each information source to resolve the conflict and allow deciding whether the degree of conflict. The evaluation of this technique is done by a use case; a comparison of the combination of springs with a maximum conflict without, and with reliability coefficients.

Keywords: Dempster-Shafer theory, fusion process, conflict managing, reliability factors, decision

Procedia PDF Downloads 426
3755 Ammonia Sensing Properties of Nanostructured Hybrid Halide Perovskite Thin Film

Authors: Nidhi Gupta, Omita Nanda, Rakhi Grover, Kanchan Saxena

Abstract:

Hybrid perovskite is new class of material which has gained much attention due to their different crystal structure and interesting optical and electrical properties. Easy fabrication, high absorption coefficient, and photoluminescence properties make them a strong candidate for various applications such as sensors, photovoltaics, photodetectors, etc. In perovskites, ions arrange themselves in a special type of crystal structure with chemical formula ABX3, where A is organic species like CH3NH3+, B is metal ion (e.g., Pb, Sn, etc.) and X is halide (Cl-, Br-, I-). In crystal structure, A is present at corner position, B at center of the crystal lattice and halide ions at the face centers. High stability and sensitivity of nanostructured perovskite make them suitable for chemical sensors. Researchers have studied sensing properties of perovskites for number of analytes such as 2,4,6-trinitrophenol, ethanol and other hazardous chemical compounds. Ammonia being highly toxic agent makes it a reason of concern for the environment. Thus the detection of ammonia is extremely important. Our present investigation deals with organic inorganic hybrid perovskite based ammonia sensor. Various methods like sol-gel, solid state synthesis, thermal vapor deposition etc can be used to synthesize Different hybrid perovskites. In the present work, a novel hybrid perovskite has been synthesized by a single step method. Ethylenediammnedihalide and lead halide were used as precursor. Formation of hybrid perovskite was confirmed by FT-IR and XRD. Morphological characterization of the synthesized material was performed using scanning electron microscopy (SEM). SEM analysis revealed the formation of one dimensional nanowire perovskite with mean diameter of 200 nm. Measurements for sensing properties of halide perovskite for ammonia vapor were carried out. Perovskite thin films showed a color change from yellow to orange on exposure of ammonia vapor. Electro-optical measurements show that sensor based on lead halide perovskite has high sensitivity towards ammonia with effective selectivity and reversibility. Sensor exhibited rapid response time of less than 20 seconds.

Keywords: hybrid perovskite, ammonia, sensor, nanostructure, thin film

Procedia PDF Downloads 276
3754 Identifying Network Subgraph-Associated Essential Genes in Molecular Networks

Authors: Efendi Zaenudin, Chien-Hung Huang, Ka-Lok Ng

Abstract:

Essential genes play an important role in the survival of an organism. It has been shown that cancer-associated essential genes are genes necessary for cancer cell proliferation, where these genes are potential therapeutic targets. Also, it was demonstrated that mutations of the cancer-associated essential genes give rise to the resistance of immunotherapy for patients with tumors. In the present study, we focus on studying the biological effects of the essential genes from a network perspective. We hypothesize that one can analyze a biological molecular network by decomposing it into both three-node and four-node digraphs (subgraphs). These network subgraphs encode the regulatory interaction information among the network’s genetic elements. In this study, the frequency of occurrence of the subgraph-associated essential genes in a molecular network was quantified by using the statistical parameter, odds ratio. Biological effects of subgraph-associated essential genes are discussed. In summary, the subgraph approach provides a systematic method for analyzing molecular networks and it can capture useful biological information for biomedical research.

Keywords: biological molecular networks, essential genes, graph theory, network subgraphs

Procedia PDF Downloads 156
3753 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 286
3752 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges

Authors: Francesco Morgan Bono, Simone Cinquemani

Abstract:

This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.

Keywords: structural health monitoring, dynamic models, sindy, railway bridges

Procedia PDF Downloads 38
3751 Improving Sample Analysis and Interpretation Using QIAGENs Latest Investigator STR Multiplex PCR Assays with a Novel Quality Sensor

Authors: Daniel Mueller, Melanie Breitbach, Stefan Cornelius, Sarah Pakulla-Dickel, Margaretha Koenig, Anke Prochnow, Mario Scherer

Abstract:

The European STR standard set (ESS) of loci as well as the new expanded CODIS core loci set as recommended by the CODIS Core Loci Working Group, has led to a higher standardization and harmonization in STR analysis across borders. Various multiplex PCRs assays have since been developed for the analysis of these 17 ESS or 23 CODIS expansion STR markers that all meet high technical demands. However, forensic analysts are often faced with difficult STR results and the questions thereupon. What is the reason that no peaks are visible in the electropherogram? Did the PCR fail? Was the DNA concentration too low? QIAGEN’s newest Investigator STR kits contain a novel Quality Sensor (QS) that acts as internal performance control and gives useful information for evaluating the amplification efficiency of the PCR. QS indicates if the reaction has worked in general and furthermore allows discriminating between the presence of inhibitors or DNA degradation as a cause for the typical ski slope effect observed in STR profiles of such challenging samples. This information can be used to choose the most appropriate rework strategy.Based on the latest PCR chemistry called FRM 2.0, QIAGEN now provides the next technological generation for STR analysis, the Investigator ESSplex SE QS and Investigator 24plex QS Kits. The new PCR chemistry ensures robust and fast PCR amplification with improved inhibitor resistance and easy handling for a manual or automated setup. The short cycling time of 60 min reduces the duration of the total PCR analysis to make a whole workflow analysis in one day more likely. To facilitate the interpretation of STR results a smart primer design was applied for best possible marker distribution, highest concordance rates and a robust gender typing.

Keywords: PCR, QIAGEN, quality sensor, STR

Procedia PDF Downloads 495
3750 Analysis of Q-Learning on Artificial Neural Networks for Robot Control Using Live Video Feed

Authors: Nihal Murali, Kunal Gupta, Surekha Bhanot

Abstract:

Training of artificial neural networks (ANNs) using reinforcement learning (RL) techniques is being widely discussed in the robot learning literature. The high model complexity of ANNs along with the model-free nature of RL algorithms provides a desirable combination for many robotics applications. There is a huge need for algorithms that generalize using raw sensory inputs, such as vision, without any hand-engineered features or domain heuristics. In this paper, the standard control problem of line following robot was used as a test-bed, and an ANN controller for the robot was trained on images from a live video feed using Q-learning. A virtual agent was first trained in simulation environment and then deployed onto a robot’s hardware. The robot successfully learns to traverse a wide range of curves and displays excellent generalization ability. Qualitative analysis of the evolution of policies, performance and weights of the network provide insights into the nature and convergence of the learning algorithm.

Keywords: artificial neural networks, q-learning, reinforcement learning, robot learning

Procedia PDF Downloads 372
3749 A Hybrid System of Hidden Markov Models and Recurrent Neural Networks for Learning Deterministic Finite State Automata

Authors: Pavan K. Rallabandi, Kailash C. Patidar

Abstract:

In this paper, we present an optimization technique or a learning algorithm using the hybrid architecture by combining the most popular sequence recognition models such as Recurrent Neural Networks (RNNs) and Hidden Markov models (HMMs). In order to improve the sequence or pattern recognition/ classification performance by applying a hybrid/neural symbolic approach, a gradient descent learning algorithm is developed using the Real Time Recurrent Learning of Recurrent Neural Network for processing the knowledge represented in trained Hidden Markov Models. The developed hybrid algorithm is implemented on automata theory as a sample test beds and the performance of the designed algorithm is demonstrated and evaluated on learning the deterministic finite state automata.

Keywords: hybrid systems, hidden markov models, recurrent neural networks, deterministic finite state automata

Procedia PDF Downloads 388
3748 A Radiofrequency Spectrophotometer Device to Detect Liquids in Gastroesophageal Ways

Authors: R. Gadea, J. M. Monzó, F. J. Puertas, M. Castro, A. Tebar, P. J. Fito, R. J. Colom

Abstract:

There exists a wide array of ailments impacting the structural soundness of the esophageal walls, predominantly linked to digestive issues. Presently, the techniques employed for identifying esophageal tract complications are excessively invasive and discomforting, subjecting patients to prolonged discomfort in order to achieve an accurate diagnosis. This study proposes the creation of a sensor with profound measuring capabilities designed to detect fluids coursing through the esophageal tract. The multi-sensor detection system relies on radiofrequency photospectrometry. During experimentation, individuals representing diverse demographics in terms of gender and age were utilized, positioning the sensors amidst the trachea and diaphragm and assessing measurements in vacuum conditions, water, orange juice, and saline solutions. The findings garnered enabled the identification of various liquid mediums within the esophagus, segregating them based on their ionic composition.

Keywords: radiofrequency spectrophotometry, medical device, gastroesophageal disease, photonics

Procedia PDF Downloads 81
3747 Estimating Solar Irradiance on a Tilted Surface Using Artificial Neural Networks with Differential Outputs

Authors: Hsu-Yung Cheng, Kuo-Chang Hsu, Chi-Chang Chan, Mei-Hui Tseng, Chih-Chang Yu, Ya-Sheng Liu

Abstract:

Photovoltaics modules are usually not installed horizontally to avoid water or dust accumulation. However, the measured irradiance data on tilted surfaces are rarely available since installing pyranometers with various tilt angles induces high costs. Therefore, estimating solar irradiance on tilted surfaces is an important research topic. In this work, artificial neural networks (ANN) are utilized to construct the transfer model to estimate solar irradiance on tilted surfaces. Instead of predicting tilted irradiance directly, the proposed method estimates the differences between the horizontal irradiance and the irradiance on a tilted surface. The outputs of the ANNs in the proposed design are differential values. The experimental results have shown that the proposed ANNs with differential outputs can substantially improve the estimation accuracy compared to ANNs that estimate the titled irradiance directly.

Keywords: photovoltaics, artificial neural networks, tilted irradiance, solar energy

Procedia PDF Downloads 396
3746 Multi-Sensor Target Tracking Using Ensemble Learning

Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana

Abstract:

Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfill requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.

Keywords: single classifier, ensemble learning, multi-target tracking, multiple classifiers

Procedia PDF Downloads 268
3745 Techno Economic Analysis of CAES Systems Integrated into Gas-Steam Combined Plants

Authors: Coriolano Salvini

Abstract:

The increasing utilization of renewable energy sources for electric power production calls for the introduction of energy storage systems to match the electric demand along the time. Although many countries are pursuing as a final goal a “decarbonized” electrical system, in the next decades the traditional fossil fuel fed power plant still will play a relevant role in fulfilling the electric demand. Presently, such plants provide grid ancillary services (frequency control, grid balance, reserve, etc.) by adapting the output power to the grid requirements. An interesting option is represented by the possibility to use traditional plants to improve the grid storage capabilities. The present paper is addressed to small-medium size systems suited for distributed energy storage. The proposed Energy Storage System (ESS) is based on a Compressed Air Energy Storage (CAES) integrated into a Gas-Steam Combined Cycle (GSCC) or a Gas Turbine based CHP plants. The systems can be incorporated in an ex novo built plant or added to an already existing one. To avoid any geological restriction related to the availability of natural compressed air reservoirs, artificial storage is addressed. During the charging phase, electric power is absorbed from the grid by an electric driven intercooled/aftercooled compressor. In the course of the discharge phase, the compressed stored air is sent to a heat transfer device fed by hot gas taken upstream the Heat Recovery Steam Generator (HRSG) and subsequently expanded for power production. To maximize the output power, a staged reheated expansion process is adopted. The specific power production related to the kilogram per second of exhaust gas used to heat the stored air is two/three times larger than that achieved if the gas were used to produce steam in the HRSG. As a result, a relevant power augmentation is attained with respect to normal GSCC plant operations without additional use of fuel. Therefore, the excess of output power can be considered “fuel free” and the storage system can be compared to “pure” ESSs such as electrochemical, pumped hydro or adiabatic CAES. Representative cases featured by different power absorption, production capability, and storage capacity have been taken into consideration. For each case, a technical optimization aimed at maximizing the storage efficiency has been carried out. On the basis of the resulting storage pressure and volume, number of compression and expansion stages, air heater arrangement and process quantities found for each case, a cost estimation of the storage systems has been performed. Storage efficiencies from 0.6 to 0.7 have been assessed. Capital costs in the range of 400-800 €/kW and 500-1000 €/kWh have been estimated. Such figures are similar or lower to those featuring alternative storage technologies.

Keywords: artificial air storage reservoir, compressed air energy storage (CAES), gas steam combined cycle (GSCC), techno-economic analysis

Procedia PDF Downloads 214
3744 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays

Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng

Abstract:

Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.

Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers

Procedia PDF Downloads 243