Search results for: track occupation data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25707

Search results for: track occupation data

24627 Development of an Indigenous Motorized Planter for the Sustainable Production of Grain Crops in Nigeria

Authors: Babatunde Oluwamayokun Soyoye

Abstract:

This technology, whose development revolves round culture, tradition, and prevailing needs of the people, is seen as a solution in promoting development in poor rural communities in many parts of Nigeria. The research was based on one of the food security agenda of the Federal Government of Nigeria by developing a motorized multi-grain crop planter suitable for planting operations in tropical soils. The ergonomic design is tailored towards the ease of planting operations for would-be users, improve crop yields and profitability by minimizing the cost of production. Some properties of the grain crops were determined and were used to develop and assemble the locally-made motorized planter. These properties were used in establishing the design criteria of various components of the planter. The geometric mean diameter of the maize, cowpea, groundnut, and soybean were 8.26 mm, 8.72 mm, 9.51 mm and 6.52 mm respectively, with respective groove depths of 8 mm, 7 mm, 9 mm and 6 mm. The results obtained from the evaluation of the planter confirmed that the planter has a uniform discharge and application rates. The field capacity of the planter was determined to be 0.187 ha/h. Also, the average performance efficiency of the planter was 95.5%, with the average discharge and application rates of 7.86 kg/h and 42.1 kg/ha, respectively. The motorized multi-grain planter can be used in increasing food production, reduce time, cost of production, and can become a major tool to fast-track the food security agenda of the government of Nigeria.

Keywords: design and fabrication, food security, grain crop, motorized planter

Procedia PDF Downloads 135
24626 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 248
24625 Analysis of User Data Usage Trends on Cellular and Wi-Fi Networks

Authors: Jayesh M. Patel, Bharat P. Modi

Abstract:

The availability of on mobile devices that can invoke the demonstrated that the total data demand from users is far higher than previously articulated by measurements based solely on a cellular-centric view of smart-phone usage. The ratio of Wi-Fi to cellular traffic varies significantly between countries, This paper is shown the compression between the cellular data usage and Wi-Fi data usage by the user. This strategy helps operators to understand the growing importance and application of yield management strategies designed to squeeze maximum returns from their investments into the networks and devices that enable the mobile data ecosystem. The transition from unlimited data plans towards tiered pricing and, in the future, towards more value-centric pricing offers significant revenue upside potential for mobile operators, but, without a complete insight into all aspects of smartphone customer behavior, operators will unlikely be able to capture the maximum return from this billion-dollar market opportunity.

Keywords: cellular, Wi-Fi, mobile, smart phone

Procedia PDF Downloads 364
24624 The Use of Gender-Fair Language in CS National Exams

Authors: Moshe Leiba, Doron Zohar

Abstract:

Computer Science (CS) and programming is still considered a boy’s club and is a male-dominated profession. This is also the case in high schools and higher education. In Israel, not different from the rest of the world, there are less than 35% of female students in CS studies that take the matriculation exams. The Israeli matriculation exams are written in a masculine form language. Gender-fair language (GFL) aims at reducing gender stereotyping and discrimination. There are several strategies that can be employed to make languages gender-fair and to treat women and men symmetrically (especially in languages with grammatical gender, among them neutralization and using the plural form. This research aims at exploring computer science teachers’ beliefs regarding the use of gender-fair language in exams. An exploratory quantitative research methodology was employed to collect the data. A questionnaire was administered to 353 computer science teachers. 58% female and 42% male. 86% are teaching for at least 3 years, with 59% of them have a teaching experience of 7 years. 71% of the teachers teach in high school, and 82% of them are preparing students for the matriculation exam in computer science. The questionnaire contained 2 matriculation exam questions from previous years and open-ended questions. Teachers were asked which form they think is more suited: (a) the existing form (mescaline), (b) using both gender full forms (e.g., he/she), (c) using both gender short forms, (d) plural form, (e) natural form, and (f) female form. 84% of the teachers recognized the need to change the existing mescaline form in the matriculation exams. About 50% of them thought that using the plural form was the best-suited option. When examining the teachers who are pro-change and those who are against, no gender differences or teaching experience were found. The teachers who are pro gender-fair language justified it as making it more personal and motivating for the female students. Those who thought that the mescaline form should remain argued that the female students do not complain and the change in form will not influence or affect the female students to choose to study computer science. Some even argued that the change will not affect the students but can only improve their sense of identity or feeling toward the profession (which seems like a misconception). This research suggests that the teachers are pro-change and believe that re-formulating the matriculation exams is the right step towards encouraging more female students to choose to study computer science as their major study track and to bridge the gap for gender equality. This should indicate a bottom-up approach, as not long after this research was conducted, the Israeli ministry of education decided to change the matriculation exams to gender-fair language using the plural form. In the coming years, with the transition to web-based examination, it is suggested to use personalization and adjust the language form in accordance with the student's gender.

Keywords: compter science, gender-fair language, teachers, national exams

Procedia PDF Downloads 110
24623 Data Driven Infrastructure Planning for Offshore Wind farms

Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree

Abstract:

The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.

Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data

Procedia PDF Downloads 86
24622 Empirical Acceleration Functions and Fuzzy Information

Authors: Muhammad Shafiq

Abstract:

In accelerated life testing approaches life time data is obtained under various conditions which are considered more severe than usual condition. Classical techniques are based on obtained precise measurements, and used to model variation among the observations. In fact, there are two types of uncertainty in data: variation among the observations and the fuzziness. Analysis techniques, which do not consider fuzziness and are only based on precise life time observations, lead to pseudo results. This study was aimed to examine the behavior of empirical acceleration functions using fuzzy lifetimes data. The results showed an increased fuzziness in the transformed life times as compare to the input data.

Keywords: acceleration function, accelerated life testing, fuzzy number, non-precise data

Procedia PDF Downloads 296
24621 Automatic Motion Trajectory Analysis for Dual Human Interaction Using Video Sequences

Authors: Yuan-Hsiang Chang, Pin-Chi Lin, Li-Der Jeng

Abstract:

Advance in techniques of image and video processing has enabled the development of intelligent video surveillance systems. This study was aimed to automatically detect moving human objects and to analyze events of dual human interaction in a surveillance scene. Our system was developed in four major steps: image preprocessing, human object detection, human object tracking, and motion trajectory analysis. The adaptive background subtraction and image processing techniques were used to detect and track moving human objects. To solve the occlusion problem during the interaction, the Kalman filter was used to retain a complete trajectory for each human object. Finally, the motion trajectory analysis was developed to distinguish between the interaction and non-interaction events based on derivatives of trajectories related to the speed of the moving objects. Using a database of 60 video sequences, our system could achieve the classification accuracy of 80% in interaction events and 95% in non-interaction events, respectively. In summary, we have explored the idea to investigate a system for the automatic classification of events for interaction and non-interaction events using surveillance cameras. Ultimately, this system could be incorporated in an intelligent surveillance system for the detection and/or classification of abnormal or criminal events (e.g., theft, snatch, fighting, etc.).

Keywords: motion detection, motion tracking, trajectory analysis, video surveillance

Procedia PDF Downloads 546
24620 Evaluating Alternative Structures for Prefix Trees

Authors: Feras Hanandeh, Izzat Alsmadi, Muhammad M. Kwafha

Abstract:

Prefix trees or tries are data structures that are used to store data or index of data. The goal is to be able to store and retrieve data by executing queries in quick and reliable manners. In principle, the structure of the trie depends on having letters in nodes at the different levels to point to the actual words in the leafs. However, the exact structure of the trie may vary based on several aspects. In this paper, we evaluated different structures for building tries. Using datasets of words of different sizes, we evaluated the different forms of trie structures. Results showed that some characteristics may impact significantly, positively or negatively, the size and the performance of the trie. We investigated different forms and structures for the trie. Results showed that using an array of pointers in each level to represent the different alphabet letters is the best choice.

Keywords: data structures, indexing, tree structure, trie, information retrieval

Procedia PDF Downloads 450
24619 Data Management System for Environmental Remediation

Authors: Elizaveta Petelina, Anton Sizo

Abstract:

Environmental remediation projects deal with a wide spectrum of data, including data collected during site assessment, execution of remediation activities, and environmental monitoring. Therefore, an appropriate data management is required as a key factor for well-grounded decision making. The Environmental Data Management System (EDMS) was developed to address all necessary data management aspects, including efficient data handling and data interoperability, access to historical and current data, spatial and temporal analysis, 2D and 3D data visualization, mapping, and data sharing. The system focuses on support of well-grounded decision making in relation to required mitigation measures and assessment of remediation success. The EDMS is a combination of enterprise and desktop level data management and Geographic Information System (GIS) tools assembled to assist to environmental remediation, project planning, and evaluation, and environmental monitoring of mine sites. EDMS consists of seven main components: a Geodatabase that contains spatial database to store and query spatially distributed data; a GIS and Web GIS component that combines desktop and server-based GIS solutions; a Field Data Collection component that contains tools for field work; a Quality Assurance (QA)/Quality Control (QC) component that combines operational procedures for QA and measures for QC; Data Import and Export component that includes tools and templates to support project data flow; a Lab Data component that provides connection between EDMS and laboratory information management systems; and a Reporting component that includes server-based services for real-time report generation. The EDMS has been successfully implemented for the Project CLEANS (Clean-up of Abandoned Northern Mines). Project CLEANS is a multi-year, multimillion-dollar project aimed at assessing and reclaiming 37 uranium mine sites in northern Saskatchewan, Canada. The EDMS has effectively facilitated integrated decision-making for CLEANS project managers and transparency amongst stakeholders.

Keywords: data management, environmental remediation, geographic information system, GIS, decision making

Procedia PDF Downloads 161
24618 An Efficient Approach for Speed up Non-Negative Matrix Factorization for High Dimensional Data

Authors: Bharat Singh Om Prakash Vyas

Abstract:

Now a day’s applications deal with High Dimensional Data have tremendously used in the popular areas. To tackle with such kind of data various approached has been developed by researchers in the last few decades. To tackle with such kind of data various approached has been developed by researchers in the last few decades. One of the problems with the NMF approaches, its randomized valued could not provide absolute optimization in limited iteration, but having local optimization. Due to this, we have proposed a new approach that considers the initial values of the decomposition to tackle the issues of computationally expensive. We have devised an algorithm for initializing the values of the decomposed matrix based on the PSO (Particle Swarm Optimization). Through the experimental result, we will show the proposed method converse very fast in comparison to other row rank approximation like simple NMF multiplicative, and ACLS techniques.

Keywords: ALS, NMF, high dimensional data, RMSE

Procedia PDF Downloads 340
24617 Control Power in Doubly Fed Induction Generator Wind Turbine with SVM Control Inverter

Authors: Zerzouri Nora, Benalia Nadia, Bensiali Nadia

Abstract:

This paper presents a grid-connected wind power generation scheme using Doubly Fed Induction Generator (DFIG). This can supply power at constant voltage and constant frequency with the rotor speed varying. This makes it suitable for variable speed wind energy application. The DFIG system consists of wind turbine, asynchronous wound rotor induction generator, and inverter with Space Vector Modulation (SVM) controller. In which the stator is connected directly to the grid and the rotor winding is in interface with rotor converter and grid converter. The use of back-to-back SVM converter in the rotor circuit results in low distortion current, reactive power control and operate at variable speed. Mathematical modeling of the DFIG is done in order to analyze the performance of the systems and they are simulated using MATLAB. The simulation results for the system are obtained and hence it shows that the system can operate at variable speed with low harmonic current distortion. The objective is to track and extract maximum power from the wind energy system and transfer it to the grid for useful work.

Keywords: Doubly Fed Induction Generator, Wind Energy Conversion Systems, Space Vector Modulation, distortion harmonics

Procedia PDF Downloads 482
24616 Integrating Time-Series and High-Spatial Remote Sensing Data Based on Multilevel Decision Fusion

Authors: Xudong Guan, Ainong Li, Gaohuan Liu, Chong Huang, Wei Zhao

Abstract:

Due to the low spatial resolution of MODIS data, the accuracy of small-area plaque extraction with a high degree of landscape fragmentation is greatly limited. To this end, the study combines Landsat data with higher spatial resolution and MODIS data with higher temporal resolution for decision-level fusion. Considering the importance of the land heterogeneity factor in the fusion process, it is superimposed with the weighting factor, which is to linearly weight the Landsat classification result and the MOIDS classification result. Three levels were used to complete the process of data fusion, that is the pixel of MODIS data, the pixel of Landsat data, and objects level that connect between these two levels. The multilevel decision fusion scheme was tested in two sites of the lower Mekong basin. We put forth a comparison test, and it was proved that the classification accuracy was improved compared with the single data source classification results in terms of the overall accuracy. The method was also compared with the two-level combination results and a weighted sum decision rule-based approach. The decision fusion scheme is extensible to other multi-resolution data decision fusion applications.

Keywords: image classification, decision fusion, multi-temporal, remote sensing

Procedia PDF Downloads 123
24615 Open-Loop Vector Control of Induction Motor with Space Vector Pulse Width Modulation Technique

Authors: Karchung, S. Ruangsinchaiwanich

Abstract:

This paper presents open-loop vector control method of induction motor with space vector pulse width modulation (SVPWM) technique. Normally, the closed loop speed control is preferred and is believed to be more accurate. However, it requires a position sensor to track the rotor position which is not desirable to use it for certain workspace applications. This paper exhibits the performance of three-phase induction motor with the simplest control algorithm without the use of a position sensor nor an estimation block to estimate rotor position for sensorless control. The motor stator currents are measured and are transformed to synchronously rotating (d-q-axis) frame by use of Clarke and Park transformation. The actual control happens in this frame where the measured currents are compared with the reference currents. The error signal is fed to a conventional PI controller, and the corrected d-q voltage is generated. The controller outputs are transformed back to three phase voltages and are fed to SVPWM block which generates PWM signal for the voltage source inverter. The open loop vector control model along with SVPWM algorithm is modeled in MATLAB/Simulink software and is experimented and validated in TMS320F28335 DSP board.

Keywords: electric drive, induction motor, open-loop vector control, space vector pulse width modulation technique

Procedia PDF Downloads 146
24614 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: behavior pattern, cooperative learning, data analyze, k-means clustering algorithm

Procedia PDF Downloads 186
24613 Combining Diffusion Maps and Diffusion Models for Enhanced Data Analysis

Authors: Meng Su

Abstract:

High-dimensional data analysis often presents challenges in capturing the complex, nonlinear relationships and manifold structures inherent to the data. This article presents a novel approach that leverages the strengths of two powerful techniques, Diffusion Maps and Diffusion Probabilistic Models (DPMs), to address these challenges. By integrating the dimensionality reduction capability of Diffusion Maps with the data modeling ability of DPMs, the proposed method aims to provide a comprehensive solution for analyzing and generating high-dimensional data. The Diffusion Map technique preserves the nonlinear relationships and manifold structure of the data by mapping it to a lower-dimensional space using the eigenvectors of the graph Laplacian matrix. Meanwhile, DPMs capture the dependencies within the data, enabling effective modeling and generation of new data points in the low-dimensional space. The generated data points can then be mapped back to the original high-dimensional space, ensuring consistency with the underlying manifold structure. Through a detailed example implementation, the article demonstrates the potential of the proposed hybrid approach to achieve more accurate and effective modeling and generation of complex, high-dimensional data. Furthermore, it discusses possible applications in various domains, such as image synthesis, time-series forecasting, and anomaly detection, and outlines future research directions for enhancing the scalability, performance, and integration with other machine learning techniques. By combining the strengths of Diffusion Maps and DPMs, this work paves the way for more advanced and robust data analysis methods.

Keywords: diffusion maps, diffusion probabilistic models (DPMs), manifold learning, high-dimensional data analysis

Procedia PDF Downloads 105
24612 A Security Cloud Storage Scheme Based Accountable Key-Policy Attribute-Based Encryption without Key Escrow

Authors: Ming Lun Wang, Yan Wang, Ning Ruo Sun

Abstract:

With the development of cloud computing, more and more users start to utilize the cloud storage service. However, there exist some issues: 1) cloud server steals the shared data, 2) sharers collude with the cloud server to steal the shared data, 3) cloud server tampers the shared data, 4) sharers and key generation center (KGC) conspire to steal the shared data. In this paper, we use advanced encryption standard (AES), hash algorithms, and accountable key-policy attribute-based encryption without key escrow (WOKE-AKP-ABE) to build a security cloud storage scheme. Moreover, the data are encrypted to protect the privacy. We use hash algorithms to prevent the cloud server from tampering the data uploaded to the cloud. Analysis results show that this scheme can resist conspired attacks.

Keywords: cloud storage security, sharing storage, attributes, Hash algorithm

Procedia PDF Downloads 389
24611 Vertical and Lateral Vibration Response for Corrugated Track Curves Supported on High-Density Polyethylene and Hytrel Rail Pads

Authors: B.M. Balekwa, D.V.V. Kallon, D.J. Fourie

Abstract:

Modal analysis is applied to establish the dynamic difference between vibration response of the rails supported on High Density Polyethylene (HDPE) and Hytrel/6358 rail pads. The experiment was conducted to obtain the results in the form of Frequency Response Functions (FRFs) in the vertical and lateral directions. Three antiresonance modes are seen in the vertical direction; one occurs at about 150 Hz when the rail resting on the Hytrel/6358 pad experiences a force mid-span. For the rail resting on this type of rail pad, no antiresonance occurs when the force is applied on the point of the rail that is resting on the pad and directly on top of a sleeper. The two antiresonance modes occur in a frequency range of 250 – 300 Hz in the vertical direction for the rail resting on HDPE pads. At resonance, the rail vibrates with a higher amplitude, but at antiresonance, the rail transmits vibration downwards to the sleepers. When the rail is at antiresonance, the stiffness of the rail pads play a vital role in terms of damping the vertical vibration to protect the sleepers. From the FRFs it is understood that the Hytrel/6358 rail pads perform better than the HDPE in terms of vertical response, given that at a lower frequency range of 0 – 300 Hz only one antiresonance mode was identified for vertical vibration of the rail supported on Hytrel/6358. This means the rail is at antiresonance only once within this frequency range and this is the only time when vibration is transmitted downwards.

Keywords: accelerance, FRF, rail corrugation, rail pad

Procedia PDF Downloads 175
24610 The Politics and Consequences of Decentralized Vocational Education: The Modified System of Vocational Studies in Ghana

Authors: Nkrumak Micheal Atta Ofori

Abstract:

The Vocational System is a decentralized Studies System implemented in Ghana as vocation studies strategy for grassroot that focuses on providing individuals with the specific skills, knowledge, and training necessary for a particular trade, craft, profession, or occupation. This article asks how devolution of vocational studies to local level authorities produces responsive and accountable representation and sustainable vocational learning under the vocational Studies System. It focuses on two case studies: Asokore Mampong and Atwima kwanwoma Municipal. Then, the paper asks how senior high school are developing new material and social practices around the vocational studies System to rebuild their livelihoods and socio-economic wellbeing. Here, the article focusses on Kumasi District, drawing lessons for the two other cases. The article shows how the creation of representative groups under the Vocational Studies System provides the democratic space necessary for effective representation of community aspirations. However, due to elite capture, the interests of privilege few people are promoted. The state vocational training fails to devolve relevant and discretionary resources to local teachers and do not follow the prescribed policy processes of the Vocational Studies System. Hence, local teachers are unable to promote responsive and accountable representation. Rural communities continue to show great interest in the Vocational Studies System, but the interest is bias towards gaining access to vocational training schools for advancing studies. There is no active engagement of the locals in vocational training, and hence, the Vocational Studies System exists only to promote individual interest of communities. This article shows how ‘failed’ interventions can gain popular support for rhetoric and individual gains.

Keywords: vocational studies system, devolution of vocational studies, local-level authorities, senior high schools and vocational learning, community aspirations and representation

Procedia PDF Downloads 76
24609 Psycho-Social Associates of Deliberate Self-Harm in Rural Sri Lanka

Authors: P. H. G. J. Pushpakumara, A. M. P. Adikari, S. U. B. Tennakoon, Ranil Abeysinghe, Andrew Dawson

Abstract:

Introduction: Deliberate Self-harm (DSH) is a global public health problem. Since 1950, suicide rates in Sri Lanka are among the highest national rates in the world. It has become an increasingly common response to emotional distress in young adults. However, it remains unclear the reason for this occurrence. Objectives: The descriptive component of this study was conducted to identify of epidemiological pattern of DSH and suicide in Kurunegala District (KD). Assessment of association between DSH socio-cultural, economical and psychological factors were the objectives of the case control component. Methods: Prospective data collection of DSH and suicide was conducted at all (46) hospitals and all (28) police stations in the KD for thirty six months, from 1st January 2011, as the descriptive component. Case control component was conducted at T.H. Kurunegala (THK) for eighteen months duration, from 1st July 2011. Cases (n=439) were randomly selected from a block of 7 consecutively admitted consenting DSP patients using a computer program. Age, sex and residential divisional secretariat division one to one matched, individuals were randomly selected as controls from patients presented to Out Patient Department. Structured Clinical Interview for DSM-IV-TR Axis I and II Disorders was used to diagnose psychiatric disorders. Validated tools were used to measure other constructs. Results: Suicide incidences in KD were, 21.6, 20.7 and 24.3 per 100,000 population in 2011- 2013 (Male:female ratio 5.7, 4.4 and 6.4). 60% of suicides were due to poisoning. DSP incidences were 205.4, 248.3 and 202.5 per 100,000 population in 2011- 2013. Highest age standardized male DSP incidence reported in 20-24 years (769.6/100,000) and female in 15-19 years (1304.0/100,000). Bing married (age >25 years), monthly family income less than Rs.30,000, not achieving G.C.E (O/L) qualifications, a school drop-out, not in a permanent position in occupation, being a manual and an own account worker, were significantly associated with DSP. Perceiving the quality of relationship as bad or very bad with parents, spouse/ girlfriend/ boyfriend and sibling as associated with 8, 40 and 10.5 times higher risk respectively. Feeling and experiences of neglect, other emotional abuses, feeling of insecurity with the family, in child hood, and having a contact history carried an excess risk for DSP. Cases were less likely to seek help. Further, they had significantly lower scores for life skills and life skills application ability. 25.6% DSH patients had DSM TR axis-I and/or TR axis-II disorder. The presence of psychiatric disorder carried 7.7 (95% CI 4.3 – 13.8) times higher risk for DSP. Conclusion: In general, pattern of DSH and suicide is, unique, different from developed, upper and middle income and lower and middle income countries. It is a learned way of expressing emotions in difficult situations of vulnerable people.

Keywords: deliberate self-harm, help-seeking, life-skills, mental- health, psychological, social, suicide

Procedia PDF Downloads 226
24608 The Study on Life of Valves Evaluation Based on Tests Data

Authors: Binjuan Xu, Qian Zhao, Ping Jiang, Bo Guo, Zhijun Cheng, Xiaoyue Wu

Abstract:

Astronautical valves are key units in engine systems of astronautical products; their reliability will influence results of rocket or missile launching, even lead to damage to staff and devices on the ground. Besides failure in engine system may influence the hitting accuracy and flight shot of missiles. Therefore high reliability is quite essential to astronautical products. There are quite a few literature doing research based on few failure test data to estimate valves’ reliability, thus this paper proposed a new method to estimate valves’ reliability, according to the corresponding tests of different failure modes, this paper takes advantage of tests data which acquired from temperature, vibration, and action tests to estimate reliability in every failure modes, then this paper has regarded these three kinds of tests as three stages in products’ process to integrate these results to acquire valves’ reliability. Through the comparison of results achieving from tests data and simulated data, the results have illustrated how to obtain valves’ reliability based on the few failure data with failure modes and prove that the results are effective and rational.

Keywords: censored data, temperature tests, valves, vibration tests

Procedia PDF Downloads 343
24607 Development of Energy Benchmarks Using Mandatory Energy and Emissions Reporting Data: Ontario Post-Secondary Residences

Authors: C. Xavier Mendieta, J. J McArthur

Abstract:

Governments are playing an increasingly active role in reducing carbon emissions, and a key strategy has been the introduction of mandatory energy disclosure policies. These policies have resulted in a significant amount of publicly available data, providing researchers with a unique opportunity to develop location-specific energy and carbon emission benchmarks from this data set, which can then be used to develop building archetypes and used to inform urban energy models. This study presents the development of such a benchmark using the public reporting data. The data from Ontario’s Ministry of Energy for Post-Secondary Educational Institutions are being used to develop a series of building archetype dynamic building loads and energy benchmarks to fill a gap in the currently available building database. This paper presents the development of a benchmark for college and university residences within ASHRAE climate zone 6 areas in Ontario using the mandatory disclosure energy and greenhouse gas emissions data. The methodology presented includes data cleaning, statistical analysis, and benchmark development, and lessons learned from this investigation are presented and discussed to inform the development of future energy benchmarks from this larger data set. The key findings from this initial benchmarking study are: (1) the importance of careful data screening and outlier identification to develop a valid dataset; (2) the key features used to develop a model of the data are building age, size, and occupancy schedules and these can be used to estimate energy consumption; and (3) policy changes affecting the primary energy generation significantly affected greenhouse gas emissions, and consideration of these factors was critical to evaluate the validity of the reported data.

Keywords: building archetypes, data analysis, energy benchmarks, GHG emissions

Procedia PDF Downloads 306
24606 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 288
24605 Changing Arbitrary Data Transmission Period by Using Bluetooth Module on Gas Sensor Node of Arduino Board

Authors: Hiesik Kim, Yong-Beom Kim, Jaheon Gu

Abstract:

Internet of Things (IoT) applications are widely serviced and spread worldwide. Local wireless data transmission technique must be developed to rate up with some technique. Bluetooth wireless data communication is wireless technique is technique made by Special Inter Group (SIG) using the frequency range 2.4 GHz, and it is exploiting Frequency Hopping to avoid collision with a different device. To implement experiment, equipment for experiment transmitting measured data is made by using Arduino as open source hardware, gas sensor, and Bluetooth module and algorithm controlling transmission rate is demonstrated. Experiment controlling transmission rate also is progressed by developing Android application receiving measured data, and controlling this rate is available at the experiment result. It is important that in the future, improvement for communication algorithm be needed because a few error occurs when data is transferred or received.

Keywords: Arduino, Bluetooth, gas sensor, IoT, transmission

Procedia PDF Downloads 275
24604 Real-Time Sensor Fusion for Mobile Robot Localization in an Oil and Gas Refinery

Authors: Adewole A. Ayoade, Marshall R. Sweatt, John P. H. Steele, Qi Han, Khaled Al-Wahedi, Hamad Karki, William A. Yearsley

Abstract:

Understanding the behavioral characteristics of sensors is a crucial step in fusing data from several sensors of different types. This paper introduces a practical, real-time approach to integrate heterogeneous sensor data to achieve higher accuracy than would be possible from any one individual sensor in localizing a mobile robot. We use this approach in both indoor and outdoor environments and it is especially appropriate for those environments like oil and gas refineries due to their sparse and featureless nature. We have studied the individual contribution of each sensor data to the overall combined accuracy achieved from the fusion process. A Sequential Update Extended Kalman Filter(EKF) using validation gates was used to integrate GPS data, Compass data, WiFi data, Inertial Measurement Unit(IMU) data, Vehicle Velocity, and pose estimates from Fiducial marker system. Results show that the approach can enable a mobile robot to navigate autonomously in any environment using a priori information.

Keywords: inspection mobile robot, navigation, sensor fusion, sequential update extended Kalman filter

Procedia PDF Downloads 469
24603 Energy Efficient Massive Data Dissemination Through Vehicle Mobility in Smart Cities

Authors: Salman Naseer

Abstract:

One of the main challenges of operating a smart city (SC) is collecting the massive data generated from multiple data sources (DS) and to transmit them to the control units (CU) for further data processing and analysis. These ever-increasing data demands require not only more and more capacity of the transmission channels but also results in resource over-provision to meet the resilience requirements, thus the unavoidable waste because of the data fluctuations throughout the day. In addition, the high energy consumption (EC) and carbon discharges from these data transmissions posing serious issues to the environment we live in. Therefore, to overcome the issues of intensive EC and carbon emissions (CE) of massive data dissemination in Smart Cities, we propose an energy efficient and carbon reduction approach by utilizing the daily mobility of the existing vehicles as an alternative communications channel to accommodate the data dissemination in smart cities. To illustrate the effectiveness and efficiency of our approach, we take the Auckland City in New Zealand as an example, assuming massive data generated by various sources geographically scattered throughout the Auckland region to the control centres located in city centre. The numerical results show that our proposed approach can provide up to 5 times lower delay as transferring the large volume of data by utilizing the existing daily vehicles’ mobility than the conventional transmission network. Moreover, our proposed approach offers about 30% less EC and CE than that of conventional network transmission approach.

Keywords: smart city, delay tolerant network, infrastructure offloading, opportunistic network, vehicular mobility, energy consumption, carbon emission

Procedia PDF Downloads 140
24602 Reality Shock Affecting the Motivation to Work of New Flight Attendants: An Exploratory Qualitative Study of Flight Attendants Who Left Their Jobs Early

Authors: Hiromi Takafuji

Abstract:

Flight attendant:FA is one of popular occupation, especially in Asian countries, and the decision to be hired is made after clearing a high multiplier. On the other hand, immediately after joining the company, they experience unique stress due to the fact that the organization requires them to perform security and customer service duties in a highly specialized and limited space and time. As a result, despite the high level of difficulty in joining the company, many new recruits retire early at a high rate. It is commonly said that 30% of new graduates leave the company within three years in Japan and speculated that Reality Shock:RS is one of the causes of this. RS is that newcomers experience refers to the stress caused by the difference between pre-employment expectations and post-employment reality. The purpose of this study was to elucidate the mechanism by which the expertise required of new FA and the expectation of expertise held by each of them cause reality shock, which affects motivation and the decision to leave. This study identified the professionalism required of new FA and the impact of that expectation for professionalism on RS through an exploratory study of the experiences and psychological processes of FA who left within three years. Semi-structured in-depth interviews were conducted with five FA who left a major Japanese airline at an early stage, and their experiences were categorized, integrated, and classified by qualitative content analysis. They were chosen under a number of controlled conditions. Then two major findings emerged: first, that pre-employment expectations defining RS were hierarchical, and second, that training amplified expectations of professionalism, which strongly influenced early turnover. From these, this study generated a model of RS generative process model of FA that expectations are hierarchical and influential. This could contribute to the prevention of mental health deterioration by reality shock among new FA.

Keywords: reality shock, flight attendant, early turnover, qualitative study

Procedia PDF Downloads 81
24601 Exploring Data Stewardship in Fog Networking Using Blockchain Algorithm

Authors: Ruvaitha Banu, Amaladhithyan Krishnamoorthy

Abstract:

IoT networks today solve various consumer problems, from home automation systems to aiding in driving autonomous vehicles with the exploration of multiple devices. For example, in an autonomous vehicle environment, multiple sensors are available on roads to monitor weather and road conditions and interact with each other to aid the vehicle in reaching its destination safely and timely. IoT systems are predominantly dependent on the cloud environment for data storage, and computing needs that result in latency problems. With the advent of Fog networks, some of this storage and computing is pushed to the edge/fog nodes, saving the network bandwidth and reducing the latency proportionally. Managing the data stored in these fog nodes becomes crucial as it might also store sensitive information required for a certain application. Data management in fog nodes is strenuous because Fog networks are dynamic in terms of their availability and hardware capability. It becomes more challenging when the nodes in the network also live a short span, detaching and joining frequently. When an end-user or Fog Node wants to access, read, or write data stored in another Fog Node, then a new protocol becomes necessary to access/manage the data stored in the fog devices as a conventional static way of managing the data doesn’t work in Fog Networks. The proposed solution discusses a protocol that acts by defining sensitivity levels for the data being written and read. Additionally, a distinct data distribution and replication model among the Fog nodes is established to decentralize the access mechanism. In this paper, the proposed model implements stewardship towards the data stored in the Fog node using the application of Reinforcement Learning so that access to the data is determined dynamically based on the requests.

Keywords: IoT, fog networks, data stewardship, dynamic access policy

Procedia PDF Downloads 59
24600 An Automated Approach to Consolidate Galileo System Availability

Authors: Marie Bieber, Fabrice Cosson, Olivier Schmitt

Abstract:

Europe's Global Navigation Satellite System, Galileo, provides worldwide positioning and navigation services. The satellites in space are only one part of the Galileo system. An extensive ground infrastructure is essential to oversee the satellites and ensure accurate navigation signals. High reliability and availability of the entire Galileo system are crucial to continuously provide positioning information of high quality to users. Outages are tracked, and operational availability is regularly assessed. A highly flexible and adaptive tool has been developed to automate the Galileo system availability analysis. Not only does it enable a quick availability consolidation, but it also provides first steps towards improving the data quality of maintenance tickets used for the analysis. This includes data import and data preparation, with a focus on processing strings used for classification and identifying faulty data. Furthermore, the tool allows to handle a low amount of data, which is a major constraint when the aim is to provide accurate statistics.

Keywords: availability, data quality, system performance, Galileo, aerospace

Procedia PDF Downloads 165
24599 A Study of the Trap of Multi-Homing in Customers: A Comparative Case Study of Digital Payments

Authors: Shari S. C. Shang, Lynn S. L. Chiu

Abstract:

In the digital payment market, some consumers use only one payment wallet while many others play multi-homing with a variety of payment services. With the diffusion of new payment systems, we examined the determinants of the adoption of multi-homing behavior. This study aims to understand how a digital payment provider dynamically expands business touch points with cross-business strategies to enrich the digital ecosystem and avoid the trap of multi-homing in customers. By synthesizing platform ecosystem literature, we constructed a two-dimensional research framework with one determinant of user digital behavior from offline to online intentions and the other determinant of digital payment touch points from convenient accessibility to cross-business platforms. To explore on a broader scale, we selected 12 digital payments from 5 countries of UK, US, Japan, Korea, and Taiwan. With the interplays of user digital behaviors and payment touch points, we group the study cases into four types: (1) Channel Initiated: users originated from retailers with high access to in-store shopping with face-to-face guidance for payment adoption. Providers offer rewards for customer loyalty and secure the retailer’s efficient cash flow management. (2) Social Media Dependent: users usually are digital natives with high access to social media or the internet who shop and pay digitally. Providers might not own physical or online shops but are licensed to aggregate money flows through virtual ecosystems. (3) Early Life Engagement: digital banks race to capture the next generation from popularity to profitability. This type of payment aimed to give children a taste of financial freedom while letting parents track their spending. Providers are to capitalize on the digital payment and e-commerce boom and hold on to new customers into adulthood. (4) Traditional Banking: plastic credit cards are purposely designed as a control group to track the evolvement of business strategies in digital payments. Traditional credit card users may follow the bank’s digital strategy to land on different types of digital wallets or mostly keep using plastic credit cards. This research analyzed business growth models and inter-firms’ coopetition strategies of the selected cases. Results of the multiple case analysis reveal that channel initiated payments bundled rewards with retailer’s business discount for recurring purchases. They also extended other financial services, such as insurance, to fulfill customers’ new demands. Contrastively, social media dependent payments developed new usages and new value creation, such as P2P money transfer through network effects among the virtual social ties, while early life engagements offer virtual banking products to children who are digital natives but overlooked by incumbents. It has disrupted the banking business domains in preparation for the metaverse economy. Lastly, the control group of traditional plastic credit cards has gradually converted to a BaaS (banking as a service) model depending on customers’ preferences. The multi-homing behavior is not avoidable in digital payment competitions. Payment providers may encounter multiple waves of a multi-homing threat after a short period of success. A dynamic cross-business collaboration strategy should be explored to continuously evolve the digital ecosystems and allow users for a broader shopping experience and continual usage.

Keywords: digital payment, digital ecosystems, multihoming users, cross business strategy, user digital behavior intentions

Procedia PDF Downloads 158
24598 A Model of the Universe without Expansion of Space

Authors: Jia-Chao Wang

Abstract:

A model of the universe without invoking space expansion is proposed to explain the observed redshift-distance relation and the cosmic microwave background radiation (CMB). The main hypothesized feature of the model is that photons traveling in space interact with the CMB photon gas. This interaction causes the photons to gradually lose energy through dissipation and, therefore, experience redshift. The interaction also causes some of the photons to be scattered off their track toward an observer and, therefore, results in beam intensity attenuation. As observed, the CMB exists everywhere in space and its photon density is relatively high (about 410 per cm³). The small average energy of the CMB photons (about 6.3×10⁻⁴ eV) can reduce the energies of traveling photons gradually and will not alter their momenta drastically as in, for example, Compton scattering, to totally blur the images of distant objects. An object moving through a thermalized photon gas, such as the CMB, experiences a drag. The cause is that the object sees a blue shifted photon gas along the direction of motion and a redshifted one in the opposite direction. An example of this effect can be the observed CMB dipole: The earth travels at about 368 km/s (600 km/s) relative to the CMB. In the all-sky map from the COBE satellite, radiation in the Earth's direction of motion appears 0.35 mK hotter than the average temperature, 2.725 K, while radiation on the opposite side of the sky is 0.35 mK colder. The pressure of a thermalized photon gas is given by Pγ = Eγ/3 = αT⁴/3, where Eγ is the energy density of the photon gas and α is the Stefan-Boltzmann constant. The observed CMB dipole, therefore, implies a pressure difference between the two sides of the earth and results in a CMB drag on the earth. By plugging in suitable estimates of quantities involved, such as the cross section of the earth and the temperatures on the two sides, this drag can be estimated to be tiny. But for a photon traveling at the speed of light, 300,000 km/s, the drag can be significant. In the present model, for the dissipation part, it is assumed that a photon traveling from a distant object toward an observer has an effective interaction cross section pushing against the pressure of the CMB photon gas. For the attenuation part, the coefficient of the typical attenuation equation is used as a parameter. The values of these two parameters are determined by fitting the 748 µ vs. z data points compiled from 643 supernova and 105 γ-ray burst observations with z values up to 8.1. The fit is as good as that obtained from the lambda cold dark matter (ΛCDM) model using online cosmological calculators and Planck 2015 results. The model can be used to interpret Hubble's constant, Olbers' paradox, the origin and blackbody nature of the CMB radiation, the broadening of supernova light curves, and the size of the observable universe.

Keywords: CMB as the lowest energy state, model of the universe, origin of CMB in a static universe, photon-CMB photon gas interaction

Procedia PDF Downloads 133