Search results for: solar collector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1527

Search results for: solar collector

477 Analyzing Temperature and Pressure Performance of a Natural Air-Circulation System

Authors: Emma S. Bowers

Abstract:

Perturbations in global environments and temperatures have heightened the urgency of creating cost-efficient, energy-neutral building techniques. Structural responses to this thermal crisis have included designs (including those of the building standard PassivHaus) with airtightness, window placement, insulation, solar orientation, shading, and heat-exchange ventilators as potential solutions or interventions. Limitations in the predictability of the circulation of cooled air through the ambient temperature gradients throughout a structure are one of the major obstacles facing these enhanced building methods. A diverse range of air-cooling devices utilizing varying technologies is implemented around the world. Many of them worsen the problem of climate change by consuming energy. Using natural ventilation principles of air buoyancy and density to circulate fresh air throughout a building with no energy input can combat these obstacles. A unique prototype of an energy-neutral air-circulation system was constructed in order to investigate potential temperature and pressure gradients related to the stack effect (updraft of air through a building due to changes in air pressure). The stack effect principle maintains that since warmer air rises, it will leave an area of low pressure that cooler air will rush in to fill. The result is that warmer air will be expelled from the top of the building as cooler air is directed through the bottom, creating an updraft. Stack effect can be amplified by cooling the air near the bottom of a building and heating the air near the top. Using readily available, mostly recyclable or biodegradable materials, an insulated building module was constructed. A tri-part construction model was utilized: a subterranean earth-tube heat exchanger constructed of PVC pipe and placed in a horizontally oriented trench, an insulated, airtight cube aboveground to represent a building, and a solar chimney (painted black to increase heat in the out-going air). Pressure and temperature sensors were placed at four different heights within the module as well as outside, and data was collected for a period of 21 days. The air pressures and temperatures over the course of the experiment were compared and averaged. The promise of this design is that it represents a novel approach which directly addresses the obstacles of air flow and expense, using the physical principle of stack effect to draw a continuous supply of fresh air through the structure, using low-cost and readily available materials (and zero manufactured energy). This design serves as a model for novel approaches to creating temperature controlled buildings using zero energy and opens the door for future research into the effects of increasing module scale, increasing length and depth of the earth tube, and shading the building. (Model can be provided).

Keywords: air circulation, PassivHaus, stack effect, thermal gradient

Procedia PDF Downloads 133
476 Growth and Characterization of Cuprous Oxide (Cu2O) Nanorods by Reactive Ion Beam Sputter Deposition (Ibsd) Method

Authors: Assamen Ayalew Ejigu, Liang-Chiun Chao

Abstract:

In recent semiconductor and nanotechnology, quality material synthesis, proper characterizations, and productions are the big challenges. As cuprous oxide (Cu2O) is a promising semiconductor material for photovoltaic (PV) and other optoelectronic applications, this study was aimed at to grow and characterize high quality Cu2O nanorods for the improvement of the efficiencies of thin film solar cells and other potential applications. In this study, well-structured cuprous oxide (Cu2O) nanorods were successfully fabricated using IBSD method in which the Cu2O samples were grown on silicon substrates with a substrate temperature of 400°C in an IBSD chamber of pressure of 4.5 x 10-5 torr using copper as a target material. Argon, and oxygen gases were used as a sputter and reactive gases, respectively. The characterization of the Cu2O nanorods (NRs) were done in comparison with Cu2O thin film (TF) deposited with the same method but with different Ar:O2 flow rates. With Ar:O2 ratio of 9:1 single phase pure polycrystalline Cu2O NRs with diameter of ~500 nm and length of ~4.5 µm were grow. Increasing the oxygen flow rates, pure single phase polycrystalline Cu2O thin film (TF) was found at Ar:O2 ratio of 6:1. The field emission electron microscope (FE-SEM) measurements showed that both samples have smooth morphologies. X-ray diffraction and Rama scattering measurements reveals the presence of single phase Cu2O in both samples. The differences in Raman scattering and photoluminescence (PL) bands of the two samples were also investigated and the results showed us there are differences in intensities, in number of bands and in band positions. Raman characterization shows that the Cu2O NRs sample has pronounced Raman band intensities, higher numbers of Raman bands than the Cu2O TF which has only one second overtone Raman signal at 2 (217 cm-1). The temperature dependent photoluminescence (PL) spectra measurements, showed that the defect luminescent band centered at 720 nm (1.72 eV) is the dominant one for the Cu2O NRs and the 640 nm (1.937 eV) band was the only PL band observed from the Cu2O TF. The difference in optical and structural properties of the samples comes from the oxygen flow rate change in the process window of the samples deposition. This gave us a roadmap for further investigation of the electrical and other optical properties for the tunable fabrication of the Cu2O nano/micro structured sample for the improvement of the efficiencies of thin film solar cells in addition to other potential applications. Finally, the novel morphologies, excellent structural and optical properties seen exhibits the grown Cu2O NRs sample has enough quality to be used in further research of the nano/micro structured semiconductor materials.

Keywords: defect levels, nanorods, photoluminescence, Raman modes

Procedia PDF Downloads 208
475 Evaluation of Marwit Rod El Leqah Quartz Deposits As A Strategic Source of High Purity Quartz

Authors: Suzan Sami Ibrahim, Mohamed Gad Shahien, Ali Quarny Seliem, Mostafa Ragab Abukhadra

Abstract:

Pegmatite quartz deposits of Marwit Rod El Leqah area classify as medium purity quartz with 99.575 % average SiO2 content and therefore do not match the requirements of high technical applications (99.8 % SiO2 for solar cells, 99.8% SiO2 for electronics). Petrographic field and petrographic investigations reveal that, the reduction of the silica content attributed mainly to impurities of iron oxide, muscovite, rutile, orthoclase, granitic rafts and fluid inclusions. Such impurities resulted in raising Fe2O3, Al2O3, MgO, CaO, K2O and Na2O relative to the silica content. Structural impurities are the main source of trace elements in the quartz samples.

Keywords: High purity quartz, High-tech applications, solid impurities, structural impurities

Procedia PDF Downloads 473
474 Structural Changes Induced in Graphene Oxide Film by Low Energy Ion Beam Irradiation

Authors: Chetna Tyagi, Ambuj Tripathi, Devesh Avasthi

Abstract:

Graphene oxide consists of sp³ hybridization along with sp² hybridization due to the presence of different oxygen-containing functional groups on its edges and basal planes. However, its sp³ / sp² hybridization can be tuned by various methods to utilize it in different applications, like transistors, solar cells and biosensors. Ion beam irradiation can also be one of the methods to optimize sp² and sp³ hybridization ratio for its desirable properties. In this work, graphene oxide films were irradiated with 100 keV Argon ions at different fluences varying from 10¹³ to 10¹⁶ ions/cm². Synchrotron X-ray diffraction measurements showed an increase in crystallinity at the low fluence of 10¹³ ions/cm². Raman spectroscopy performed on irradiated samples determined the defects induced by the ion beam qualitatively. Also, identification of different groups and their removal with different fluences was done using Fourier infrared spectroscopy technique.

Keywords: graphene oxide, ion beam irradiation, spectroscopy, X-ray diffraction

Procedia PDF Downloads 107
473 Freshwater Pinch Analysis for Optimal Design of the Photovoltaic Powered-Pumping System

Authors: Iman Janghorban Esfahani

Abstract:

Due to the increased use of irrigation in agriculture, the importance and need for highly reliable water pumping systems have significantly increased. The pumping of the groundwater is essential to provide water for both drip and furrow irrigation to increase the agricultural yield, especially in arid regions that suffer from scarcities of surface water. The most common irrigation pumping systems (IPS) consume conventional energies through the use of electric motors and generators or connecting to the electricity grid. Due to the shortage and transportation difficulties of fossil fuels, and unreliable access to the electricity grid, especially in the rural areas, and the adverse environmental impacts of fossil fuel usage, such as greenhouse gas (GHG) emissions, the need for renewable energy sources such as photovoltaic systems (PVS) as an alternative way of powering irrigation pumping systems is urgent. Integration of the photovoltaic systems with irrigation pumping systems as the Photovoltaic Powered-Irrigation Pumping System (PVP-IPS) can avoid fossil fuel dependency and the subsequent greenhouse gas emissions, as well as ultimately lower energy costs and improve efficiency, which made PVP-IPS systems as an environmentally and economically efficient solution for agriculture irrigation in every region. The greatest problem faced by integration of PVP with IPS systems is matching the intermittence of the energy supply with the dynamic water demand. The best solution to overcome the intermittence is to incorporate a storage system into the PVP-IPS to provide water-on-demand as a highly reliable stand-alone irrigation pumping system. The water storage tank (WST) is the most common storage device for PVP-IPS systems. In the integrated PVP-IPS with a water storage tank (PVP-IPS-WST), a water storage tank stores the water pumped by the IPS in excess of the water demand and then delivers it when demands are high. The Freshwater pinch analysis (FWaPA) as an alternative to mathematical modeling was used by other researchers for retrofitting the off-grid battery less photovoltaic-powered reverse osmosis system. However, the Freshwater pinch analysis has not been used to integrate the photovoltaic systems with irrigation pumping system with water storage tanks. In this study, FWaPA graphical and numerical tools were used for retrofitting an existing PVP-IPS system located in Salahadin, Republic of Iraq. The plant includes a 5 kW submersible water pump and 7.5 kW solar PV system. The Freshwater Composite Curve as the graphical tool and Freashwater Storage Cascade Table as the numerical tool were constructed to determine the minimum required outsourced water during operation, optimal amount of delivered electricity to the water pump, and optimal size of the water storage tank for one-year operation data. The results of implementing the FWaPA on the case study show that the PVP-IPS system with a WST as the reliable system can reduce outsourced water by 95.41% compare to the PVP-IPS system without storage tank.

Keywords: irrigation, photovoltaic, pinch analysis, pumping, solar energy

Procedia PDF Downloads 114
472 Photo-Thermal Degradation Analysis of Single Junction Amorphous Silicon Solar Module Eva Encapsulation

Authors: Gilbert O. Osayemwenre, Meyer L. Edson

Abstract:

Ethylene vinyl acetate (EVA) encapsulation degradation affects the performance of photovoltaic (PV) module. Hotspot formation causes the EVA encapsulation to undergo photothermal deterioration and molecular breakdown by UV radiation. This leads to diffusion of chemical particles into other layers. During outdoor deployment, the EVA encapsulation in the affect region loses its adhesive strength, when this happen the affected region layer undergoes rapid delamination. The presence of photo-thermal degradation is detrimental to PV modules as it causes both optical and thermal degradation. Also, it enables the encapsulant to be more susceptible to chemicals substance and moisture. Our findings show a high concentration of Sodium, Phosphorus and Aluminium which originate from the glass substrate, cell emitter and back contact respectively.

Keywords: ethylene vinyl acetate (EVA), encapsulation, photo-thermal degradation, thermogravimetric analysis (TGA), scanning probe microscope (SPM)

Procedia PDF Downloads 280
471 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles

Authors: N. Soli, B. Chaouachi, M. Bourouis

Abstract:

We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.

Keywords: absorption, DAR cycle, diffusion, propyléne

Procedia PDF Downloads 255
470 Hygro-Thermal Modelling of Timber Decks

Authors: Stefania Fortino, Petr Hradil, Timo Avikainen

Abstract:

Timber bridges have an excellent environmental performance, are economical, relatively easy to build and can have a long service life. However, the durability of these bridges is the main problem because of their exposure to outdoor climate conditions. The moisture content accumulated in wood for long periods, in combination with certain temperatures, may cause conditions suitable for timber decay. In addition, moisture content variations affect the structural integrity, serviceability and loading capacity of timber bridges. Therefore, the monitoring of the moisture content in wood is important for the durability of the material but also for the whole superstructure. The measurements obtained by the usual sensor-based techniques provide hygro-thermal data only in specific locations of the wood components. In this context, the monitoring can be assisted by numerical modelling to get more information on the hygro-thermal response of the bridges. This work presents a hygro-thermal model based on a multi-phase moisture transport theory to predict the distribution of moisture content, relative humidity and temperature in wood. Below the fibre saturation point, the multi-phase theory simulates three phenomena in cellular wood during moisture transfer, i.e., the diffusion of water vapour in the pores, the sorption of bound water and the diffusion of bound water in the cell walls. In the multi-phase model, the two water phases are separated, and the coupling between them is defined through a sorption rate. Furthermore, an average between the temperature-dependent adsorption and desorption isotherms is used. In previous works by some of the authors, this approach was found very suitable to study the moisture transport in uncoated and coated stress-laminated timber decks. Compared to previous works, the hygro-thermal fluxes on the external surfaces include the influence of the absorbed solar radiation during the time and consequently, the temperatures on the surfaces exposed to the sun are higher. This affects the whole hygro-thermal response of the timber component. The multi-phase model, implemented in a user subroutine of Abaqus FEM code, provides the distribution of the moisture content, the temperature and the relative humidity in a volume of the timber deck. As a case study, the hygro-thermal data in wood are collected from the ongoing monitoring of the stress-laminated timber deck of Tapiola Bridge in Finland, based on integrated humidity-temperature sensors and the numerical results are found in good agreement with the measurements. The proposed model, used to assist the monitoring, can contribute to reducing the maintenance costs of bridges, as well as the cost of instrumentation, and increase safety.

Keywords: moisture content, multi-phase models, solar radiation, timber decks, FEM

Procedia PDF Downloads 143
469 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.

Procedia PDF Downloads 34
468 Implementation of Ecological and Energy-Efficient Building Concepts

Authors: Robert Wimmer, Soeren Eikemeier, Michael Berger, Anita Preisler

Abstract:

A relatively large percentage of energy and resource consumption occurs in the building sector. This concerns the production of building materials, the construction of buildings and also the energy consumption during the use phase. Therefore, the overall objective of this EU LIFE project “LIFE Cycle Habitation” (LIFE13 ENV/AT/000741) is to demonstrate innovative building concepts that significantly reduce CO₂emissions, mitigate climate change and contain a minimum of grey energy over their entire life cycle. The project is being realised with the contribution of the LIFE financial instrument of the European Union. The ultimate goal is to design and build prototypes for carbon-neutral and “LIFE cycle”-oriented residential buildings and make energy-efficient settlements the standard of tomorrow in line with the EU 2020 objectives. To this end, a resource and energy-efficient building compound is being built in Böheimkirchen, Lower Austria, which includes 6 living units and a community area as well as 2 single family houses with a total usable floor surface of approximately 740 m². Different innovative straw bale construction types (load bearing and pre-fabricated non loadbearing modules) together with a highly innovative energy-supply system, which is based on the maximum use of thermal energy for thermal energy services, are going to be implemented. Therefore only renewable resources and alternative energies are used to generate thermal as well as electrical energy. This includes the use of solar energy for space heating, hot water and household appliances like dishwasher or washing machine, but also a cooking place for the community area operated with thermal oil as heat transfer medium on a higher temperature level. Solar collectors in combination with a biomass cogeneration unit and photovoltaic panels are used to provide thermal and electric energy for the living units according to the seasonal demand. The building concepts are optimised by support of dynamic simulations. A particular focus is on the production and use of modular prefabricated components and building parts made of regionally available, highly energy-efficient, CO₂-storing renewable materials like straw bales. The building components will be produced in collaboration by local SMEs that are organised in an efficient way. The whole building process and results are monitored and prepared for knowledge transfer and dissemination including a trial living in the residential units to test and monitor the energy supply system and to involve stakeholders into evaluation and dissemination of the applied technologies and building concepts. The realised building concepts should then be used as templates for a further modular extension of the settlement in a second phase.

Keywords: energy-efficiency, green architecture, renewable resources, sustainable building

Procedia PDF Downloads 131
467 Characterization the Tin Sulfide Thin Films Prepared by Spray Ultrasonic

Authors: A. Attaf A., I. Bouhaf Kharkhachi

Abstract:

Spray ultrasonic deposition technique of tin disulfide (SnS2) thin films know wide application due to their adequate physicochemical properties for microelectronic applications and especially for solar cells. SnS2 film was deposited by spray ultrasonic technique, on pretreated glass substrates at well-determined conditions.The effect of SnS2 concentration on different optical properties of SnS2 Thin films, such us MEB, XRD, and UV spectroscopy visible spectrum was investigated. MEB characterization technique shows that the morphology of this films is uniform, compact and granular. x-ray diffraction study detects the best growth crystallinity in hexagonal structure with preferential plan (001). The results of UV spectroscopy visible spectrum show that films deposited at 0.1 mol/l is large transmittance greater than 25% in the visible region.The band gap energy is 2.54 Ev for molarity 0.1 mol/l.

Keywords: MEB, thin disulfide, thin films, ultrasonic spray, X-Ray diffraction, UV spectroscopy visible

Procedia PDF Downloads 584
466 Economics of Sugandhakokila (Cinnamomum Glaucescens (Nees) Dury) in Dang District of Nepal: A Value Chain Perspective

Authors: Keshav Raj Acharya, Prabina Sharma

Abstract:

Sugandhakokila (Cinnamomum glaucescens Nees. Dury) is a large evergreen native tree species; mostly confined naturally in mid-hills of Rapti Zone of Nepal. The species is identified as prioritized for agro-technology development as well as for research and development by a department of plant resources. This species is band for export outside the country without processing by the government of Nepal to encourage the value addition within the country. The present study was carried out in Chillikot village of Dang district to find out the economic contribution of C. glaucescens in the local economy and to document the major conservation threats for this species. Participatory Rural Appraisal (PRA) tools such as Household survey, key informants interviews and focus group discussions were carried out to collect the data. The present study reveals that about 1.7 million Nepalese rupees (NPR) have been contributed annually in the local economy of 29 households from the collection of C. glaucescens berries in the study area. The average annual income of each family was around NPR 67,165.38 (US$ 569.19) from the sale of the berries which contributes about 53% of the total household income. Six different value chain actors are involved in C. glaucescens business. Maximum profit margin was taken by collector followed by producer, exporter and processor. The profit margin was found minimum to regional and village traders. The total profit margin for producers was NPR 138.86/kg, and regional traders have gained NPR 17/kg. However, there is a possibility to increase the profit of producers by NPR 8.00 more for each kg of berries through the initiation of community forest user group and village cooperatives in the area. Open access resource, infestation by an insect to over matured trees and browsing by goats were identified as major conservation threats for this species. Handing over the national forest as a community forest, linking the producers with the processor through organized market channel and replacing the old tree through new plantation has been recommended for future.

Keywords: community forest, conservation threats, C. glaucescens, value chain analysis

Procedia PDF Downloads 109
465 Preliminary Study of Desiccant Cooling System under Algerian Climates

Authors: N. Hatraf, N. Moummi

Abstract:

The interest in air conditioning using renewable energies is increasing. The thermal energy produced from the solar energy can be converted to useful cooling and heating through the thermochemical or thermophysical processes by using thermally activated energy conversion systems. The ambient air contains so much water that very high dehumidification rates are required. For a continuous dehumidification of the process air, the water adsorbed on the desiccant material has to be removed, which is done by allowing hot air to flow through the desiccant material (regeneration). A solid desiccant cooling system transfers moisture from the inlet air to the silica gel by using two processes: Absorption process and the regeneration process. The main aim of this paper is to study how the dehumidification rate, the generation temperature and many other factors influence the efficiency of a solid desiccant system by using TRNSYS software. The results show that the desiccant system could be used to decrease the humidity rate of the entering air.

Keywords: dehumidification, efficiency, humidity, Trnsys

Procedia PDF Downloads 415
464 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking

Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser

Abstract:

The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.

Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC

Procedia PDF Downloads 404
463 A Paradigm for Characterization and Checking of a Human Noise Behavior

Authors: Himanshu Dehra

Abstract:

This paper presents a paradigm for characterization and checking of human noise behavior. The definitions of ‘Noise’ and ‘Noise Behavior’ are devised. The concept of characterization and examining of Noise Behavior is obtained from the proposed paradigm of Psychoacoustics. The measurement of human noise behavior is discussed through definitions of noise sources and noise measurements. The noise sources, noise measurement equations and noise filters are further illustrated through examples. The theory and significance of solar energy acoustics is presented for life and its activities. Human comfort and health are correlated with human brain through physiological responses and noise protection. Examples of heat stress, intense heat, sweating and evaporation are also enumerated.

Keywords: human brain, noise behavior, noise characterization, noise filters, physiological responses, psychoacoustics

Procedia PDF Downloads 478
462 Wood as a Climate Buffer in a Supermarket

Authors: Kristine Nore, Alexander Severnisen, Petter Arnestad, Dimitris Kraniotis, Roy Rossebø

Abstract:

Natural materials like wood, absorb and release moisture. Thus wood can buffer indoor climate. When used wisely, this buffer potential can be used to counteract the outer climate influence on the building. The mass of moisture used in the buffer is defined as the potential hygrothermal mass, which can be an energy storage in a building. This works like a natural heat pump, where the moisture is active in damping the diurnal changes. In Norway, the ability of wood as a material used for climate buffering is tested in several buildings with the extensive use of wood, including supermarkets. This paper defines the potential of hygrothermal mass in a supermarket building. This includes the chosen ventilation strategy, and how the climate impact of the building is reduced. The building is located above the arctic circle, 50m from the coastline, in Valnesfjord. It was built in 2015, has a shopping area, including toilet and entrance, of 975 m². The climate of the area is polar according to the Köppen classification, but the supermarket still needs cooling on hot summer days. In order to contribute to the total energy balance, wood needs dynamic influence to activate its hygrothermal mass. Drying and moistening of the wood are energy intensive, and this energy potential can be exploited. Examples are to use solar heat for drying instead of heating the indoor air, and raw air with high enthalpy that allow dry wooden surfaces to absorb moisture and release latent heat. Weather forecasts are used to define the need for future cooling or heating. Thus, the potential energy buffering of the wood can be optimized with intelligent ventilation control. The ventilation control in Valnesfjord includes the weather forecast and historical data. That is a five-day forecast and a two-day history. This is to prevent adjustments to smaller weather changes. The ventilation control has three zones. During summer, the moisture is retained to dampen for solar radiation through drying. In the winter time, moist air let into the shopping area to contribute to the heating. When letting the temperature down during the night, the moisture absorbed in the wood slow down the cooling. The ventilation system is shut down during closing hours of the supermarket in this period. During the autumn and spring, a regime of either storing the moisture or drying out to according to the weather prognoses is defined. To ensure indoor climate quality, measurements of CO₂ and VOC overrule the low energy control if needed. Verified simulations of the Valnesfjord building will build a basic model for investigating wood as a climate regulating material also in other climates. Future knowledge on hygrothermal mass potential in materials is promising. When including the time-dependent buffer capacity of materials, building operators can achieve optimal efficiency of their ventilation systems. The use of wood as a climate regulating material, through its potential hygrothermal mass and connected to weather prognoses, may provide up to 25% energy savings related to heating, cooling, and ventilation of a building.

Keywords: climate buffer, energy, hygrothermal mass, ventilation, wood, weather forecast

Procedia PDF Downloads 189
461 Optimal MPPT Charging Battery System for Photovoltaic Standalone Applications

Authors: Kelaiaia Mounia Samira, Labar Hocine, Mesbah Tarek, Kelaiaia samia

Abstract:

The photovoltaic panel produces green power, and because of its availability across the globe, it can supply isolated loads (site away of the electrical network or difficult of access). Unfortunately this energy remains very expensive. The most application of these types of power needs storage devices, the Lithium batteries are commonly used because of its powerful storage capability. Using a solar panel or an array of panels without a controller that can perform MPPT will often result in wasted power, which results in the need to install more panels for the same power requirement. For devices that have the battery connected directly to the panel, this will also result in premature battery failure or capacity loss. In this paper it is proposed a modified P&O algorithm for the MPPT which takes in account the battery’s internal resistance vs temperature and stage of charging. Of course the temperature variation and irradiation of the PV panel are also introduced.

Keywords: modeling, battery, MPPT, charging, PV Panel

Procedia PDF Downloads 495
460 Exploring the Effectiveness of Robotic Companions Through the Use of Symbiotic Autonomous Plant Care Robots

Authors: Angelos Kaminis, Dakotah Stirnweis

Abstract:

Advances in robotic technology have driven the development of improved robotic companions in the last couple decades. However, commercially available robotic companions lack the ability to create an emotional connection with their user. By developing a companion robot that has a symbiotic relationship with a plant, an element of co-dependency is introduced into the human companion robot dynamic. This companion robot, while theoretically capable of providing most of the plant’s needs, still requires human interaction for watering, moving obstacles, and solar panel cleaning. To facilitate the interaction between human and robot, the robot is capable of limited auditory and visual communication to help express its and the plant’s needs. This paper seeks to fully describe the Autonomous Plant Care Robot system and its symbiotic relationship with its botanical ward and the plant and robot’s dependent relationship with their owner.

Keywords: symbiotic, robotics, autonomous, plant-care, companion

Procedia PDF Downloads 119
459 Study on Fabrication of Surface Functional Micro and Nanostructures by Femtosecond Laser

Authors: Shengzhu Cao, Hui Zhou, Gan Wu, Lanxi Wanhg, Kaifeng Zhang, Rui Wang, Hu Wang

Abstract:

The functional micro and nanostructures, which can endow material surface with unique properties such as super-absorptance, hydrophobic and drag reduction. Recently, femtosecond laser ablation has been demonstrated to be a promising technology for surface functional micro and nanostructures fabrication. In this paper, using femtosecond laser ablation processing technique, we fabricated functional micro and nanostructures on Ti and Al alloy surfaces, test results showed that processed surfaces have 82%~96% absorptance over a broad wavelength range from ultraviolet to infrared. The surface function properties, which determined by micro and nanostructures, could be modulated by variation laser parameters. These functional surfaces may find applications in such areas as photonics, plasmonics, spaceborne devices, thermal radiation sources, solar energy absorbers and biomedicine.

Keywords: surface functional, micro and nanostructures, femtosecond laser, ablation

Procedia PDF Downloads 342
458 Optimization of a Hybrid PV-Diesel Minigrid System: A Case Study of Vimtim-Mubi, Nigeria

Authors: Julius Agaka Yusufu, Tsutomu Dei, Hanif Ibrahim Awal

Abstract:

This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.

Keywords: Vimtim-Nigeria, Homer, renewable energy, PV-diesel hybrid system

Procedia PDF Downloads 51
457 A Variable Incremental Conductance MPPT Algorithm Applied to Photovoltaic Water Pumping System

Authors: Sarah Abdourraziq, Rachid Elbachtiri

Abstract:

The use of solar energy as a source for pumping water is one of the promising areas in the photovoltaic (PV) application. The energy of photovoltaic pumping systems (PVPS) can be widely improved by employing an MPPT algorithm. This will lead consequently to maximize the electrical motor speed of the system. This paper presents a modified incremental conductance (IncCond) MPPT algorithm with direct control method applied to a standalone PV pumping system. The influence of the algorithm parameters on system behavior is investigated and compared with the traditional (INC) method. The studied system consists of a PV panel, a DC-DC boost converter, and a PMDC motor-pump. The simulation of the system by MATLAB-SIMULINK is carried out. Simulation results found are satisfactory.

Keywords: photovoltaic pumping system (PVPS), incremental conductance (INC), MPPT algorithm, boost converter

Procedia PDF Downloads 375
456 Lyapunov Exponents in the Restricted Three Body Problem under the Influence of Perturbations

Authors: Ram Kishor

Abstract:

The Lyapunov characteristic exponent (LCE) is an important tool to describe behavior of a dynamical system, which measures the average rate of divergence (or convergence) of a trajectory emanating in the vicinity of initial point. To analyze the behavior of nearby trajectory emanating in the neighborhood of an equilibrium point in the restricted three-body problem under the influence of perturbations in the form of radiation pressure and oblateness, we compute LCEs of first order with the help of slandered method which is based on variational equation of the system. It is observed that trajectories are chaotic in nature due positive LCEs. Also, we analyze the effect of radiation pressure and oblateness on the LCEs. Results are applicable to study the behavior of more generalized RTBP in the presence of perturbations such as PR drag, solar wind drag etc.

Keywords: Lyapunov characteristic exponent, RTBP, radiation pressure, oblateness

Procedia PDF Downloads 418
455 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 305
454 Modeling Thermionic Emission from Carbon Nanotubes with Modified Richardson-Dushman Equation

Authors: Olukunle C. Olawole, Dilip Kumar De

Abstract:

We have modified Richardson-Dushman equation considering thermal expansion of lattice and change of chemical potential with temperature in material. The corresponding modified Richardson-Dushman (MRDE) equation fits quite well the experimental data of thermoelectronic current density (J) vs T from carbon nanotubes. It provides a unique technique for accurate determination of W0 Fermi energy, EF0 at 0 K and linear thermal expansion coefficient of carbon nano-tube in good agreement with experiment. From the value of EF0 we obtain the charge carrier density in excellent agreement with experiment. We describe application of the equations for the evaluation of performance of concentrated solar thermionic energy converter (STEC) with emitter made of carbon nanotube for future applications.

Keywords: carbon nanotube, modified Richardson-Dushman equation, fermi energy at 0 K, charge carrier density

Procedia PDF Downloads 349
453 Low-Cost Space-Based Geoengineering: An Assessment Based on Self-Replicating Manufacturing of in-Situ Resources on the Moon

Authors: Alex Ellery

Abstract:

Geoengineering approaches to climate change mitigation are unpopular and regarded with suspicion. Of these, space-based approaches are regarded as unworkable and enormously costly. Here, a space-based approach is presented that is modest in cost, fully controllable and reversible, and acts as a natural spur to the development of solar power satellites over the longer term as a clean source of energy. The low-cost approach exploits self-replication technology which it is proposed may be enabled by 3D printing technology. Self-replication of 3D printing platforms will enable mass production of simple spacecraft units. Key elements being developed are 3D-printable electric motors and 3D-printable vacuum tube-based electronics. The power of such technologies will open up enormous possibilities at low cost including space-based geoengineering.

Keywords: 3D printing, in-situ resource utilization, self-replication technology, space-based geoengineering

Procedia PDF Downloads 389
452 Performance Assessment of PV Based Grid Connected Solar Plant with Varying Load Conditions

Authors: Kusum Tharani, Ratna Dahiya

Abstract:

This paper aims to analyze the power flow of a grid connected 100-kW Photovoltaic(PV) array connected to a 25-kV grid via a DC-DC boost converter and a three-phase three-level Voltage Source Converter (VSC). Maximum Power Point Tracking (MPPT) is implemented in the boost converter bymeans of a Simulink model using the 'Perturb & Observe' technique. First, related papers and technological reports were extensively studied and analyzed. Accordingly, the system is tested under various loading conditions. Power flow analysis is done using the Newton-Raphson method in Matlab environment. Finally, the system is subject to Single Line to Ground Fault and Three Phase short circuit. The results are simulated under the grid-connected operating model.

Keywords: grid connected PV Array, Newton-Raphson Method, power flow analysis, three phase fault

Procedia PDF Downloads 533
451 The Prospective Assessment of Zero-Energy Dwellings

Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic

Abstract:

The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.

Keywords: benefits, energy demands, passive houses, sustainable development

Procedia PDF Downloads 311
450 Zinc Oxide Thin Films Deposition by Spray Pyrolysis

Authors: Bourfaa Fouzia, Meryem Lamri Zeggar, Adjimi Amel, Mohammed Salah Aida, Nadir Attaf

Abstract:

Semiconductor photocatalysts such as ZnO has attracted much attention in recent years due to their various applications for the degradation of organic pollutants in water, air and in dye sensitized photovoltaic solar cell. In the present work, ZnO thin films were prepared by ultrasonic spray pyrolysis by using different precursors namely: Acetate, chloride and zinc nitrate in order to investigate their influence on ZnO photocatalytic activity. The films crystalline structure was studied by mean of X-ray diffraction measurements (XRD) and the films surface morphology by Scanning Electron Microscopy (SEM). The films optical properties were studied by mean of UV–visible spectroscopy. The prepared films were tested for the degradation of the red reactive dye largely used in textile industry. As a result, we found that the zinc nitrate is the best precursor to prepare ZnO thin films suitable for a good photocatalytic activity.

Keywords: precursor, thins films, spray pyrolysis, zinc oxide

Procedia PDF Downloads 296
449 Application of the DTC Control in the Photovoltaic Pumping System

Authors: M. N. Amrani, H. Abanou, A. Dib

Abstract:

In this paper, we proposed a strategy for optimizing the performance for a pumping structure constituted by an induction motor coupled to a centrifugal pump and improving existing results in this context. The considered system is supplied by a photovoltaic generator (GPV) through two static converters piloted in an independent manner. We opted for a maximum power point tracking (MPPT) control method based on the Neuro - Fuzzy, which is well known for its stability and robustness. To improve the induction motor performance, we use the concept of Direct Torque Control (DTC) and PID controller for motor speed to pilot the working of the induction motor. Simulations of the proposed approach give interesting results compared to the existing control strategies in this field. The model of the proposed system is simulated by MATLAB/Simulink.

Keywords: solar energy, pumping photovoltaic system, maximum power point tracking, direct torque Control (DTC), PID regulator

Procedia PDF Downloads 518
448 Climate Change as Wicked Problems towards Sustainable Development

Authors: Amin Padash, Mehran Khodaparast, Saadat Khodaparast

Abstract:

Climate change is a significant and lasting change in the statistical distribution of weather patterns over periods ranging from decades to millions of years. Climate change is caused by factors such as biotic processes, variations in solar radiation received by Earth, plate tectonics, and volcanic eruptions. Certain human activities have also been identified as significant causes of recent climate change, often referred to as “Global Warming”. The ultimate goal of this paper is to determine how climate change affects the style of life and all of our activities. The paper focuses on what the effects of humans are on climate change and how communities can achieve sustainable development and use resources in a way that is good for the ecosystem and public. We opine Climate Change is a vital issue that can be called “Wicked Problem”. This paper attempts to address this wicked problem by COMPRAM Methodology as one of the possible solutions.

Keywords: climate change, COMPRAM, human influences, sustainable development, wicked problems

Procedia PDF Downloads 426