Search results for: Support vector machine (SVM)
9063 The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework
Authors: Pouyan Jahanbin, Mahmoud Houshmand, Omid Fatahi Valilai
Abstract:
A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot’s control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems.Keywords: CNC machine tools, industrial robots, knowledge-based systems, manufacturing recourses integration, flexible manufacturing system (FMS), object-oriented data model
Procedia PDF Downloads 4559062 Predicting the Quality of Life on the Basis of Perceived Social Support among Patients with Coronary Artery Bypass Graft
Authors: Azadeh Yaraghchi, Reza Bagherian Sararoodi, Niknaz Salehi Moghadam, Mohammad Hossein Mandegar, Adis Kraskian Mujembari, Omid Rezaei
Abstract:
Background: Quality of life is one of the most important consequences of disease in psychosomatic disorders. Many psychological factors are considered in predicting quality of life in patients with coronary artery bypass graft (CABG). The present study was aimed to determine the relationship between perceived social support and quality of life in patients with coronary artery bypass graft (CABG). Methods: The population included 82 patients who had undergone CABG from October 2014 to May 2015 in four different hospitals in Tehran. The patients were evaluated with Multi-dimension scale of perceived social support (MSPSS) and after three months follow up were evaluated by Short-Form quality of life questionnaire (SF-36). The obtained data were analyzed through Pearson correlation test and multiple variable regression models. Findings: A relationship between perceived social support and quality of life in patients with CABG was observed (r=0.374, p<0.01). The results showed that 22.4% of variation in quality of life is predicted by perceived social support components (p<0.01, R2 =0.224). Conclusion: Based on the results, perceived social support is one of the predictors of quality of life in patients with coronary artery bypass graft. Accordingly, these results can be useful in conceiving proactive policies, detecting high risk patients and planning for psychological interventions.Keywords: coronary artery bypass graft, perceived social support, psychological factors, quality of life
Procedia PDF Downloads 3699061 WebAppShield: An Approach Exploiting Machine Learning to Detect SQLi Attacks in an Application Layer in Run-time
Authors: Ahmed Abdulla Ashlam, Atta Badii, Frederic Stahl
Abstract:
In recent years, SQL injection attacks have been identified as being prevalent against web applications. They affect network security and user data, which leads to a considerable loss of money and data every year. This paper presents the use of classification algorithms in machine learning using a method to classify the login data filtering inputs into "SQLi" or "Non-SQLi,” thus increasing the reliability and accuracy of results in terms of deciding whether an operation is an attack or a valid operation. A method Web-App auto-generated twin data structure replication. Shielding against SQLi attacks (WebAppShield) that verifies all users and prevents attackers (SQLi attacks) from entering and or accessing the database, which the machine learning module predicts as "Non-SQLi" has been developed. A special login form has been developed with a special instance of data validation; this verification process secures the web application from its early stages. The system has been tested and validated, up to 99% of SQLi attacks have been prevented.Keywords: SQL injection, attacks, web application, accuracy, database
Procedia PDF Downloads 1519060 Examining Resilience, Social Supports, and Self-Esteem as Predictors of the Quality of Life of ODAPUS (Orang Dengan Lupus)
Authors: Yulmaida Amir, Fahrul Rozi, Insany C. Kamil, Fanny Aryani
Abstract:
ODAPUS (Orang dengan Lupus) is an Indonesian term for people with Lupus, a chronic autoimmune disease in which immune system of the body becomes hyperactive and attacks normal tissue. The number of ODAPUS indicate an increase in Indonesia, thereby helping to improve their quality of life to be important to help their recovery. This study aims to examine the effect of resilience, self-esteem, and social support on the quality of life of women who had been diagnosed as having Lupus. Data were collected from 64 ODAPUS in Indonesia, using the World Health Organization Quality of Life (WHOQOL), Resilience Scale from Wagnil and Young (1993), self-esteem scale (developed from Coopersmith’s theory), and Social Support Questioner from Northouse (1988). Regression data analysis showed that resilience, social support, and self-esteem predict the quality of life of the ODAPUS simultaneously. If the variable was analysed individually, self-esteem did not significantly contribute to the quality of life. Resilience contributed most significantly to the quality of life, followed by social support. Of five sources of social supports included in the research, support from family members (parents and brother/sisters) has the most significant contribution to the quality of life, followed by support from spouse, and from friends. Interestingly, social support from medical personnel (medical doctors and nurses) had not a significant contribution to the quality of life of ODAPUS. As a conclusion, this research showed that the ability of ODAPUS to cope with difficulty in life, and support from family members, spouse, and friends were the significant predictors for their quality of life.Keywords: quality of life, resilience, self-esteem, social supports
Procedia PDF Downloads 1689059 Effects of Training on Self-Efficacy, Competence, and Target Complaints of Dementia Family Support Program Facilitators
Authors: Myonghwa Park, Eun Jeong Choi
Abstract:
Persons with dementia living at home have complex caregiving demands, which can be significant sources of stress for the family caregivers. Thus, the dementia family support program facilitators struggle to provide various health and social services, facing diverse challenges. The purpose of this study was to research the effects of training program for the dementia family support program facilitators on self-efficacy, competence, and target complaints concerning operating their program. We created a training program with systematic contents, which was composed of 10 sessions and we provided the program for the facilitators. The participants were 32 people at 28 community dementia support centers who manage dementia family support programs and they completed quantitative and qualitative self-report questionnaire before and after participating in the training program. For analyzing the data, descriptive statistics were used and with a paired t-test, pretest and posttest scores of self-efficacy, competence, and target complaints were analyzed. We used Statistical Package for the Social Sciences (SPSS) statistics (Version 21) to analyze the data. The average age of the participants was 39.6 years old and the 84.4% of participants were nurses. There were statistically meaningful increases in facilitators’ self-efficacy scores (t = -4.45, p < .001) and competence scores (t = -2.133, p = 0.041) after participating in training program and operating their own dementia family support program. Also, the facilitators’ difficulties in conducting their dementia family support program were decreased which was assessed with target complaints. Especially, the facilitators’ lack of dementia expertise and experience was decreased statistically significantly (t = 3.520, p = 0.002). Findings provided evidence of the benefits of the training program for facilitators to enhance managing dementia family support program by improving the facilitators’ self-efficacy and competence and decreasing their difficulties regarding operating their program.Keywords: competence, dementia, facilitator, family, self-efficacy, training
Procedia PDF Downloads 2129058 Reliability Analysis of a Life Support System in a Public Aquarium
Authors: Mehmet Savsar
Abstract:
Complex Life Support Systems (LSS) are used in all large commercial and public aquariums in order to keep the fish alive. Reliabilities of individual equipment, as well as the complete system, are extremely important and critical since the life and safety of important fish depend on these life support systems. Failure of some critical device or equipment, which do not have redundancy, results in negative consequences and affects life support as a whole. In this paper, we have considered a life support system in a large public aquarium in Kuwait Scientific Center and presented a procedure and analysis to show how the reliability of such systems can be estimated by using appropriate tools and collected data. We have also proposed possible improvements for systems reliability. In particular, addition of parallel components and spare parts are considered and the numbers of spare parts needed for each component to achieve a required reliability during specified lead time are calculated. The results show that significant improvements in system reliability can be achieved by operating some LSS components in parallel and having certain numbers of spares available in the spare parts inventories. The procedures and the results presented in this paper are expected to be useful for aquarium engineers and maintenance managers dealing with LSS.Keywords: life support systems, aquariums, reliability, failures, availability, spare parts
Procedia PDF Downloads 2809057 Characteristics of an Impact on Reading Comprehension of Elementary School Students
Authors: Judith Hanke
Abstract:
Due to the rise of students with reading difficulties, a digital reading support was developed. The digital reading support focuses on reading comprehension of elementary school students. It consists of literary texts and reading exercises with diagnostics. To analyze the use of the reading packages an intervention study took place in 2023. For the methodology, an ABA-design was selected for the intervention study to examine the reading packages. The study was expedited from April 2023 until July 2023 and collected quantitative data of individuals, groups, and classes. It consisted of a survey group (N = 58) and a control group (N = 53). The pretest was conducted before the reading support intervention. The students of the survey group received reading support on their ability level to aid the individual student’s needs. At the beginning of the study characteristics of the students were collected. The characteristics included gender, age, repetition of a class, spoken language at home, German as a second language, and special support needs such as dyslexia; right after the intervention, the posttest was examined. At least three weeks after the intervention, the follow-up testing was administered. A standardized reading comprehension test was used for the three test times. The test consists of three subtests: word comprehension, sentence comprehension, and text comprehension. The focus of this paper is to determine which characteristics have an impact on reading comprehension of elementary school students. The students’ characteristics were correlated with the three test times through a Pearson correlation. The main findings are that age, repetition of a class, spoken language at home, German as a second language have an effect on reading comprehension. Interestingly gender and special support needs did not have a significant effect on the reading comprehension of the students. The significance of the study is to determine which characteristics have an impact on reading comprehension and then to assess how reading support can be modified to support the diverse students.Keywords: class repetition, reading comprehension, reading support, second language, spoken language at home
Procedia PDF Downloads 339056 Design and Development of an Autonomous Beach Cleaning Vehicle
Authors: Mahdi Allaoua Seklab, Süleyman BaşTürk
Abstract:
In the quest to enhance coastal environmental health, this study introduces a fully autonomous beach cleaning machine, a breakthrough in leveraging green energy and advanced artificial intelligence for ecological preservation. Designed to operate independently, the machine is propelled by a solar-powered system, underscoring a commitment to sustainability and the use of renewable energy in autonomous robotics. The vehicle's autonomous navigation is achieved through a sophisticated integration of LIDAR and a camera system, utilizing an SSD MobileNet V2 object detection model for accurate and real-time trash identification. The SSD framework, renowned for its efficiency in detecting objects in various scenarios, is coupled with the lightweight and precise highly MobileNet V2 architecture, making it particularly suited for the computational constraints of on-board processing in mobile robotics. Training of the SSD MobileNet V2 model was conducted on Google Colab, harnessing cloud-based GPU resources to facilitate a rapid and cost-effective learning process. The model was refined with an extensive dataset of annotated beach debris, optimizing the parameters using the Adam optimizer and a cross-entropy loss function to achieve high-precision trash detection. This capability allows the machine to intelligently categorize and target waste, leading to more effective cleaning operations. This paper details the design and functionality of the beach cleaning machine, emphasizing its autonomous operational capabilities and the novel application of AI in environmental robotics. The results showcase the potential of such technology to fill existing gaps in beach maintenance, offering a scalable and eco-friendly solution to the growing problem of coastal pollution. The deployment of this machine represents a significant advancement in the field, setting a new standard for the integration of autonomous systems in the service of environmental stewardship.Keywords: autonomous beach cleaning machine, renewable energy systems, coastal management, environmental robotics
Procedia PDF Downloads 279055 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 1889054 A Machine Learning-Based Approach to Capture Extreme Rainfall Events
Authors: Willy Mbenza, Sho Kenjiro
Abstract:
Increasing efforts are directed towards a better understanding and foreknowledge of extreme precipitation likelihood, given the adverse effects associated with their occurrence. This knowledge plays a crucial role in long-term planning and the formulation of effective emergency response. However, predicting extreme events reliably presents a challenge to conventional empirical/statistics due to the involvement of numerous variables spanning different time and space scales. In the recent time, Machine Learning has emerged as a promising tool for predicting the dynamics of extreme precipitation. ML techniques enables the consideration of both local and regional physical variables that have a strong influence on the likelihood of extreme precipitation. These variables encompasses factors such as air temperature, soil moisture, specific humidity, aerosol concentration, among others. In this study, we develop an ML model that incorporates both local and regional variables while establishing a robust relationship between physical variables and precipitation during the downscaling process. Furthermore, the model provides valuable information on the frequency and duration of a given intensity of precipitation.Keywords: machine learning (ML), predictions, rainfall events, regional variables
Procedia PDF Downloads 889053 Tumor Boundary Extraction Using Intensity and Texture-Based on Gradient Vector
Authors: Namita Mittal, Himakshi Shekhawat, Ankit Vidyarthi
Abstract:
In medical research study, doctors and radiologists face lot of complexities in analysing the brain tumors in Magnetic Resonance (MR) images. Brain tumor detection is difficult due to amorphous tumor shape and overlapping of similar tissues in nearby region. So, radiologists require one such clinically viable solution which helps in automatic segmentation of tumor inside brain MR image. Initially, segmentation methods were used to detect tumor, by dividing the image into segments but causes loss of information. In this paper, a hybrid method is proposed which detect Region of Interest (ROI) on the basis of difference in intensity values and texture values of tumor region using nearby tissues with Gradient Vector Flow (GVF) technique in the identification of ROI. Proposed approach uses both intensity and texture values for identification of abnormal section of the brain MR images. Experimental results show that proposed method outperforms GVF method without any loss of information.Keywords: brain tumor, GVF, intensity, MR images, segmentation, texture
Procedia PDF Downloads 4329052 Enhancing Sell-In and Sell-Out Forecasting Using Ensemble Machine Learning Method
Authors: Vishal Das, Tianyi Mao, Zhicheng Geng, Carmen Flores, Diego Pelloso, Fang Wang
Abstract:
Accurate sell-in and sell-out forecasting is a ubiquitous problem in the retail industry. It is an important element of any demand planning activity. As a global food and beverage company, Nestlé has hundreds of products in each geographical location that they operate in. Each product has its sell-in and sell-out time series data, which are forecasted on a weekly and monthly scale for demand and financial planning. To address this challenge, Nestlé Chilein collaboration with Amazon Machine Learning Solutions Labhas developed their in-house solution of using machine learning models for forecasting. Similar products are combined together such that there is one model for each product category. In this way, the models learn from a larger set of data, and there are fewer models to maintain. The solution is scalable to all product categories and is developed to be flexible enough to include any new product or eliminate any existing product in a product category based on requirements. We show how we can use the machine learning development environment on Amazon Web Services (AWS) to explore a set of forecasting models and create business intelligence dashboards that can be used with the existing demand planning tools in Nestlé. We explored recent deep learning networks (DNN), which show promising results for a variety of time series forecasting problems. Specifically, we used a DeepAR autoregressive model that can group similar time series together and provide robust predictions. To further enhance the accuracy of the predictions and include domain-specific knowledge, we designed an ensemble approach using DeepAR and XGBoost regression model. As part of the ensemble approach, we interlinked the sell-out and sell-in information to ensure that a future sell-out influences the current sell-in predictions. Our approach outperforms the benchmark statistical models by more than 50%. The machine learning (ML) pipeline implemented in the cloud is currently being extended for other product categories and is getting adopted by other geomarkets.Keywords: sell-in and sell-out forecasting, demand planning, DeepAR, retail, ensemble machine learning, time-series
Procedia PDF Downloads 2739051 Physics-Informed Machine Learning for Displacement Estimation in Solid Mechanics Problem
Authors: Feng Yang
Abstract:
Machine learning (ML), especially deep learning (DL), has been extensively applied to many applications in recently years and gained great success in solving different problems, including scientific problems. However, conventional ML/DL methodologies are purely data-driven which have the limitations, such as need of ample amount of labelled training data, lack of consistency to physical principles, and lack of generalizability to new problems/domains. Recently, there is a growing consensus that ML models need to further take advantage of prior knowledge to deal with these limitations. Physics-informed machine learning, aiming at integration of physics/domain knowledge into ML, has been recognized as an emerging area of research, especially in the recent 2 to 3 years. In this work, physics-informed ML, specifically physics-informed neural network (NN), is employed and implemented to estimate the displacements at x, y, z directions in a solid mechanics problem that is controlled by equilibrium equations with boundary conditions. By incorporating the physics (i.e. the equilibrium equations) into the learning process of NN, it is showed that the NN can be trained very efficiently with a small set of labelled training data. Experiments with different settings of the NN model and the amount of labelled training data were conducted, and the results show that very high accuracy can be achieved in fulfilling the equilibrium equations as well as in predicting the displacements, e.g. in setting the overall displacement of 0.1, a root mean square error (RMSE) of 2.09 × 10−4 was achieved.Keywords: deep learning, neural network, physics-informed machine learning, solid mechanics
Procedia PDF Downloads 1509050 Machine Learning Driven Analysis of Kepler Objects of Interest to Identify Exoplanets
Authors: Akshat Kumar, Vidushi
Abstract:
This paper identifies 27 KOIs, 26 of which are currently classified as candidates and one as false positives that have a high probability of being confirmed. For this purpose, 11 machine learning algorithms were implemented on the cumulative kepler dataset sourced from the NASA exoplanet archive; it was observed that the best-performing model was HistGradientBoosting and XGBoost with a test accuracy of 93.5%, and the lowest-performing model was Gaussian NB with a test accuracy of 54%, to test model performance F1, cross-validation score and RUC curve was calculated. Based on the learned models, the significant characteristics for confirm exoplanets were identified, putting emphasis on the object’s transit and stellar properties; these characteristics were namely koi_count, koi_prad, koi_period, koi_dor, koi_ror, and koi_smass, which were later considered to filter out the potential KOIs. The paper also calculates the Earth similarity index based on the planetary radius and equilibrium temperature for each KOI identified to aid in their classification.Keywords: Kepler objects of interest, exoplanets, space exploration, machine learning, earth similarity index, transit photometry
Procedia PDF Downloads 759049 A Look at the Quantum Theory of Atoms in Molecules from the Discrete Morse Theory
Authors: Dairo Jose Hernandez Paez
Abstract:
The quantum theory of atoms in molecules (QTAIM) allows us to obtain topological information on electronic density in quantum mechanical systems. The QTAIM starts by considering the electron density as a continuous mathematical object. On the other hand, the discretization of electron density is also a mathematical object, which, from discrete mathematics, would allow a new approach to its topological study. From this point of view, it is necessary to develop a series of steps that provide the theoretical support that guarantees its application. Some of the steps that we consider most important are mentioned below: (1) obtain good representations of the electron density through computational calculations, (2) design a methodology for the discretization of electron density, and construct the simplicial complex. (3) Make an analysis of the discrete vector field associating the simplicial complex. (4) Finally, in this research, we propose to use the discrete Morse theory as a mathematical tool to carry out studies of electron density topology.Keywords: discrete mathematics, Discrete Morse theory, electronic density, computational calculations
Procedia PDF Downloads 1039048 Propylene Self-Metathesis to Ethylene and Butene over WOx/SiO2, Effect of Nano-Sized Extra Supports (SiO2 and TiO2)
Authors: Adisak Guntida
Abstract:
Propylene self-metathesis to ethylene and butene was studied over WOx/SiO2 catalysts at 450 °C and atmospheric pressure. The WOx/SiO2 catalysts were prepared by incipient wetness impregnation of ammonium metatungstate aqueous solution. It was found that, adding nano-sized extra supports (SiO2 and TiO2) by physical mixing with the WOx/SiO2 enhanced propylene conversion. The UV-Vis and FT-Raman results revealed that WOx could migrate from the original silica support to the extra support, leading to a better dispersion of WOx. The ICP-OES results also indicate that WOx existed on the extra support. Coke formation was investigated on the catalysts after 10 h time-on-stream by TPO. However, adding nano-sized extra supports led to higher coke formation which may be related to acidity as characterized by NH3-TPD.Keywords: extra support, nanomaterial, propylene self-metathesis, tungsten oxide
Procedia PDF Downloads 2459047 Multisymplectic Geometry and Noether Symmetries for the Field Theories and the Relativistic Mechanics
Authors: H. Loumi-Fergane, A. Belaidi
Abstract:
The problem of symmetries in field theory has been analyzed using geometric frameworks, such as the multisymplectic models by using in particular the multivector field formalism. In this paper, we expand the vector fields associated to infinitesimal symmetries which give rise to invariant quantities as Noether currents for classical field theories and relativistic mechanic using the multisymplectic geometry where the Poincaré-Cartan form has thus been greatly simplified using the Second Order Partial Differential Equation (SOPDE) for multi-vector fields verifying Euler equations. These symmetries have been classified naturally according to the construction of the fiber bundle used. In this work, unlike other works using the analytical method, our geometric model has allowed us firstly to distinguish the angular moments of the gauge field obtained during different transformations while these moments are gathered in a single expression and are obtained during a rotation in the Minkowsky space. Secondly, no conditions are imposed on the Lagrangian of the mechanics with respect to its dependence in time and in qi, the currents obtained naturally from the transformations are respectively the energy and the momentum of the system.Keywords: conservation laws, field theories, multisymplectic geometry, relativistic mechanics
Procedia PDF Downloads 2069046 Flywheel Energy Storage Control Using SVPWM for Small Satellites Application
Authors: Noha El-Gohary, Thanaa El-Shater, A. A. Mahfouz, M. M. Sakr
Abstract:
Searching for high power conversion efficiency and long lifetime are important goals when designing a power supply subsystem for satellite applications. To fulfill these goals, this paper presents a power supply subsystem for small satellites in which flywheel energy storage system is used as a secondary power source instead of chemical battery. In this paper, the model of flywheel energy storage system is introduced; a DC bus regulation control algorithm for charging and discharging of flywheel based on space vector pulse width modulation technique and motor current control is also introduced. Simulation results showed the operation of the flywheel for charging and discharging mode during illumination and shadowed period. The advantages of the proposed system are confirmed by the simulation results of the power supply system.Keywords: small-satellites, flywheel energy storage system, space vector pulse width modulation, power conversion
Procedia PDF Downloads 4009045 Impacts of Social Support on Perceived Level of Stress and Self-Esteem among Students of Private Universities of Karachi-Pakistan
Authors: Sheeba Farhan
Abstract:
This study is conducted to explore the predictive relationship of perceived stress and self-esteem with social support of students and to explore the factors, which contribute to develop or enhance the level of stress in students of private universities in Karachi-Pakistan. After literature review following hypotheses were formulated; 1)social support would predict perceived stress of students of business administration of private organizations of Higher education, 2) social support would predict the self-esteem of students of private organizations of Higher education, 3) there will be a relationship of perceived stress and self-esteem of students of private organizations of Higher education, 4) there will be a relationship of self esteem and social support of students of private organizations of Higher education. Sample of the study is comprise of 100 students of private organizations of Higher education in Karachi- Pakistan (i.e. males= 50 & females= 50). The age range of participants is 18-26 years. The measures, used in the study are: Demographic information form, a semi structured interview form, Rosenberg self esteem scale (Rosenberg, 1965) and perceived stress scale (Cohen, Kamarck, and Mermelstein, 1983) and multidimensional scale of perceived social support (Zimet, 1988) Descriptive statistics is used for getting a better statistical view of characteristics of sample. Regression analysis is used to explore the predictive relationship of study related stress and self esteem with academic achievement of students of private organizations of Higher education. Percentages and ratios were calculated to explore the level of perceived stress with respect to Socio-demographic characteristics in students of private organizations of Higher education. Finding shows that social support is significantly associated with the higher level of self-esteem among students of graduation but insignificantly associated with stress that has been experienced by them. These results are correlated with a wide variety of studies in which social support has proposed to be a predictor of well being for the students.Keywords: private universities of Karachi-Pakistan, Self-esteem, social support, stress
Procedia PDF Downloads 2939044 Optimal Feature Extraction Dimension in Finger Vein Recognition Using Kernel Principal Component Analysis
Authors: Amir Hajian, Sepehr Damavandinejadmonfared
Abstract:
In this paper the issue of dimensionality reduction is investigated in finger vein recognition systems using kernel Principal Component Analysis (KPCA). One aspect of KPCA is to find the most appropriate kernel function on finger vein recognition as there are several kernel functions which can be used within PCA-based algorithms. In this paper, however, another side of PCA-based algorithms -particularly KPCA- is investigated. The aspect of dimension of feature vector in PCA-based algorithms is of importance especially when it comes to the real-world applications and usage of such algorithms. It means that a fixed dimension of feature vector has to be set to reduce the dimension of the input and output data and extract the features from them. Then a classifier is performed to classify the data and make the final decision. We analyze KPCA (Polynomial, Gaussian, and Laplacian) in details in this paper and investigate the optimal feature extraction dimension in finger vein recognition using KPCA.Keywords: biometrics, finger vein recognition, principal component analysis (PCA), kernel principal component analysis (KPCA)
Procedia PDF Downloads 3659043 An Analysis of Machine Translation: Instagram Translation vs Human Translation on the Perspective Translation Quality
Authors: Aulia Fitri
Abstract:
This aims to seek which part of the linguistics with the common mistakes occurred between Instagram translation and human translation. Instagram is a social media account that is widely used by people in the world. Everyone with the Instagram account can consume the captions and pictures that are shared by their friends, celebrity, and public figures across countries. Instagram provides the machine translation under its caption space that will assist users to understand the language of their non-native. The researcher takes samples from an Indonesian public figure whereas the account is followed by many followers. The public figure tries to help her followers from other countries understand her posts by putting up the English version after the Indonesian version. However, the research on Instagram account has not been done yet even though the account is widely used by the worldwide society. There are 20 samples that will be analysed on the perspective of translation quality and linguistics tools. As the MT, Instagram tends to give a literal translation without regarding the topic meant. On the other hand, the human translation tends to exaggerate the translation which leads a different meaning in English. This is an interesting study to discuss when the human nature and robotic-system influence the translation result.Keywords: human translation, machine translation (MT), translation quality, linguistic tool
Procedia PDF Downloads 3209042 Risk Factors of Becoming NEET Youth in Iran: A Machine Learning Approach
Authors: Hamed Rahmani, Wim Groot
Abstract:
The term "youth not in employment, education or training (NEET)" refers to a combination of youth unemployment and school dropout. This study investigates the variables that increase the risk of becoming NEET in Iran. A selection bias-adjusted Probit model was employed using machine learning to identify these risk factors. We used cross-sectional data obtained from the Statistical Centre of Iran and the Ministry of Cooperatives Labour and Social Welfare that was taken from the labour force survey conducted in the spring of 2021. We look at years of education, work experience, housework, the number of children under the age of six in the home, family education, birthplace, and the amount of land owned by households. Results show that hours spent performing domestic chores enhance the likelihood of youth becoming NEET, and years of education and years of potential work experience decrease the chance of being NEET. The findings also show that female youth born in cities were less likely than those born in rural regions to become NEET.Keywords: NEET youth, probit, CART, machine learning, unemployment
Procedia PDF Downloads 1089041 Web Development in Information Technology with Javascript, Machine Learning and Artificial Intelligence
Authors: Abdul Basit Kiani, Maryam Kiani
Abstract:
Online developers now have the tools necessary to create online apps that are not only reliable but also highly interactive, thanks to the introduction of JavaScript frameworks and APIs. The objective is to give a broad overview of the recent advances in the area. The fusion of machine learning (ML) and artificial intelligence (AI) has expanded the possibilities for web development. Modern websites now include chatbots, clever recommendation systems, and customization algorithms built in. In the rapidly evolving landscape of modern websites, it has become increasingly apparent that user engagement and personalization are key factors for success. To meet these demands, websites now incorporate a range of innovative technologies. One such technology is chatbots, which provide users with instant assistance and support, enhancing their overall browsing experience. These intelligent bots are capable of understanding natural language and can answer frequently asked questions, offer product recommendations, and even help with troubleshooting. Moreover, clever recommendation systems have emerged as a powerful tool on modern websites. By analyzing user behavior, preferences, and historical data, these systems can intelligently suggest relevant products, articles, or services tailored to each user's unique interests. This not only saves users valuable time but also increases the chances of conversions and customer satisfaction. Additionally, customization algorithms have revolutionized the way websites interact with users. By leveraging user preferences, browsing history, and demographic information, these algorithms can dynamically adjust the website's layout, content, and functionalities to suit individual user needs. This level of personalization enhances user engagement, boosts conversion rates, and ultimately leads to a more satisfying online experience. In summary, the integration of chatbots, clever recommendation systems, and customization algorithms into modern websites is transforming the way users interact with online platforms. These advanced technologies not only streamline user experiences but also contribute to increased customer satisfaction, improved conversions, and overall website success.Keywords: Javascript, machine learning, artificial intelligence, web development
Procedia PDF Downloads 799040 Decision Support System for Optimal Placement of Wind Turbines in Electric Distribution Grid
Authors: Ahmed Ouammi
Abstract:
This paper presents an integrated decision framework to support decision makers in the selection and optimal allocation of wind power plants in the electric grid. The developed approach intends to maximize the benefice related to the project investment during the planning period. The proposed decision model considers the main cost components, meteorological data, environmental impacts, operation and regulation constraints, and territorial information. The decision framework is expressed as a stochastic constrained optimization problem with the aim to identify the suitable locations and related optimal wind turbine technology considering the operational constraints and maximizing the benefice. The developed decision support system is applied to a case study to demonstrate and validate its performance.Keywords: decision support systems, electric power grid, optimization, wind energy
Procedia PDF Downloads 1539039 Representative Concentration Pathways Approach on Wolbachia Controlling Dengue Virus in Aedes aegypti
Authors: Ida Bagus Mandhara Brasika, I Dewa Gde Sathya Deva
Abstract:
Wolbachia is recently developed as the natural enemy of Dengue virus (DENV). It inhibits the replication of DENV in Aedes aegypti. Both DENV and its vector, Aedes aegypty, are sensitive to climate factor especially temperature. The changing of climate has a direct impact on temperature which means changing the vector transmission. Temperature has been known to effect Wolbachia density as it has an ideal temperature to grow. Some scenarios, which are known as Representative Concentration Pathways (RCPs), have been developed by Intergovernmental Panel on Climate Change (IPCC) to predict the future climate based on greenhouse gases concentration. These scenarios are applied to mitigate the future change of Aedes aegypti migration and how Wolbachia could control the virus. The prediction will determine the schemes to release Wolbachia-injected Aedes aegypti to reduce DENV transmission.Keywords: Aedes aegypti, climate change, dengue virus, Intergovernmental Panel on Climate Change, representative concentration pathways, Wolbachia
Procedia PDF Downloads 3009038 A Combined Meta-Heuristic with Hyper-Heuristic Approach to Single Machine Production Scheduling Problem
Authors: C. E. Nugraheni, L. Abednego
Abstract:
This paper is concerned with minimization of mean tardiness and flow time in a real single machine production scheduling problem. Two variants of genetic algorithm as meta-heuristic are combined with hyper-heuristic approach are proposed to solve this problem. These methods are used to solve instances generated with real world data from a company. Encouraging results are reported.Keywords: hyper-heuristics, evolutionary algorithms, production scheduling, meta-heuristic
Procedia PDF Downloads 3819037 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach
Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson
Abstract:
This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks
Procedia PDF Downloads 2529036 Reinforced Concrete Foundation for Turbine Generators
Authors: Siddhartha Bhattacharya
Abstract:
Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis
Procedia PDF Downloads 2959035 The Role of Interpersonal and Institutional Trusts for the Public Support of Welfare State
Authors: Nazim Habibov, Alena Auchynnikava, Lida Fan
Abstract:
The exploration of the relationship between social trust and the support of the welfare system in transitional countries has attracted growing interests in recent decades. This study estimates the effects of interpersonal and institutional trust on the support of the welfare system in 27 countries in Eastern Europe the former Soviet Union. We estimate the data sets from the Life-in-Transition Survey 2010 and 2016 with binomial regression models. The results indicate that both interpersonal and institutional trust have positive effects on the support for the welfare system in all the three areas under investigation: helping the needy, public healthcare and public education, both in the less developed countries of the former Soviet Union and in the more developed Eastern European countries. Furthermore, the positive effects of interpersonal and institutional trust on support for helping the needy, public healthcare and public education were found to grow over time. In conclusion, this study confirms that interpersonal and institutional trusts have positive effects for the public support of the welfare system in these transitional countries under investigation, regardless of their level of development.Keywords: central and eastern Europe, former Soviet union, international social welfare policy, comparative social welfare policy
Procedia PDF Downloads 1309034 First Survey of Seasonal Abundance and Daily Activity of Stomoxys calcitrans: In Zaouiet Sousse, the Sahel Area of Tunisia
Authors: Amira Kalifa, Faïek Errouissi
Abstract:
The seasonal changes and the daily activity of Stomoxys calcitrans (Diptera: Muscidae) were examined, using Vavoua traps, in a dairy cattle farm in Zaouiet Sousse, the Sahel area of Tunisia during May 2014 to October 2014. Over this period, a total of 4366 hematophagous diptera were captured and Stomoxys calcitrans was the most commonly trapped species (96.52%). Analysis of the seasonal activity, showed that S.calcitrans is bivoltine, with two peaks: a significant peak is recorded in May-June, during the dry season, and a second peak at the end of October, which is quite weak. This seasonal pattern would depend on climatic factors, particularly the temperature of the manure and that of the air. The activity pattern of Stomoxys calcitrans was diurnal with seasonal variations. The daily rhythm shows a peak between 11:00 am to 15:00 pm in May and between 11:00 am to 17:00 pm in June. These vector flies are important pests of livestock in Tunisia, where they are known as a mechanical vector of several pathogens and have a considerable economic and health impact on livestock. A better knowledge of their ecology is a prerequisite for more efficient control measures.Keywords: cattle farm, daily rhythm, Stomoxys calcitrans, seasonal activity
Procedia PDF Downloads 272