Search results for: forest age
18 Bio-Hub Ecosystems: Expansion of Traditional Life Cycle Analysis Metrics to Include Zero-Waste Circularity Measures
Authors: Kimberly Samaha
Abstract:
In order to attract new types of investors into the emerging Bio-Economy, a new set of metrics and measurement system is needed to better quantify the environmental, social and economic impacts of circular zero-waste design. The Bio-Hub Ecosystem model was developed to address a critical area of concern within the global energy market regarding the use of biomass as a feedstock for power plants. Lack of an economically-viable business model for bioenergy facilities has resulted in the continuation of idled and decommissioned plants. In particular, the forestry-based plants which have been an invaluable outlet for woody biomass surplus, forest health improvement, timber production enhancement, and especially reduction of wildfire risk. This study looked at repurposing existing biomass-energy plants into Circular Zero-Waste Bio-Hub Ecosystems. A Bio-Hub model that first targets a ‘whole-tree’ approach and then looks at the circular economics of co-hosting diverse industries (wood processing, aquaculture, agriculture) in the vicinity of the Biomass Power Plants facilities. It proposes not only models for integration of forestry, aquaculture, and agriculture in cradle-to-cradle linkages of what have typically been linear systems, but the proposal also allows for the early measurement of the circularity and impact of resource use and investment risk mitigation, for these systems. Typically, life cycle analyses measure environmental impacts of different industrial production stages and are not integrated with indicators of material use circularity. This concept paper proposes the further development of a new set of metrics that would illustrate not only the typical life-cycle analysis (LCA), which shows the reduction in greenhouse gas (GHG) emissions, but also the zero-waste circularity measures of mass balance of the full value chain of the raw material and energy content/caloric value. These new measures quantify key impacts in making hyper-efficient use of natural resources and eliminating waste to landfills. The project utilized traditional LCA using the GREET model where the standalone biomass energy plant case was contrasted with the integration of a jet-fuel biorefinery. The methodology was then expanded to include combinations of co-hosts that optimize the life cycle of woody biomass from tree to energy, CO₂, heat and wood ash both from an energy/caloric value and for mass balance to include reuse of waste streams which are typically landfilled. The major findings of both a formal LCA study resulted in the masterplan for the first Bio-Hub to be built in West Enfield, Maine. Bioenergy facilities are currently at a critical juncture where they have an opportunity to be repurposed into efficient, profitable and socially responsible investments, or be idled and scrapped. If proven as a model, the expedited roll-out of these innovative scenarios can set a new standard for circular zero-waste projects that advance the critical transition from the current ‘take-make-dispose’ paradigm inherent in the energy, forestry and food industries to a more sustainable bio-economy paradigm where waste streams become valuable inputs, supporting local and rural communities in simple, sustainable ways.Keywords: bio-economy, biomass energy, financing, metrics
Procedia PDF Downloads 15617 Developing Early Intervention Tools: Predicting Academic Dishonesty in University Students Using Psychological Traits and Machine Learning
Authors: Pinzhe Zhao
Abstract:
This study focuses on predicting university students' cheating tendencies using psychological traits and machine learning techniques. Academic dishonesty is a significant issue that compromises the integrity and fairness of educational institutions. While much research has been dedicated to detecting cheating behaviors after they have occurred, there is limited work on predicting such tendencies before they manifest. The aim of this research is to develop a model that can identify students who are at higher risk of engaging in academic misconduct, allowing for earlier interventions to prevent such behavior. Psychological factors are known to influence students' likelihood of cheating. Research shows that traits such as test anxiety, moral reasoning, self-efficacy, and achievement motivation are strongly linked to academic dishonesty. High levels of anxiety may lead students to cheat as a way to cope with pressure. Those with lower self-efficacy are less confident in their academic abilities, which can push them toward dishonest behaviors to secure better outcomes. Students with weaker moral judgment may also justify cheating more easily, believing it to be less wrong under certain conditions. Achievement motivation also plays a role, as students driven primarily by external rewards, such as grades, are more likely to cheat compared to those motivated by intrinsic learning goals. In this study, data on students’ psychological traits is collected through validated assessments, including scales for anxiety, moral reasoning, self-efficacy, and motivation. Additional data on academic performance, attendance, and engagement in class are also gathered to create a more comprehensive profile. Using machine learning algorithms such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks, the research builds models that can predict students’ cheating tendencies. These models are trained and evaluated using metrics like accuracy, precision, recall, and F1 scores to ensure they provide reliable predictions. The findings demonstrate that combining psychological traits with machine learning provides a powerful method for identifying students at risk of cheating. This approach allows for early detection and intervention, enabling educational institutions to take proactive steps in promoting academic integrity. The predictive model can be used to inform targeted interventions, such as counseling for students with high test anxiety or workshops aimed at strengthening moral reasoning. By addressing the underlying factors that contribute to cheating behavior, educational institutions can reduce the occurrence of academic dishonesty and foster a culture of integrity. In conclusion, this research contributes to the growing body of literature on predictive analytics in education. It offers a approach by integrating psychological assessments with machine learning to predict cheating tendencies. This method has the potential to significantly improve how academic institutions address academic dishonesty, shifting the focus from punishment after the fact to prevention before it occurs. By identifying high-risk students and providing them with the necessary support, educators can help maintain the fairness and integrity of the academic environment.Keywords: academic dishonesty, cheating prediction, intervention strategies, machine learning, psychological traits, academic integrity
Procedia PDF Downloads 2016 Deep Learning Based Polarimetric SAR Images Restoration
Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli
Abstract:
In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry
Procedia PDF Downloads 9015 Genome-Scale Analysis of Streptomyces Caatingaensis CMAA 1322 Metabolism, a New Abiotic Stress-Tolerant Actinomycete
Authors: Suikinai Nobre Santos, Ranko Gacesa, Paul F. Long, Itamar Soares de Melo
Abstract:
Extremophilic microorganism are adapted to biotopes combining several stress factors (temperature, pressure, radiation, salinity and pH), which indicate the richness valuable resource for the exploitation of novel biotechnological processes and constitute unique models for investigations their biomolecules (1, 2). The above information encourages us investigate bioprospecting synthesized compounds by a noval actinomycete, designated thermotolerant Streptomyces caatingaensis CMAA 1322, isolated from sample soil tropical dry forest (Caatinga) in the Brazilian semiarid region (3-17°S and 35-45°W). This set of constrating physical and climatic factores provide the unique conditions and a diversity of well adapted species, interesting site for biotechnological purposes. Preliminary studies have shown the great potential in the production of cytotoxic, pesticidal and antimicrobial molecules (3). Thus, to extend knowledge of the genes clusters responsible for producing biosynthetic pathways of natural products in strain CMAA1322, whole-genome shotgun (WGS) DNA sequencing was performed using paired-end long sequencing with PacBio RS (Pacific Biosciences). Genomic DNA was extracted from a pure culture grown overnight on LB medium using the PureLink genomic DNA kit (Life Technologies). An approximately 3- to 20-kb-insert PacBio library was constructed and sequenced on an 8 single-molecule real-time (SMRT) cell, yielding 116,269 reads (average length, 7,446 bp), which were allocated into 18 contigs, with 142.11x coverage and N50 value of 20.548 bp (BioProject number PRJNA288757). The assembled data were analyzed by Rapid Annotations using Subsystems Technology (RAST) (4) the genome size was found to be 7.055.077 bp, comprising 6167 open reading frames (ORFs) and 413 subsystems. The G+C content was estimated to be 72 mol%. The closest-neighbors tool, available in RAST through functional comparison of the genome, revealed that strain CMAA1322 is more closely related to Streptomyces hygroscopicus ATCC 53653 (similarity score value, 537), S. violaceusniger Tu 4113 (score value, 483), S. avermitilis MA-4680 (score value, 475), S. albus J1074 (score value, 447). The Streptomyces sp. CMAA1322 genome contains 98 tRNA genes and 135 genes copies related to stress response, mainly osmotic stress (14), heat shock (16), oxidative stress (49). Functional annotation by antiSMASH version 3.0 (5) identified 41 clusters for secondary metabolites (including two clusters for lanthipeptides, ten clusters for nonribosomal peptide synthetases [NRPS], three clusters for siderophores, fourteen for polyketide synthetase [PKS], six clusters encoding a terpene, two clusters encoding a bacteriocin, and one cluster encoding a phenazine). Our work provide in comparative analyse of genome and extract produced (data no published) by lineage CMAA1322, revealing the potential of microorganisms accessed from extreme environments as Caatinga” to produce a wide range of biotechnological relevant compounds.Keywords: caatinga, streptomyces, environmental stresses, biosynthetic pathways
Procedia PDF Downloads 24214 Relationship between Illegal Wildlife Trade and Community Conservation: A Case Study of the Chepang Community in Nepal
Authors: Vasundhara H. Krishnani, Ajay Saini, Dibesh Karmacharya, Salit Kark
Abstract:
Illegal Wildlife Trade is one of the most pressing global conservation challenges. Unregulated wildlife trade can threaten biodiversity, contribute to habitat loss, limit sustainable development efforts, and expedite species declines and extinctions. In low-income and middle-income countries, such as Nepal and other countries in Asia and Africa, many of the people engaged in the early stages of illegal wildlife trade, which includes the hunting and transportation of wildlife, belong to Indigenous tribes and local communities.These countries primarily rely on punitive measures to prevent and suppress Illegal Wildlife Trade. For example, in Nepal, people involved in wildlife crimes can often be sentenced to incarceration and a hefty fine and serve up to 15 years in prison. Despite these harsh punitive measures, illegal wildlife trade remains a significant conservation challenge in many countries. The aim of this study was to examine factors affecting the participation of Indigenous communities in Illegal Wildlife Trade while recording the experiences of members of the Indigenous Chepang community, some of whom were imprisoned for their alleged involvement in rhino poaching. Chepangs, belonging to traditionally a hunter-gatherer community, are often considered an isolated and marginalized Indigenous community, some of whom live around the Chitwan National Park in Nepal. Established in 1973, Chitwan National Park is situated in the Chitwan Valley of Nepal and was one of the first regions that was declared as a protected area in Nepal, aiming to protect the one-horned rhinoceros as a flagship species. Conducted over a period of three years, this study used semi-structured interviews and focus group discussions to collect data from Illegal Wildlife Trade offenders, family members of offenders, community Elders, NGO personnel, community forest representatives, Chepang community representatives, and Government school teachers from the region surrounding Chitwan National Park. The study also examined the social, cultural, health, and financial impacts that the imprisonment of offenders had on the families of the community members, especially women and children. The results suggest that involvement of the members of the Chepang community living around Chitwan National Park in the poaching of the one-horned rhinoceros (Rhinoceros unicornis) can be attributed to a range of factors, some of which include: lack of livelihood opportunities, lack of awareness regarding wildlife rules and regulations and poverty.This work emphasises the need for raising awareness and building programs to enhance alternative livelihood training and empower indigenous and marginalised communities that provide sustainable alternatives. Furthermore, the issue needs to be addressed as a community solution which includes all community members. We suggest this multi-pronged approach can benefit wildlife conservation by reducing illegal poaching and wildlife trade, as well as community conservation in regions with similar challenges. By actively involving and empowering local communities, the communities become key stakeholders in the conservation process. This involvement contributes to protecting wildlife and natural ecosystems while simultaneously providing sustainable livelihood options for local communities.Keywords: alternative livelihoods, chepang community, illegal wildlife trade, low-and middle-income countries, nepal, one-horned rhinoceros
Procedia PDF Downloads 11113 The Vanishing Treasure: An Anthropological Study on Changing Social Relationships, Values, Belief System and Language Pattern of the Limbus in Kalimpong Sub-Division of the Darjeeling District in West Bengal, India
Authors: Biva Samadder, Samita Manna
Abstract:
India is a melting pot of races, tribes, castes and communities. The population of India can be roughly branched into the huge majority of “Civilized” Indians of the Plains and the minority of Tribal population of the hill area and the forest who constituting almost 16 percent of total population of India. The Kirat community composed of four ethnic tribes: Limbu, Lepcha, Dhimal, and Rai. These Kirat people were found to be rich in indigenous knowledge, skill and practices especially for the use on medicinal plants and livelihood purposes. The “Mundhum" is the oral scripture or the “Bible of the Limbus” which serves as the canon of the codes of the Limbu socialization, their moral values and the very orientation of their lifestyle. From birth till death the Limbus are disciplined in the life with full of religious rituals, traditions and culture governed by community norms with a rich legacy of indigenous knowledge and traditional practices. The present study has been conducted using both secondary as well as primary data by applying social methodology consisting of the social survey, questionnaire, interviews and observations in the Kalimpong Block-I of Darjeeling District of west Bengal of India, which is a heterogeneous zone in terms of its ethnic composition and where the Limbus are pre-dominantly concentrated. Due to their close contact with other caste and communities Limbus are now adjusted with the changing situation by borrowing some cultural traits from the other communities and changes that have taken place in their cultural practices, religious beliefs, economic aspects, languages and in social roles and relationships which is bringing the change in their material culture. Limbu language is placed in the Tibeto- Burman Language category. But due to the political and cultural domination of educationally sound and numerically dominant Bengali race, the different communities in this area forced to come under the one umbrella of the Nepali or Gorkhali nation (nation-people). Their respective identities had to be submerged in order to constitute as a strong force to resist Nepali domination and ensure their common survival. As Nepali is a lingua-franca of the area knowing and speaking Nepali language helps them in procuring economic and occupational facilities. Ironically, present day younger generation does not feel comfortable speaking in their own Limbu tongue. The traditional knowledge about medicinal plants, healing, and health culture is found to be wear away due to the lack of interest of young generation. Not only poverty, along with exclusion due to policies they are in the phase of extinction, but their capabilities are ignored and not documented and preserved especially in the case of Limbus who having a great cultural heritage of an oral tradition. Attempts have been made to discuss the persistence and changes in socioeconomic pattern of life in relation to the social structure, material culture, cultural practices, social relationships, indigenous technology, ethos and their values and belief system.Keywords: changing social relationship, cultural transition, identity, indigenous knowledge, language
Procedia PDF Downloads 17212 Explanation of the Main Components of the Unsustainability of Cooperative Institutions in Cooperative Management Projects to Combat Desertification in South Khorasan Province
Authors: Yaser Ghasemi Aryan, Firoozeh Moghiminejad, Mohammadreza Shahraki
Abstract:
Background: The cooperative institution is considered the first and most essential pillar of strengthening social capital, whose sustainability is the main guarantee of survival and continued participation of local communities in natural resource management projects. The Village Development Group and the Microcredit Fund are two important social and economic institutions in the implementation of the International Project for the Restoration of Degraded Forest Lands (RFLDL) in Sarayan City, South Khorasan Province, which has learned positive lessons from the participation of the beneficiaries in the implementation. They have brought more effective projects to deal with desertification. However, the low activity or liquidation of some of these institutions has become one of the important challenges and concerns of project executive experts. The current research was carried out with the aim of explaining the main components of the instability of these institutions. Materials and Methods: This research is descriptive-analytical in terms of method, practical in terms of purpose, and the method of collecting information is two documentary and survey methods. The statistical population of the research included all the members of the village development groups and microcredit funds in the target villages of the RFLDL project of Sarayan city, based on the Kochran formula and matching with the Karjesi and Morgan table. Net people were selected as a statistical sample. After confirming the validity of the expert's opinions, the reliability of the questionnaire was 0.83, which shows the appropriate reliability of the researcher-made questionnaire. Data analysis was done using SPSS software. Results: The results related to the extraction of obstacles to the stability of social and economic networks were classified and prioritized in the form of 5 groups of social-cultural, economic, administrative, educational-promotional and policy-management factors. Based on this, in the socio-cultural factors, the items ‘not paying attention to the structural characteristics and composition of groups’, ‘lack of commitment and moral responsibility in some members of the group,’ and ‘lack of a clear pattern for the preservation and survival of groups’, in the disciplinary factors, The items ‘Irregularity in holding group meetings’ and ‘Irregularity of members to participate in meetings’, in the economic factors of the items "small financial capital of the fund’, ‘the low amount of loans of the fund’ and ‘the fund's inability to conclude contracts and attract capital from other sources’, in the educational-promotional factors of the items ‘non-simultaneity of job training with the granting of loans to create jobs’ and ‘insufficient training for the effective use of loans and job creation’ and in the policy-management factors of the item ‘failure to provide government facilities for support From the funds, they had the highest priority. Conclusion: In general, the results of this research show that policy-management factors and social factors, especially the structure and composition of social and economic institutions, are the most important obstacles to their sustainability. Therefore, it is suggested to form cooperative institutions based on network analysis studies in order to achieve the appropriate composition of members.Keywords: cooperative institution, social capital, network analysis, participation, Sarayan.
Procedia PDF Downloads 5511 The Future of Adventure Tourism in a Warmer World: An Exploratory Study of Mountain Guides’ Perception of Environmental Change in Canada
Authors: Brooklyn Rushton, Michelle Rutty, Natalie Knowles, Daniel Scott
Abstract:
As people are increasingly on the search for extraordinary experiences and connections with nature, adventure tourism is experiencing significant growth and providing tourists with life-changing experiences. Unlike built attraction-based tourism, adventure tourism relies entirely on natural heritage, which leaves communities dependent on adventure tourism extremely vulnerable to environmental and climatic changes. A growing body of evidence suggests that global climate change will influence the future of adventure tourism and mountain outdoor recreation opportunities on a global scale. Across Canada, more specifically, climate change is broadly anticipated to present risks for winter-snow sports, while opportunities are anticipated to arise for green season activities. These broad seasonal shifts do not account for the indirect impacts of climate change on adventure tourism, such as the cost of adaptation or the increase of natural hazards and the associated likelihood of accidents. While some research has examined the impact of climate change on natural environments that adventure tourism relies on, a very small body of research has specifically focused on guides’ perspectives or included hard adventure tourism activities. The guiding industry is unique, as guides are trained through an elegant blend of art and science to make decisions based on experience, observation, and intuition. While quantitative research can monitor change in natural environments, guides local knowledge can provide eye-witness accounts and outline what environmental changes mean for the future sustainability of adventure tourism. This research will capture the extensive knowledge of mountain guides to better understand the implications of climate change for mountain adventure and potential adaptive responses for the adventure tourism industry. This study uses a structured online survey with open and close-ended questions that will be administered using Qualtrics (an online survey platform). This survey is disseminated to current members of the Association of Canadian Mountain Guides (ACMG). Participation in this study will be exclusive to members of the ACMG operating in the outdoor guiding streams. The 25 survey questions are organized into four sections: demographic and professional operation (9 questions), physical change (4 questions), climate change perception (6 questions), and climate change adaptation (6 questions). How mountain guides perceive and respond to climate change is important knowledge for the future of the expanding adventure tourism industry. Results from this study are expected to provide important information to mountain destinations on climate change vulnerability and adaptive capacity. Expected results of this study include guides insight into: (1) experience-safety relevant observed physical changes in guided regions (i.e. glacial coverage, permafrost coverage, precipitation, temperature, and slope instability) (2) changes in hazards within the guiding environment (i.e. avalanches, rockfall, icefall, forest fires, flooding, and extreme weather events), (3) existing and potential adaptation strategies, and (4) key information and other barriers for adaptation. By gaining insight from the knowledge of mountain guides, this research can help the tourism industry at large understand climate risk and create adaptation strategies to ensure the resiliency of the adventure tourism industry.Keywords: adventure tourism, climate change, environmental change, mountain hazards
Procedia PDF Downloads 19110 A Descriptive Study on Water Scarcity as a One Health Challenge among the Osiram Community, Kajiado County, Kenya
Authors: Damiano Omari, Topirian Kerempe, Dibo Sama, Walter Wafula, Sharon Chepkoech, Chrispine Juma, Gilbert Kirui, Simon Mburu, Susan Keino
Abstract:
The One Health concept was officially adopted by the international organizations and scholarly bodies in 1984. It aims at combining human, animal and environmental components to address global health challenges. Using collaborative efforts optimal health to people, animals, and the environment can be achieved. One health approach plays a significant approach role in prevention and control of zoonosis diseases. It has also been noted that 75% of new emerging human infectious diseases are zoonotic. In Kenya, one health has been embraced and strongly advocated for by One Health East and Central Africa (OHCEA). It was inaugurated on 17th of October 2010 at a historic meeting facilitated by USAID with participants from 7 public health schools, seven faculties of veterinary medicine in Eastern Africa and 2 American universities (Tufts and University of Minnesota) in addition to respond project staff. The study was conducted in Loitoktok Sub County, specifically in the Amboseli Ecosystem. The Amboseli ecosystem covers an area of 5,700 square kilometers and stretches between Mt. Kilimanjaro, Chyulu Hills, Tsavo West National park and the Kenya/Tanzania border. The area is arid to semi-arid and is more suitable for pastoralism with a high potential for conservation of wildlife and tourism enterprises. The ecosystem consists of the Amboseli National Park, which is surrounded by six group ranches which include Kimana, Olgulului, Selengei, Mbirikani, Kuku and Rombo in Loitoktok District. The Manyatta of study was Osiram Cultural Manyatta in Mbirikani group ranch. Apart from visiting the Manyatta, we also visited the sub-county hospital, slaughter slab, forest service, Kimana market, and the Amboseli National Park. The aim of the study was to identify the one health issues facing the community. This was done by a conducting a community needs assessment and prioritization. Different methods were used in data collection for the qualitative and numerical data. They include among others; key informant interviews and focus group discussions. We also guided the community members in drawing their Resource Map this helped identify the major resources in their land and also help them identify some of the issues they were facing. Matrix piling, root cause analysis, and force field analysis tools were used to establish the one health related priority issues facing community members. Skits were also used to present to the community interventions to the major one health issues. Some of the prioritized needs among the community were water scarcity and inadequate markets for their beadwork. The group intervened on the various needs of the Manyatta. For water scarcity, we educated the community on water harvesting methods using gutters as well as proper storage by the use of tanks and earth dams. The community was also encouraged to recycle and conserve water. To improve markets; we educated the community to upload their products online, a page was opened for them and uploading the photos was demonstrated to them. They were also encouraged to be innovative to attract more clients.Keywords: Amboseli ecosystem, community interventions, community needs assessment and prioritization, one health issues
Procedia PDF Downloads 1699 Optimizing Machine Learning Algorithms for Defect Characterization and Elimination in Liquids Manufacturing
Authors: Tolulope Aremu
Abstract:
The key process steps to produce liquid detergent products will introduce potential defects, such as formulation, mixing, filling, and packaging, which might compromise product quality, consumer safety, and operational efficiency. Real-time identification and characterization of such defects are of prime importance for maintaining high standards and reducing waste and costs. Usually, defect detection is performed by human inspection or rule-based systems, which is very time-consuming, inconsistent, and error-prone. The present study overcomes these limitations in dealing with optimization in defect characterization within the process for making liquid detergents using Machine Learning algorithms. Performance testing of various machine learning models was carried out: Support Vector Machine, Decision Trees, Random Forest, and Convolutional Neural Network on defect detection and classification of those defects like wrong viscosity, color deviations, improper filling of a bottle, packaging anomalies. These algorithms have significantly benefited from a variety of optimization techniques, including hyperparameter tuning and ensemble learning, in order to greatly improve detection accuracy while minimizing false positives. Equipped with a rich dataset of defect types and production parameters consisting of more than 100,000 samples, our study further includes information from real-time sensor data, imaging technologies, and historic production records. The results are that optimized machine learning models significantly improve defect detection compared to traditional methods. Take, for instance, the CNNs, which run at 98% and 96% accuracy in detecting packaging anomaly detection and bottle filling inconsistency, respectively, by fine-tuning the model with real-time imaging data, through which there was a reduction in false positives of about 30%. The optimized SVM model on detecting formulation defects gave 94% in viscosity variation detection and color variation. These values of performance metrics correspond to a giant leap in defect detection accuracy compared to the usual 80% level achieved up to now by rule-based systems. Moreover, this optimization with models can hasten defect characterization, allowing for detection time to be below 15 seconds from an average of 3 minutes using manual inspections with real-time processing of data. With this, the reduction in time will be combined with a 25% reduction in production downtime because of proactive defect identification, which can save millions annually in recall and rework costs. Integrating real-time machine learning-driven monitoring drives predictive maintenance and corrective measures for a 20% improvement in overall production efficiency. Therefore, the optimization of machine learning algorithms in defect characterization optimum scalability and efficiency for liquid detergent companies gives improved operational performance to higher levels of product quality. In general, this method could be conducted in several industries within the Fast moving consumer Goods industry, which would lead to an improved quality control process.Keywords: liquid detergent manufacturing, defect detection, machine learning, support vector machines, convolutional neural networks, defect characterization, predictive maintenance, quality control, fast-moving consumer goods
Procedia PDF Downloads 188 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem
Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis
Abstract:
Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile
Procedia PDF Downloads 2597 The Systematic Impact of Climatic Disasters on the Maternal Health in Pakistan
Authors: Yiqi Zhu, Jean Francois Trani, Rameez Ulhassan
Abstract:
Extreme weather phenomena increased by 46% between 2007 and 2017 and have become more intense with the rise in global average temperatures. This increased intensity of climate variations often induces humanitarian crises and particularly affects vulnerable populations in low- and middle-income countries (LMICs). Expectant and lactating mothers are among the most vulnerable groups. Pakistan ranks 10th among the most affected countries by climate disasters. In 2022, monsoon floods submerged a third of the country, causing the loss of 1,500 lives. Approximately 650,000 expectant and lactating mothers faced systematic stress from climatic disasters. Our study used participatory methods to investigate the systematic impact of climatic disasters on maternal health. In March 2023, we conducted six Group Model Building (GMB) workshops with healthcare workers, fathers, and mothers separately in two of the most affected areas in Pakistan. This study was approved by the Islamic Relief Research Review Board. GMB workshops consist of three sessions. In the first session, participants discussed the factors that impact maternal health. After identifying the factors, they discussed the connections among them and explored the system structures that collectively impact maternal health. Based on the discussion, a causal loop diagram (CLD) was created. Finally, participants discussed action ideas that could improve the system to enhance maternal health. Based on our discussions and the causal loop diagram, we identified interconnected factors at the family, community, and policy levels. Mothers and children are directly impacted by three interrelated factors: food insecurity, unstable housing, and lack of income. These factors create a reinforcing cycle that negatively affects both mothers and newborns. After the flood, many mothers were unable to produce sufficient breastmilk due to their health status. Without breastmilk and sufficient food for complementary feeding, babies tend to get sick in damp and unhygienic environments resulting from temporary or unstable housing. When parents take care of sick children, they miss out on income-generating opportunities. At the community level, the lack of access to clean water and sanitation (WASH) and maternal healthcare further worsens the situation. Structural failures such as a lack of safety nets and programs associated with flood preparedness make families increasingly vulnerable with each disaster. Several families reported that they had not fully recovered from a flood that occurred ten years ago, and this latest disaster destroyed their lives again. Although over twenty non-profit organizations are working in these villages, few of them provide sustainable support. Therefore, participants called for systemic changes in response to the increasing frequency of climate disasters. The study reveals the systematic vulnerabilities of mothers and children after climatic disasters. The most vulnerable populations are often affected the most by climate change. Collaborative efforts are required to improve water and forest management, strengthen public infrastructure, increase access to WASH, and gradually build climate-resilient communities. Governments, non-governmental organizations, and the community should work together to develop and implement effective strategies to prevent, mitigate, and adapt to climate change and its impacts.Keywords: climatic disasters, maternal health, Pakistan, systematic impact, flood, disaster relief.
Procedia PDF Downloads 766 Mining and Ecological Events and its Impact on the Genesis and Geo-Distribution of Ebola Outbreaks in Africa
Authors: E Tambo, O. O. Olalubi, E. C. Ugwu, J. Y. Ngogang
Abstract:
Despite the World Health Organization (WHO) declaration of international health emergency concern, the status quo of responses and efforts to stem the worst-recorded Ebola epidemic Ebola outbreak is still precariously inadequate in most of the affected in West. Mining natural resources have been shown to play a key role in both motivating and fuelling ethnic, civil and armed conflicts that have plagued a number of African countries over the last decade. Revenues from the exploitation of natural resources are not only used in sustaining the national economy but also armies, personal enrichment and building political support. Little is documented on the mining and ecological impact on the emergence and geographical distribution of Ebola in Africa over time and space. We aimed to provide a better understanding of the interconnectedness among issues of mining natural, resource management, mining conflict and post-conflict on Ebola outbreak and how wealth generated from abundant natural resources could be better managed in promoting research and development towards strengthening environmental, socioeconomic and health systems sustainability on Ebola outbreak and other emerging diseases surveillance and responses systems prevention and control, early warning alert, durable peace and sustainable development rather than to fuel conflicts, resurgence and emerging diseases epidemics in the perspective of community and national/regional approach. Our results showed the first assessment of systematic impact of all major minerals conflict events diffusion over space and time and mining activities on nine Ebola genesis and geo-distribution in affected countries across Africa. We demonstrate how, where and when mining activities in Africa increase ecological degradation, conflicts at the local level and then spreads violence across territory and time by enhancing the financial capacities of fighting groups/ethnics and diseases onset. In addition, led process of developing minimum standards for natural resource governance; improving governmental and civil society capacity for natural resource management, including the strengthening of monitoring and enforcement mechanisms; understanding the post-mining and conflicts community or national reconstruction and rehabilitation programmes in strengthening or developing community health systems and regulatory mechanisms. In addition the quest for the control over these resources and illegal mining across the landscape forest incursion provided increase environmental and ecological instability and displacement and disequilibrium, therefore affecting the intensity and duration of mining and conflict/wars and episode of Ebola outbreaks over time and space. We highlight the key findings and lessons learnt in promoting country or community-led process in transforming natural resource wealth from a peace liability to a peace asset. The imperative necessity for advocacy and through facilitating intergovernmental deliberations on critical issues and challenges affecting Africa community transforming exploitation of natural resources from a peace liability to outbreak prevention and control. The vital role of mining in increasing government revenues and expenditures, equitable distribution of wealth and health to all stakeholders, in particular local communities requires coordination, cooperative leadership and partnership in fostering sustainable developmental initiatives from mining context to outbreak and other infectious diseases surveillance responses systems in prevention and control, and judicious resource management.Keywords: mining, mining conflicts, mines, ecological, Ebola, outbreak, mining companies, miners, impact
Procedia PDF Downloads 3015 Antimicrobial and Antioxidant Activities of Actinobacteria Isolated from the Pollen of Pinus sylvestris Grown on the Lake Baikal Shore
Authors: Denis V. Axenov-Gribanov, Irina V. Voytsekhovskaya, Evgenii S. Protasov, Maxim A. Timofeyev
Abstract:
Isolated ecosystems existing under specific environmental conditions have been shown to be promising sources of new strains of actinobacteria. The taiga forest of Baikal Siberia has not been well studied, and its actinobacterial population remains uncharacterized. The proximity between the huge water mass of Lake Baikal and high mountain ranges influences the structure and diversity of the plant world in Siberia. Here, we report the isolation of eighteen actinobacterial strains from male cones of Pinus sylvestris trees growing on the shore of the ancient Lake Baikal in Siberia. The actinobacterial strains were isolated on solid nutrient MS media and Czapek agar supplemented with cycloheximide and phosphomycin. Identification of actinobacteria was carried out by 16S rRNA gene sequencing and further analysis of the evolutionary history. Four different liquid and solid media (NL19, DNPM, SG and ISP) were tested for metabolite production. The metabolite extracts produced by the isolated strains were tested for antibacterial and antifungal activities. Also, antiradical activity of crude extracts was carried out. Strain Streptomyces sp. IB 2014 I 74-3 that active against Gram-negative bacteria was selected for dereplication analysis with using the high-yield liquid chromatography with mass-spectrometry. Mass detection was performed in both positive and negative modes, with the detection range set to 160–2500 m/z. Data were collected and analyzed using Bruker Compass Data Analysis software, version 4.1. Dereplication was performed using the Dictionary of Natural Products (DNP) database version 6.1 with the following search parameters: accurate molecular mass, absorption spectra and source of compound isolation. Thus, in addition to more common representative strains of Streptomyces, several species belonging to the genera Rhodococcus, Amycolatopsis, and Micromonospora were isolated. Several of the selected strains were deposited in the Russian Collection of Agricultural Microorganisms (RCAM), St. Petersburg, Russia. All isolated strains exhibited antibacterial and antifungal activities. We identified several strains that inhibited the growth of the pathogen Candida albicans but did not hinder the growth of Saccharomyces cerevisiae. Several isolates were active against Gram-positive and Gram-negative bacteria. Moreover, extracts of several strains demonstrated high antioxidant activity. The high proportion of biologically active strains producing antibacterial and specific antifungal compounds may reflect their role in protecting pollen against phytopathogens. Dereplication of the secondary metabolites of the strain Streptomyces sp. IB 2014 I 74-3 was resulted in the fact that a total of 59 major compounds were detected in the culture liquid extract of strain cultivated in ISP medium. Eight compounds were preliminarily identified based on characteristics described in the Dictionary of Natural Products database, using the search parameters Streptomyces sp. IB 2014 I 74-3 was found to produce saframycin A, Y3 and S; 2-amino-3-oxo-3H-phenoxazine-1,8-dicarboxylic acid; galtamycinone; platencin A4-13R and A4-4S; ganefromycin d1; the antibiotic SS 8201B; and streptothricin D, 40-decarbamoyl, 60-carbamoyl. Moreover, forty-nine of the 59 compounds detected in the extract examined in the present study did not result in any positive hits when searching within the DNP database and could not be identified based on available mass-spec data. Thus, these compounds might represent new findings.Keywords: actinobacteria, Baikal Lake, biodiversity, male cones, Pinus sylvestris
Procedia PDF Downloads 2324 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2113 EcoTeka, an Open-Source Software for Urban Ecosystem Restoration through Technology
Authors: Manon Frédout, Laëtitia Bucari, Mathias Aloui, Gaëtan Duhamel, Olivier Rovellotti, Javier Blanco
Abstract:
Ecosystems must be resilient to ensure cleaner air, better water and soil quality, and thus healthier citizens. Technology can be an excellent tool to support urban ecosystem restoration projects, especially when based on Open Source and promoting Open Data. This is the goal of the ecoTeka application: one single digital tool for tree management which allows decision-makers to improve their urban forestry practices, enabling more responsible urban planning and climate change adaptation. EcoTeka provides city councils with three main functionalities tackling three of their challenges: easier biodiversity inventories, better green space management, and more efficient planning. To answer the cities’ need for reliable tree inventories, the application has been first built with open data coming from the websites OpenStreetMap and OpenTrees, but it will also include very soon the possibility of creating new data. To achieve this, a multi-source algorithm will be elaborated, based on existing artificial intelligence Deep Forest, integrating open-source satellite images, 3D representations from LiDAR, and street views from Mapillary. This data processing will permit identifying individual trees' position, height, crown diameter, and taxonomic genus. To support urban forestry management, ecoTeka offers a dashboard for monitoring the city’s tree inventory and trigger alerts to inform about upcoming due interventions. This tool was co-constructed with the green space departments of the French cities of Alès, Marseille, and Rouen. The third functionality of the application is a decision-making tool for urban planning, promoting biodiversity and landscape connectivity metrics to drive ecosystem restoration roadmap. Based on landscape graph theory, we are currently experimenting with new methodological approaches to scale down regional ecological connectivity principles to local biodiversity conservation and urban planning policies. This methodological framework will couple graph theoretic approach and biological data, mainly biodiversity occurrences (presence/absence) data available on both international (e.g., GBIF), national (e.g., Système d’Information Nature et Paysage) and local (e.g., Atlas de la Biodiversté Communale) biodiversity data sharing platforms in order to help reasoning new decisions for ecological networks conservation and restoration in urban areas. An experiment on this subject is currently ongoing with Montpellier Mediterranee Metropole. These projects and studies have shown that only 26% of tree inventory data is currently geo-localized in France - the rest is still being done on paper or Excel sheets. It seems that technology is not yet used enough to enrich the knowledge city councils have about biodiversity in their city and that existing biodiversity open data (e.g., occurrences, telemetry, or genetic data), species distribution models, landscape graph connectivity metrics are still underexploited to make rational decisions for landscape and urban planning projects. This is the goal of ecoTeka: to support easier inventories of urban biodiversity and better management of urban spaces through rational planning and decisions relying on open databases. Future studies and projects will focus on the development of tools for reducing the artificialization of soils, selecting plant species adapted to climate change, and highlighting the need for ecosystem and biodiversity services in cities.Keywords: digital software, ecological design of urban landscapes, sustainable urban development, urban ecological corridor, urban forestry, urban planning
Procedia PDF Downloads 702 Robust Decision Support Framework for Addressing Uncertainties in Water Resources Management in the Mekong
Authors: Chusit Apirumanekul, Chayanis Krittasudthacheewa, Ratchapat Ratanavaraha, Yanyong Inmuong
Abstract:
Rapid economic development in the Lower Mekong region is leading to changes in water quantity and quality. Changes in land- and forest-use, infrastructure development, increasing urbanization, migration patterns and climate risks are increasing demands for water, within various sectors, placing pressure on scarce water resources. Appropriate policies, strategies, and planning are urgently needed for improved water resource management. Over the last decade, Thailand has experienced more frequent and intense drought situations, affecting the level of water storage in reservoirs along with insufficient water allocation for agriculture during the dry season. The Huay Saibat River Basin, one of the well-known water-scarce areas in the northeastern region of Thailand, is experiencing ongoing water scarcity that affects both farming livelihoods and household consumption. Drought management in Thailand mainly focuses on emergency responses, rather than advance preparation and mitigation for long-term solutions. Despite many efforts from local authorities to mitigate the drought situation, there is yet no long-term comprehensive water management strategy, that integrates climate risks alongside other uncertainties. This paper assesses the application in the Huay Saibat River Basin, of the Robust Decision Support framework, to explore the feasibility of multiple drought management policies; including a shift in cropping season, in crop changes, in infrastructural operations and in the use of groundwater, under a wide range of uncertainties, including climate and land-use change. A series of consultative meetings were organized with relevant agencies and experts at the local level, to understand and explore plausible water resources strategies and identify thresholds to evaluate the performance of those strategies. Three different climate conditions were identified (dry, normal and wet). Other non-climatic factors influencing water allocation were further identified, including changes from sugarcane to rubber, delaying rice planting, increasing natural retention storage and using groundwater to supply demands for household consumption and small-scale gardening. Water allocation and water use in various sectors, such as in agriculture, domestic, industry and the environment, were estimated by utilising the Water Evaluation And Planning (WEAP) system, under various scenarios developed from the combination of climatic and non-climatic factors mentioned earlier. Water coverage (i.e. percentage of water demand being successfully supplied) was defined as a threshold for water resource strategy assessment. Thresholds for different sectors (agriculture, domestic, industry, and environment) were specified during multi-stakeholder engagements. Plausible water strategies (e.g. increasing natural retention storage, change of crop type and use of groundwater as an alternative source) were evaluated based on specified thresholds in 4 sectors (agriculture, domestic, industry, and environment) under 3 climate conditions. 'Business as usual' was evaluated for comparison. The strategies considered robust, emerge when performance is assessed as successful, under a wide range of uncertainties across the river basin. Without adopting any strategy, the water scarcity situation is likely to escalate in the future. Among the strategies identified, the use of groundwater as an alternative source was considered a potential option in combating water scarcity for the basin. Further studies are needed to explore the feasibility for groundwater use as a potential sustainable source.Keywords: climate change, robust decision support, scenarios, water resources management
Procedia PDF Downloads 1701 Moths of Indian Himalayas: Data Digging for Climate Change Monitoring
Authors: Angshuman Raha, Abesh Kumar Sanyal, Uttaran Bandyopadhyay, Kaushik Mallick, Kamalika Bhattacharyya, Subrata Gayen, Gaurab Nandi Das, Mohd. Ali, Kailash Chandra
Abstract:
Indian Himalayan Region (IHR), due to its sheer latitudinal and altitudinal expanse, acts as a mixing ground for different zoogeographic faunal elements. The innumerable unique and distributional restricted rare species of IHR are constantly being threatened with extinction by the ongoing climate change scenario. Many of which might have faced extinction without even being noticed or discovered. Monitoring the community dynamics of a suitable taxon is indispensable to assess the effect of this global perturbation at micro-habitat level. Lepidoptera, particularly moths are suitable for this purpose due to their huge diversity and strict herbivorous nature. The present study aimed to collate scattered historical records of moths from IHR and spatially disseminate the same in Geographic Information System (GIS) domain. The study also intended to identify moth species with significant altitudinal shifts which could be prioritised for monitoring programme to assess the effect of climate change on biodiversity. A robust database on moths recorded from IHR was prepared from voluminous secondary literature and museum collections. Historical sampling points were transformed into richness grids which were spatially overlaid on altitude, annual precipitation and vegetation layers separately to show moth richness patterns along major environmental gradients. Primary samplings were done by setting standard light traps at 11 Protected Areas representing five Indian Himalayan biogeographic provinces. To identify significant altitudinal shifts, past and present altitudinal records of the identified species from primary samplings were compared. A consolidated list of 4107 species belonging to 1726 genera of 62 families of moths was prepared from a total of 10,685 historical records from IHR. Family-wise assemblage revealed Erebidae to be the most speciose family with 913 species under 348 genera, followed by Geometridae with 879 species under 309 genera and Noctuidae with 525 species under 207 genera. Among biogeographic provinces, Central Himalaya represented maximum records with 2248 species, followed by Western and North-western Himalaya with 1799 and 877 species, respectively. Spatial analysis revealed species richness was more or less uniform (up to 150 species record per cell) across IHR. Throughout IHR, the middle elevation zones between 1000-2000m encompassed high species richness. Temperate coniferous forest associated with 1500-2000mm rainfall zone showed maximum species richness. Total 752 species of moths were identified representing 23 families from the present sampling. 13 genera were identified which were restricted to specialized habitats of alpine meadows over 3500m. Five historical localities with high richness of >150 species were selected which could be considered for repeat sampling to assess climate change influence on moth assemblage. Of the 7 species exhibiting significant altitudinal ascend of >2000m, Trachea auriplena, Diphtherocome fasciata (Noctuidae) and Actias winbrechlini (Saturniidae) showed maximum range shift of >2500m, indicating intensive monitoring of these species. Great Himalayan National Park harbours most diverse assemblage of high-altitude restricted species and should be a priority site for habitat conservation. Among the 13 range restricted genera, Arichanna, Opisthograptis, Photoscotosia (Geometridae), Phlogophora, Anaplectoides and Paraxestia (Noctuidae) were dominant and require rigorous monitoring, as they are most susceptible to climatic perturbations.Keywords: altitudinal shifts, climate change, historical records, Indian Himalayan region, Lepidoptera
Procedia PDF Downloads 169