Search results for: normal inverse gaussian distribution
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8256

Search results for: normal inverse gaussian distribution

7356 Atomistic Insight into the System of Trapped Oil Droplet/ Nanofluid System in Nanochannels

Authors: Yuanhao Chang, Senbo Xiao, Zhiliang Zhang, Jianying He

Abstract:

The role of nanoparticles (NPs) in enhanced oil recovery (EOR) is being increasingly emphasized. In this study, the motion of NPs and local stress distribution of tapped oil droplet/nanofluid in nanochannels are studied with coarse-grained modeling and molecular dynamic simulations. The results illustrate three motion patterns for NPs: hydrophilic NPs are more likely to adsorb on the channel and stay near the three-phase contact areas, hydrophobic NPs move inside the oil droplet as clusters and more mixed NPs are trapped at the oil-water interface. NPs in each pattern affect the flow of fluid and the interfacial thickness to various degrees. Based on the calculation of atomistic stress, the characteristic that the higher value of stress occurs at the place where NPs aggregate can be obtained. Different occurrence patterns correspond to specific local stress distribution. Significantly, in the three-phase contact area for hydrophilic NPs, the local stress distribution close to the pattern of structural disjoining pressure is observed, which proves the existence of structural disjoining pressure in molecular dynamics simulation for the first time. Our results guide the design and screen of NPs for EOR and provide a basic understanding of nanofluid applications.

Keywords: local stress distribution, nanoparticles, enhanced oil recovery, molecular dynamics simulation, trapped oil droplet, structural disjoining pressure

Procedia PDF Downloads 137
7355 Distribution System Planning with Distributed Generation and Capacitor Placements

Authors: Nattachote Rugthaicharoencheep

Abstract:

This paper presents a feeder reconfiguration problem in distribution systems. The objective is to minimize the system power loss and to improve bus voltage profile. The optimization problem is subjected to system constraints consisting of load-point voltage limits, radial configuration format, no load-point interruption, and feeder capability limits. A method based on genetic algorithm, a search algorithm based on the mechanics of natural selection and natural genetics, is proposed to determine the optimal pattern of configuration. The developed methodology is demonstrated by a 33-bus radial distribution system with distributed generations and feeder capacitors. The study results show that the optimal on/off patterns of the switches can be identified to give the minimum power loss while respecting all the constraints.

Keywords: network reconfiguration, distributed generation capacitor placement, loss reduction, genetic algorithm

Procedia PDF Downloads 178
7354 The Estimation Method of Stress Distribution for Beam Structures Using the Terrestrial Laser Scanning

Authors: Sang Wook Park, Jun Su Park, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

This study suggests the estimation method of stress distribution for the beam structures based on TLS (Terrestrial Laser Scanning). The main components of method are the creation of the lattices of raw data from TLS to satisfy the suitable condition and application of CSSI (Cubic Smoothing Spline Interpolation) for estimating stress distribution. Estimation of stress distribution for the structural member or the whole structure is one of the important factors for safety evaluation of the structure. Existing sensors which include ESG (Electric strain gauge) and LVDT (Linear Variable Differential Transformer) can be categorized as contact type sensor which should be installed on the structural members and also there are various limitations such as the need of separate space where the network cables are installed and the difficulty of access for sensor installation in real buildings. To overcome these problems inherent in the contact type sensors, TLS system of LiDAR (light detection and ranging), which can measure the displacement of a target in a long range without the influence of surrounding environment and also get the whole shape of the structure, has been applied to the field of structural health monitoring. The important characteristic of TLS measuring is a formation of point clouds which has many points including the local coordinate. Point clouds is not linear distribution but dispersed shape. Thus, to analyze point clouds, the interpolation is needed vitally. Through formation of averaged lattices and CSSI for the raw data, the method which can estimate the displacement of simple beam was developed. Also, the developed method can be extended to calculate the strain and finally applicable to estimate a stress distribution of a structural member. To verify the validity of the method, the loading test on a simple beam was conducted and TLS measured it. Through a comparison of the estimated stress and reference stress, the validity of the method is confirmed.

Keywords: structural healthcare monitoring, terrestrial laser scanning, estimation of stress distribution, coordinate transformation, cubic smoothing spline interpolation

Procedia PDF Downloads 434
7353 Invasive Ranges of Gorse (Ulex europaeus) in South Australia and Sri Lanka Using Species Distribution Modelling

Authors: Champika S. Kariyawasam

Abstract:

The distribution of gorse (Ulex europaeus) plants in South Australia has been modelled using 126 presence-only location data as a function of seven climate parameters. The predicted range of U. europaeus is mainly along the Mount Lofty Ranges in the Adelaide Hills and on Kangaroo Island. Annual precipitation and yearly average aridity index appeared to be the highest contributing variables to the final model formulation. The Jackknife procedure was employed to identify the contribution of different variables to gorse model outputs and response curves were used to predict changes with changing environmental variables. Based on this analysis, it was revealed that the combined effect of one or more variables could make a completely different impact to the original variables on their own to the model prediction. This work also demonstrates the need for a careful approach when selecting environmental variables for projecting correlative models to climatically distinct area. Maxent acts as a robust model when projecting the fitted species distribution model to another area with changing climatic conditions, whereas the generalized linear model, bioclim, and domain models to be less robust in this regard. These findings are important not only for predicting and managing invasive alien gorse in South Australia and Sri Lanka but also in other countries of the invasive range.

Keywords: invasive species, Maxent, species distribution modelling, Ulex europaeus

Procedia PDF Downloads 134
7352 Improvement of the 3D Finite Element Analysis of High Voltage Power Transformer Defects in Time Domain

Authors: M. Rashid Hussain, Shady S. Refaat

Abstract:

The high voltage power transformer is the most essential part of the electrical power utilities. Reliability on the transformers is the utmost concern, and any failure of the transformers can lead to catastrophic losses in electric power utility. The causes of transformer failure include insulation failure by partial discharge, core and tank failure, cooling unit failure, current transformer failure, etc. For the study of power transformer defects, finite element analysis (FEA) can provide valuable information on the severity of defects. FEA provides a more accurate representation of complex geometries because they consider thermal, electrical, and environmental influences on the insulation models to obtain basic characteristics of the insulation system during normal and partial discharge conditions. The purpose of this paper is the time domain analysis of defects 3D model of high voltage power transformer using FEA to study the electric field distribution at different points on the defects.

Keywords: power transformer, finite element analysis, dielectric response, partial discharge, insulation

Procedia PDF Downloads 158
7351 A Two-Pronged Truncated Deferred Sampling Plan for Log-Logistic Distribution

Authors: Braimah Joseph Odunayo, Jiju Gillariose

Abstract:

This paper is aimed at developing a sampling plan that uses information from precedent and successive lots for lot disposition with a pretention that the life-time of a particular product assumes a Log-logistic distribution. A Two-pronged Truncated Deferred Sampling Plan (TTDSP) for Log-logistic distribution is proposed when the testing is truncated at a precise time. The best possible sample sizes are obtained under a given Maximum Allowable Percent Defective (MAPD), Test Suspension Ratios (TSR), and acceptance numbers (c). A formula for calculating the operating characteristics of the proposed plan is also developed. The operating characteristics and mean-ratio values were used to measure the performance of the plan. The findings of the study show that: Log-logistic distribution has a decreasing failure rate; furthermore, as mean-life ratio increase, the failure rate reduces; the sample size increase as the acceptance number, test suspension ratios and maximum allowable percent defective increases. The study concludes that the minimum sample sizes were smaller, which makes the plan a more economical plan to adopt when cost and time of production are costly and the experiment being destructive.

Keywords: consumers risk, mean life, minimum sample size, operating characteristics, producers risk

Procedia PDF Downloads 142
7350 Evaluation of the Effect of Turbulence Caused by the Oscillation Grid on Oil Spill in Water Column

Authors: Mohammad Ghiasvand, Babak Khorsandi, Morteza Kolahdoozan

Abstract:

Under the influence of waves, oil in the sea is subject to vertical scattering in the water column. Scientists' knowledge of how oil is dispersed in the water column is one of the lowest levels of knowledge among other processes affecting oil in the marine environment, which highlights the need for research and study in this field. Therefore, this study investigates the distribution of oil in the water column in a turbulent environment with zero velocity characteristics. Lack of laboratory results to analyze the distribution of petroleum pollutants in deep water for information Phenomenon physics on the one hand and using them to calibrate numerical models on the other hand led to the development of laboratory models in research. According to the aim of the present study, which is to investigate the distribution of oil in homogeneous and isotropic turbulence caused by the oscillating Grid, after reaching the ideal conditions, the crude oil flow was poured onto the water surface and oil was distributed in deep water due to turbulence was investigated. In this study, all experimental processes have been implemented and used for the first time in Iran, and the study of oil diffusion in the water column was considered one of the key aspects of pollutant diffusion in the oscillating Grid environment. Finally, the required oscillation velocities were taken at depths of 10, 15, 20, and 25 cm from the water surface and used in the analysis of oil diffusion due to turbulence parameters. The results showed that with the characteristics of the present system in two static modes and network motion with a frequency of 0.8 Hz, the results of oil diffusion in the four mentioned depths at a frequency of 0.8 Hz compared to the static mode from top to bottom at 26.18, 57 31.5, 37.5 and 50% more. Also, after 2.5 minutes of the oil spill at a frequency of 0.8 Hz, oil distribution at the mentioned depths increased by 49, 61.5, 85, and 146.1%, respectively, compared to the base (static) state.

Keywords: homogeneous and isotropic turbulence, oil distribution, oscillating grid, oil spill

Procedia PDF Downloads 75
7349 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features

Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh

Abstract:

In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.

Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve

Procedia PDF Downloads 264
7348 Performance Degradation for the GLR Test-Statistics for Spatial Signal Detection

Authors: Olesya Bolkhovskaya, Alexander Maltsev

Abstract:

Antenna arrays are widely used in modern radio systems in sonar and communications. The solving of the detection problems of a useful signal on the background of noise is based on the GLRT method. There is a large number of problem which depends on the known a priori information. In this work, in contrast to the majority of already solved problems, it is used only difference spatial properties of the signal and noise for detection. We are analyzing the influence of the degree of non-coherence of signal and noise unhomogeneity on the performance characteristics of different GLRT statistics. The description of the signal and noise is carried out by means of the spatial covariance matrices C in the cases of different number of known information. The partially coherent signal is simulated as a plane wave with a random angle of incidence of the wave concerning a normal. Background noise is simulated as random process with uniform distribution function in each element. The results of investigation of degradation of performance characteristics for different cases are represented in this work.

Keywords: GLRT, Neumann-Pearson’s criterion, Test-statistics, degradation, spatial processing, multielement antenna array

Procedia PDF Downloads 385
7347 Studies on Partial Replacement of Cement by Rice Husk Ash under Sodium Phosphate Medium

Authors: Dharmana Pradeep, Chandan Kumar Patnaikuni, N. V. S. Venugopal

Abstract:

Rice Husk Ash (RHA) is a green product contains carbon and also loaded with silica. For the development of durability and strength of any concrete, curing phenomenon shall be very important. In this communication, we reported the exposure of partial replacement of cement with RHA at different percentages of 0%, 5%, 7.5%, 10%, 12.5% and 15% by weight under sodium phosphate curing atmosphere. The mix is designed for M40 grade concrete with the proportions of 1:2.2:3.72. The tests conducted on concrete was a compressive strength, and the specimens were cured in normal water & exposed to the chemical solution for 7, 28 & 56 days. For chemical curing 0.5% & 1% concentrated sodium phosphates were used and were compared with normal concrete strength results. The strength of specimens of 1% sodium phosphate exposure showed that the compressive strength decreased with increase in RHA percentages.

Keywords: rice husk ash, compressive strength, sodium phosphate, curing

Procedia PDF Downloads 346
7346 Atlantic Sailfish (Istiophorus albicans) Distribution off the East Coast of Florida from 2003 to 2018 in Response to Sea Surface Temperature

Authors: Meredith M. Pratt

Abstract:

The Atlantic sailfish (Istiophorus albicans) ranges from 40°N to 40°S in the Western Atlantic Ocean and has great economic and recreational value for sport fishers. Off the eastern coast of Florida, charter boats often target this species. Stuart, Florida, bills itself as the sailfish capital of the world. Sailfish tag data from The Billfish Foundation and NOAA was used to determine the relationship between sea surface temperature (SST) and the distribution of Atlantic sailfish caught and released over a fifteen-year period (2003 to 2018). Tagging information was collected from local sports fishermen in Florida. Using the time and location of each landed sailfish, a satellite-derived SST value was obtained for each point. The purpose of this study was to determine if sea surface warming was associated with changes in sailfish distribution. On average, sailfish were caught at 26.16 ± 1.70°C (x̄ ± s.d.) over the fifteen-year period. The most sailfish catches occurred at temperatures ranging from 25.2°C to 25.5°C. Over the fifteen-year period, sailfish catches decreased at lower temperatures (~23°C and ~24°C) and at 31°C. At ~25°C and ~30°C there was no change in catch numbers of sailfish. From 26°C to 29°C, there was an increase in the number of sailfish. Based on these results, increasing ocean temperatures will have an impact on the distribution and habitat utilization of sailfish. Warming sea surface temperatures create a need for more policy and regulation to protect the Atlantic sailfish and related highly migratory billfish species.

Keywords: atlantic sailfish, Billfish, istiophorus albicans, sea surface temperature

Procedia PDF Downloads 146
7345 Finding the Longest Common Subsequence in Normal DNA and Disease Affected Human DNA Using Self Organizing Map

Authors: G. Tamilpavai, C. Vishnuppriya

Abstract:

Bioinformatics is an active research area which combines biological matter as well as computer science research. The longest common subsequence (LCSS) is one of the major challenges in various bioinformatics applications. The computation of the LCSS plays a vital role in biomedicine and also it is an essential task in DNA sequence analysis in genetics. It includes wide range of disease diagnosing steps. The objective of this proposed system is to find the longest common subsequence which presents in a normal and various disease affected human DNA sequence using Self Organizing Map (SOM) and LCSS. The human DNA sequence is collected from National Center for Biotechnology Information (NCBI) database. Initially, the human DNA sequence is separated as k-mer using k-mer separation rule. Mean and median values are calculated from each separated k-mer. These calculated values are fed as input to the Self Organizing Map for the purpose of clustering. Then obtained clusters are given to the Longest Common Sub Sequence (LCSS) algorithm for finding common subsequence which presents in every clusters. It returns nx(n-1)/2 subsequence for each cluster where n is number of k-mer in a specific cluster. Experimental outcomes of this proposed system produce the possible number of longest common subsequence of normal and disease affected DNA data. Thus the proposed system will be a good initiative aid for finding disease causing sequence. Finally, performance analysis is carried out for different DNA sequences. The obtained values show that the retrieval of LCSS is done in a shorter time than the existing system.

Keywords: clustering, k-mers, longest common subsequence, SOM

Procedia PDF Downloads 267
7344 Motion Planning and Simulation Design of a Redundant Robot for Sheet Metal Bending Processes

Authors: Chih-Jer Lin, Jian-Hong Hou

Abstract:

Industry 4.0 is a vision of integrated industry implemented by artificial intelligent computing, software, and Internet technologies. The main goal of industry 4.0 is to deal with the difficulty owing to competitive pressures in the marketplace. For today’s manufacturing factories, the type of production is changed from mass production (high quantity production with low product variety) to medium quantity-high variety production. To offer flexibility, better quality control, and improved productivity, robot manipulators are used to combine material processing, material handling, and part positioning systems into an integrated manufacturing system. To implement the automated system for sheet metal bending operations, motion planning of a 7-degrees of freedom (DOF) robot is studied in this paper. A virtual reality (VR) environment of a bending cell, which consists of the robot and a bending machine, is established using the virtual robot experimentation platform (V-REP) simulator. For sheet metal bending operations, the robot only needs six DOFs for the pick-and-place or tracking tasks. Therefore, this 7 DOF robot has more DOFs than the required to execute a specified task; it can be called a redundant robot. Therefore, this robot has kinematic redundancies to deal with the task-priority problems. For redundant robots, Pseudo-inverse of the Jacobian is the most popular motion planning method, but the pseudo-inverse methods usually lead to a kind of chaotic motion with unpredictable arm configurations as the Jacobian matrix lose ranks. To overcome the above problem, we proposed a method to formulate the motion planning problems as optimization problem. Moreover, a genetic algorithm (GA) based method is proposed to deal with motion planning of the redundant robot. Simulation results validate the proposed method feasible for motion planning of the redundant robot in an automated sheet-metal bending operations.

Keywords: redundant robot, motion planning, genetic algorithm, obstacle avoidance

Procedia PDF Downloads 149
7343 Spatial Differentiation of Elderly Care Facilities in Mountainous Cities: A Case Study of Chongqing

Authors: Xuan Zhao, Wen Jiang

Abstract:

In this study, a web crawler was used to collect POI sample data from 38 districts and counties of Chongqing in 2022, and ArcGIS was combined to coordinate and projection conversion and realize data visualization. Nuclear density analysis and spatial correlation analysis were used to explore the spatial distribution characteristics of elderly care facilities in Chongqing, and K mean cluster analysis was carried out with GeoDa to study the spatial concentration degree of elderly care resources in 38 districts and counties. Finally, the driving force of spatial differentiation of elderly care facilities in various districts and counties of Chongqing is studied by using the method of geographic detector. The results show that: (1) in terms of spatial distribution structure, the distribution of elderly care facilities in Chongqing is unbalanced, showing a distribution pattern of ‘large dispersion and small agglomeration’ and the asymmetric pattern of ‘west dense and east sparse, north dense and south sparse’ is prominent. (2) In terms of the spatial matching between elderly care resources and the elderly population, there is a weak coordination between the input of elderly care resources and the distribution of the elderly population at the county level in Chongqing. (3) The analysis of the results of the geographical detector shows that the single factor influence is mainly the number of elderly population, public financial revenue and district and county GDP. The high single factor influence is mainly caused by the elderly population, public financial income, and district and county GDP. The influence of each influence factor on the spatial distribution of elderly care facilities is not simply superimposed but has a nonlinear enhancement effect or double factor enhancement. It is necessary to strengthen the synergistic effect of two factors and promote the synergistic effect of multiple factors.

Keywords: aging, elderly care facilities, spatial differentiation, geographical detector, driving force analysis, Mountain city

Procedia PDF Downloads 42
7342 Epicardial Fat Necrosis in a Young Female: A Case Report

Authors: Tayyibah Shah Alam, Joe Thomas, Nayantara Shenoy

Abstract:

Presenting a case that we would like to share, the answer is straight forward but the path taken to get to the diagnosis is where it gets interesting. A 31-year-old lady presented to the Rheumatology Outpatient department with left-sided chest pain associated with left-sided elbow joint pain intensifying over the last 2 days. She had been having a prolonged history of chest pain with minimal intensity since 2016. The pain is intermittent in nature. Aggravated while exerting, lifting heavy weights and lying down. Relieved while sitting. Her physical examination and laboratory tests were within normal limits. An electrocardiogram (ECG) showed normal sinus rhythm and a chest X-ray with no significant abnormality was noted. The primary suspicion was recurrent costochondritis. Cardiac blood inflammatory markers and Echo were normal, ruling out ACS. CT chest and MRI Thorax contrast showed small ill-defined STIR hyperintensity with thin peripheral enhancement in the anterior mediastinum in the left side posterior to the 5th costal cartilage and anterior to the pericardium suggestive of changes in the fat-focal panniculitis. Confirming the diagnosis as Epicardial fat necrosis. She was started on Colchicine and Nonsteroidal anti-inflammatory drugs for 2-3 weeks, following which a repeat CT showed resolution of the lesion and improvement in her. It is often under-recognized or misdiagnosed. CT scan was collectively used to establish the diagnosis. Making the correct diagnosis prospectively alleviates unnecessary testing in favor of conservative management.

Keywords: EFN, panniculitis, unknown etiology, recurrent chest pain

Procedia PDF Downloads 97
7341 Geo-Additive Modeling of Family Size in Nigeria

Authors: Oluwayemisi O. Alaba, John O. Olaomi

Abstract:

The 2013 Nigerian Demographic Health Survey (NDHS) data was used to investigate the determinants of family size in Nigeria using the geo-additive model. The fixed effect of categorical covariates were modelled using the diffuse prior, P-spline with second-order random walk for the nonlinear effect of continuous variable, spatial effects followed Markov random field priors while the exchangeable normal priors were used for the random effects of the community and household. The Negative Binomial distribution was used to handle overdispersion of the dependent variable. Inference was fully Bayesian approach. Results showed a declining effect of secondary and higher education of mother, Yoruba tribe, Christianity, family planning, mother giving birth by caesarean section and having a partner who has secondary education on family size. Big family size is positively associated with age at first birth, number of daughters in a household, being gainfully employed, married and living with partner, community and household effects.

Keywords: Bayesian analysis, family size, geo-additive model, negative binomial

Procedia PDF Downloads 544
7340 The Possibility of Using Somatosensory Evoked Potential(SSEP) as a Parameter for Cortical Vascular Dementia

Authors: Hyunsik Park

Abstract:

As the rate of cerebrovascular disease increases in old populations, the prevalence rate of vascular dementia would be expected. Therefore, authors designed this study to find out the possibility of somatosensory evoked potentials(SSEP) as a parameter for early diagnosis and prognosis prediction of vascular dementia in cortical vascular dementia patients. 21 patients who met the criteria for vascular dementia according to DSM-IV,ICD-10and NINDS-AIREN with the history of recent cognitive impairment, fluctuation progression, and neurologic deficit. We subdivided these patients into two groups; a mild dementia and a severe dementia groups by MMSE and CDR score; and analysed comparison between normal control group and patient control group who have been cerebrovascular attack(CVA) history without dementia by using N20 latency and amplitude of median nerve. In this study, mild dementia group showed significant differences on latency and amplitude with normal control group(p-value<0.05) except patient control group(p-value>0.05). Severe dementia group showed significant differences both normal control group and patient control group.(p-value<0.05, <001). Since no significant difference has founded between mild dementia group and patient control group, SSEP has limitation to use for early diagnosis test. However, the comparison between severe dementia group and others showed significant results which indicate SSEP can predict the prognosis of vascular dementia in cortical vascular dementia patients.

Keywords: SSEP, cortical vascular dementia, N20 latency, N20 amplitude

Procedia PDF Downloads 304
7339 Estimation of Particle Size Distribution Using Magnetization Data

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Magnetic nanoparticles possess fascinating properties which make their behavior unique in comparison to corresponding bulk materials. Superparamagnetism is one such interesting phenomenon exhibited only by small particles of magnetic materials. In this state, the thermal energy of particles become more than their magnetic anisotropy energy, and so particle magnetic moment vectors fluctuate between states of minimum energy. This situation is similar to paramagnetism of non-interacting ions and termed as superparamagnetism. The magnetization of such systems has been described by Langevin function. But, the estimated fit parameters, in this case, are found to be unphysical. It is due to non-consideration of particle size distribution. In this work, analysis of magnetization data on NiO nanoparticles is presented considering the effect of particle size distribution. Nanoparticles of NiO of two different sizes are prepared by heating freshly synthesized Ni(OH)₂ at different temperatures. Room temperature X-ray diffraction patterns confirm the formation of single phase of NiO. The diffraction lines are seen to be quite broad indicating the nanocrystalline nature of the samples. The average crystallite size are estimated to be about 6 and 8 nm. The samples are also characterized by transmission electron microscope. Magnetization of both sample is measured as function of temperature and applied magnetic field. Zero field cooled and field cooled magnetization are measured as a function of temperature to determine the bifurcation temperature. The magnetization is also measured at several temperatures in superparamagnetic region. The data are fitted to an appropriate expression considering a distribution in particle size following a least square fit procedure. The computer codes are written in PYTHON. The presented analysis is found to be very useful for estimating the particle size distribution present in the samples. The estimated distributions are compared with those determined from transmission electron micrographs.

Keywords: anisotropy, magnetization, nanoparticles, superparamagnetism

Procedia PDF Downloads 143
7338 An Intelligent Text Independent Speaker Identification Using VQ-GMM Model Based Multiple Classifier System

Authors: Ben Soltane Cheima, Ittansa Yonas Kelbesa

Abstract:

Speaker Identification (SI) is the task of establishing identity of an individual based on his/her voice characteristics. The SI task is typically achieved by two-stage signal processing: training and testing. The training process calculates speaker specific feature parameters from the speech and generates speaker models accordingly. In the testing phase, speech samples from unknown speakers are compared with the models and classified. Even though performance of speaker identification systems has improved due to recent advances in speech processing techniques, there is still need of improvement. In this paper, a Closed-Set Tex-Independent Speaker Identification System (CISI) based on a Multiple Classifier System (MCS) is proposed, using Mel Frequency Cepstrum Coefficient (MFCC) as feature extraction and suitable combination of vector quantization (VQ) and Gaussian Mixture Model (GMM) together with Expectation Maximization algorithm (EM) for speaker modeling. The use of Voice Activity Detector (VAD) with a hybrid approach based on Short Time Energy (STE) and Statistical Modeling of Background Noise in the pre-processing step of the feature extraction yields a better and more robust automatic speaker identification system. Also investigation of Linde-Buzo-Gray (LBG) clustering algorithm for initialization of GMM, for estimating the underlying parameters, in the EM step improved the convergence rate and systems performance. It also uses relative index as confidence measures in case of contradiction in identification process by GMM and VQ as well. Simulation results carried out on voxforge.org speech database using MATLAB highlight the efficacy of the proposed method compared to earlier work.

Keywords: feature extraction, speaker modeling, feature matching, Mel frequency cepstrum coefficient (MFCC), Gaussian mixture model (GMM), vector quantization (VQ), Linde-Buzo-Gray (LBG), expectation maximization (EM), pre-processing, voice activity detection (VAD), short time energy (STE), background noise statistical modeling, closed-set tex-independent speaker identification system (CISI)

Procedia PDF Downloads 310
7337 Functioning of Public Distribution System and Calories Intake in the State of Maharashtra

Authors: Balasaheb Bansode, L. Ladusingh

Abstract:

The public distribution system is an important component of food security. It is a massive welfare program undertaken by Government of India and implemented by state government since India being a federal state; for achieving multiple objectives like eliminating hunger, reduction in malnutrition and making food consumption affordable. This program reaches at the community level through the various agencies of the government. The paper focuses on the accessibility of PDS at household level and how the present policy framework results in exclusion and inclusion errors. It tries to explore the sanctioned food grain quantity received by differentiated ration cards according to income criterion at household level, and also it has highlighted on the type of corruption in food distribution that is generated by the PDS system. The data used is of secondary nature from NSSO 68 round conducted in 2012. Bivariate and multivariate techniques have been used to understand the working and consumption of food for this paper.

Keywords: calories intake, entitle food quantity, poverty aliviation through PDS, target error

Procedia PDF Downloads 336
7336 Nonparametric Copula Approximations

Authors: Serge Provost, Yishan Zang

Abstract:

Copulas are currently utilized in finance, reliability theory, machine learning, signal processing, geodesy, hydrology and biostatistics, among several other fields of scientific investigation. It follows from Sklar's theorem that the joint distribution function of a multidimensional random vector can be expressed in terms of its associated copula and marginals. Since marginal distributions can easily be determined by making use of a variety of techniques, we address the problem of securing the distribution of the copula. This will be done by using several approaches. For example, we will obtain bivariate least-squares approximations of the empirical copulas, modify the kernel density estimation technique and propose a criterion for selecting appropriate bandwidths, differentiate linearized empirical copulas, secure Bernstein polynomial approximations of suitable degrees, and apply a corollary to Sklar's result. Illustrative examples involving actual observations will be presented. The proposed methodologies will as well be applied to a sample generated from a known copula distribution in order to validate their effectiveness.

Keywords: copulas, Bernstein polynomial approximation, least-squares polynomial approximation, kernel density estimation, density approximation

Procedia PDF Downloads 75
7335 Influence of the Non-Uniform Distribution of Filler Porosity on the Thermal Performance of Sensible Heat Thermocline Storage Tanks

Authors: Yuchao Hua, Lingai Luo

Abstract:

Thermal energy storage is of critical importance for the highly-efficient utilization of renewable energy sources. Over the past decades, single-tank thermocline technology has attracted much attention owing to its high cost-effectiveness. In the present work, we investigate the influence of the filler porosity’s non-uniform distribution on the thermal performance of the packed-bed sensible heat thermocline storage tanks on the basis of the analytical model obtained by the Laplace transform. It is found that when the total amount of filler materials (i.e., the integration of porosity) is fixed, the different porosity distributions can result in the significantly-different behaviors of outlet temperature and thus the varied charging and discharging efficiencies. Our results indicate that a non-uniform distribution of the fillers with the proper design can improve the heat storage performance without changing the total amount of the filling materials.

Keywords: energy storage, heat thermocline storage tank, packed bed, transient thermal analysis

Procedia PDF Downloads 95
7334 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents

Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary

Abstract:

Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.

Keywords: heart rate variability, time domain analysis, mental stress, hypertensive

Procedia PDF Downloads 274
7333 Numerical Investigation of Fluid Flow and Temperature Distribution on Power Transformer Windings Using Open Foam

Authors: Saeed Khandan Siar, Stefan Tenbohlen, Christian Breuer, Raphael Lebreton

Abstract:

The goal of this article is to investigate the detailed temperature distribution and the fluid flow of an oil cooled winding of a power transformer by means of computational fluid dynamics (CFD). The experimental setup consists of three passes of a zig-zag cooled disc type winding, in which losses are modeled by heating cartridges in each winding segment. A precise temperature sensor measures the temperature of each turn. The laboratory setup allows the exact control of the boundary conditions, e.g. the oil flow rate and the inlet temperature. Furthermore, a simulation model is solved using the open source computational fluid dynamics solver OpenFOAM and validated with the experimental results. The model utilizes the laminar and turbulent flow for the different mass flow rate of the oil. The good agreement of the simulation results with experimental measurements validates the model.

Keywords: CFD, conjugated heat transfer, power transformers, temperature distribution

Procedia PDF Downloads 424
7332 Analysis of EEG Signals Using Wavelet Entropy and Approximate Entropy: A Case Study on Depression Patients

Authors: Subha D. Puthankattil, Paul K. Joseph

Abstract:

Analyzing brain signals of the patients suffering from the state of depression may lead to interesting observations in the signal parameters that is quite different from a normal control. The present study adopts two different methods: Time frequency domain and nonlinear method for the analysis of EEG signals acquired from depression patients and age and sex matched normal controls. The time frequency domain analysis is realized using wavelet entropy and approximate entropy is employed for the nonlinear method of analysis. The ability of the signal processing technique and the nonlinear method in differentiating the physiological aspects of the brain state are revealed using Wavelet entropy and Approximate entropy.

Keywords: EEG, depression, wavelet entropy, approximate entropy, relative wavelet energy, multiresolution decomposition

Procedia PDF Downloads 333
7331 Study of the Anti-Diabetic Activity of the Common Fig in the Region of the El Amra (Ain Defla), Algeria

Authors: Meliani Samiha, Hassaine Sarah

Abstract:

Figs are so much consumed in the Mediterranean region; they present a high nutritional value and also multiple therapeutic virtues. Our work contributes to the study of the antidiabetic activity of the common fig of the region of El Amra (AinDefla) Algeria. To do this, 20 Wistar rats female, divided into 4 lots, were used: Lot 1: 5 normal controls; Lot 2: 5 normal controls treated with dry fig juice at 20%; Lot 3: 5 diabetic controls; Lot 4: 5 diabetic controls treated with dry fig juice at 20%. The rats are rendered diabetic by intra-peritoneal injection of a streptozotocin solution. The blood glucose is measured after 1 hour, 2 hours, 3 hours and after 4 hours of the administration of the fig juice; it’s measured also on the 5th day, 8th day and 9th day of the beginning of the experiment. The determination of cholesterol and triglycerides blood is carried out at the beginning and the end of the study. On the 9th day, we recorded a very significant decrease of the blood sugar level of diabetic rats treated with dry fig juice. This blood glucose level normalized for 3 rats/5rats, we also recorded a decrease, but not significant, of cholesterol and triglycerides blood levels. In the short term (for 4 hours), an increase of blood sugar level, one hour after administration, for normal and diabetic rats. This increase is probably due to the high level of sugar content in the preparation. The blood glucose level is then corrected, four hours later. This may be the result of anti hyperglycemic effect of the active ingredients contained in the figs.

Keywords: antidiabetic, figs, hypoglycemia, streptozotocin

Procedia PDF Downloads 219
7330 The Effect of Different Parameters on a Single Invariant Lateral Displacement Distribution to Consider the Higher Modes Effect in a Displacement-Based Pushover Procedure

Authors: Mohamad Amin Amini, Mehdi Poursha

Abstract:

Nonlinear response history analysis (NL-RHA) is a robust analytical tool for estimating the seismic demands of structures responding in the inelastic range. However, because of its conceptual and numerical complications, the nonlinear static procedure (NSP) is being increasingly used as a suitable tool for seismic performance evaluation of structures. The conventional pushover analysis methods presented in various codes (FEMA 356; Eurocode-8; ATC-40), are limited to the first-mode-dominated structures, and cannot take higher modes effect into consideration. Therefore, since more than a decade ago, researchers developed enhanced pushover analysis procedures to take higher modes effect into account. The main objective of this study is to propose an enhanced invariant lateral displacement distribution to take higher modes effect into consideration in performing a displacement-based pushover analysis, whereby a set of laterally applied displacements, rather than forces, is monotonically applied to the structure. For this purpose, the effect of different parameters such as the spectral displacement of ground motion, the modal participation factor, and the effective modal participating mass ratio on the lateral displacement distribution is investigated to find the best distribution. The major simplification of this procedure is that the effect of higher modes is concentrated into a single invariant lateral load distribution. Therefore, only one pushover analysis is sufficient without any need to utilize a modal combination rule for combining the responses. The invariant lateral displacement distribution for pushover analysis is then calculated by combining the modal story displacements using the modal combination rules. The seismic demands resulting from the different procedures are compared to those from the more accurate nonlinear response history analysis (NL-RHA) as a benchmark solution. Two structures of different heights including 10 and 20-story special steel moment resisting frames (MRFs) were selected and evaluated. Twenty ground motion records were used to conduct the NL-RHA. The results show that more accurate responses can be obtained in comparison with the conventional lateral loads when the enhanced modal lateral displacement distributions are used.

Keywords: displacement-based pushover, enhanced lateral load distribution, higher modes effect, nonlinear response history analysis (NL-RHA)

Procedia PDF Downloads 281
7329 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis

Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model

Procedia PDF Downloads 369
7328 Loss Allocation in Radial Distribution Networks for Loads of Composite Types

Authors: Sumit Banerjee, Chandan Kumar Chanda

Abstract:

The paper presents allocation of active power losses and energy losses to consumers connected to radial distribution networks in a deregulated environment for loads of composite types. A detailed comparison among four algorithms, namely quadratic loss allocation, proportional loss allocation, pro rata loss allocation and exact loss allocation methods are presented. Quadratic and proportional loss allocations are based on identifying the active and reactive components of current in each branch and the losses are allocated to each consumer, pro rata loss allocation method is based on the load demand of each consumer and exact loss allocation method is based on the actual contribution of active power loss by each consumer. The effectiveness of the proposed comparison among four algorithms for composite load is demonstrated through an example.

Keywords: composite type, deregulation, loss allocation, radial distribution networks

Procedia PDF Downloads 287
7327 Seismic Base Shear Force Depending on Building Fundamental Period and Site Conditions: Deterministic Formulation and Probabilistic Analysis

Authors: S. Dorbani, M. Badaoui, D. Benouar

Abstract:

The aim of this paper is to investigate the effect of the building fundamental period of reinforced concrete buildings of (6, 9, and 12-storey), with different floor plans: Symmetric, mono-symmetric, and unsymmetric. These structures are erected at different epicentral distances. Using the Boumerdes, Algeria (2003) earthquake data, we focused primarily on the establishment of the deterministic formulation linking the base shear force to two parameters: The first one is the fundamental period that represents the numerical fingerprint of the structure, and the second one is the epicentral distance used to represent the impact of the earthquake on this force. In a second step, with a view to highlight the effect of uncertainty in these parameters on the analyzed response, these parameters are modeled as random variables with a log-normal distribution. The variability of the coefficients of variation of the chosen uncertain parameters, on the statistics on the seismic base shear force, showed that the effect of uncertainty on fundamental period on this force statistics is low compared to the epicentral distance uncertainty influence.

Keywords: base shear force, fundamental period, epicentral distance, uncertainty, lognormal variables, statistics

Procedia PDF Downloads 320