Search results for: predictive models
6597 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images
Authors: Masood Varshosaz, Kamyar Hasanpour
Abstract:
In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.Keywords: human recognition, deep learning, drones, disaster mitigation
Procedia PDF Downloads 996596 Pricing European Continuous-Installment Options under Regime-Switching Models
Authors: Saghar Heidari
Abstract:
In this paper, we study the valuation problem of European continuous-installment options under Markov-modulated models with a partial differential equation approach. Due to the opportunity for continuing or stopping to pay installments, the valuation problem under regime-switching models can be formulated as coupled partial differential equations (CPDE) with free boundary features. To value the installment options, we express the truncated CPDE as a linear complementarity problem (LCP), then a finite element method is proposed to solve the resulted variational inequality. Under some appropriate assumptions, we establish the stability of the method and illustrate some numerical results to examine the rate of convergence and accuracy of the proposed method for the pricing problem under the regime-switching model.Keywords: continuous-installment option, European option, regime-switching model, finite element method
Procedia PDF Downloads 1416595 Combining Laser Scanning and High Dynamic Range Photography for the Presentation of Bloodstain Pattern Evidence
Authors: Patrick Ho
Abstract:
Bloodstain Pattern Analysis (BPA) forensic evidence can be complex, requiring effective courtroom presentation to ensure clear and comprehensive understanding of the analyst’s findings. BPA witness statements can often involve reference to spatial information (such as location of rooms, objects, walls) which, when coupled with classified blood patterns, may illustrate the reconstructed movements of suspects and injured parties. However, it may be difficult to communicate this information through photography alone, despite this remaining the UK’s established method for presenting BPA evidence. Through an academic-police partnership between the University of Warwick and West Midlands Police (WMP), an integrated 3D scanning and HDR photography workflow for BPA was developed. Homicide scenes were laser scanned and, after processing, the 3D models were utilised in the BPA peer-review process. The same 3D models were made available for court but were not always utilised. This workflow has improved the ease of presentation for analysts and provided 3D scene models that assist with the investigation. However, the effects of incorporating 3D scene models in judicial processes may need to be studied before they are adopted more widely. 3D models from a simulated crime scene and West Midlands Police cases approved for conference disclosure are presented. We describe how the workflow was developed and integrated into established practices at WMP, including peer-review processes and witness statement delivery in court, and explain the impact the work has had on the Criminal Justice System in the West Midlands.Keywords: bloodstain pattern analysis, forensic science, criminal justice, 3D scanning
Procedia PDF Downloads 1006594 A Graph-Based Retrieval Model for Passage Search
Authors: Junjie Zhong, Kai Hong, Lei Wang
Abstract:
Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model
Procedia PDF Downloads 1596593 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1366592 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models
Authors: Yahia. Kourd, N. Guersi D. Lefebvre
Abstract:
In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor
Procedia PDF Downloads 6426591 Development of a Model for Predicting Radiological Risks in Interventional Cardiology
Authors: Stefaan Carpentier, Aya Al Masri, Fabrice Leroy, Thibault Julien, Safoin Aktaou, Malorie Martin, Fouad Maaloul
Abstract:
Introduction: During an 'Interventional Radiology (IR)' procedure, the patient's skin-dose may become very high for a burn, necrosis, and ulceration to appear. In order to prevent these deterministic effects, a prediction of the peak skin-dose for the patient is important in order to improve the post-operative care to be given to the patient. The objective of this study is to estimate, before the intervention, the patient dose for ‘Chronic Total Occlusion (CTO)’ procedures by selecting relevant clinical indicators. Materials and methods: 103 procedures were performed in the ‘Interventional Cardiology (IC)’ department using a Siemens Artis Zee image intensifier that provides the Air Kerma of each IC exam. Peak Skin Dose (PSD) was measured for each procedure using radiochromic films. Patient parameters such as sex, age, weight, and height were recorded. The complexity index J-CTO score, specific to each intervention, was determined by the cardiologist. A correlation method applied to these indicators allowed to specify their influence on the dose. A predictive model of the dose was created using multiple linear regressions. Results: Out of 103 patients involved in the study, 5 were excluded for clinical reasons and 2 for placement of radiochromic films outside the exposure field. 96 2D-dose maps were finally used. The influencing factors having the highest correlation with the PSD are the patient's diameter and the J-CTO score. The predictive model is based on these parameters. The comparison between estimated and measured skin doses shows an average difference of 0.85 ± 0.55 Gy for doses of less than 6 Gy. The mean difference between air-Kerma and PSD is 1.66 Gy ± 1.16 Gy. Conclusion: Using our developed method, a first estimate of the dose to the skin of the patient is available before the start of the procedure, which helps the cardiologist in carrying out its intervention. This estimation is more accurate than that provided by the Air-Kerma.Keywords: chronic total occlusion procedures, clinical experimentation, interventional radiology, patient's peak skin dose
Procedia PDF Downloads 1416590 Location Quotients Model in Turkey’s Provinces and Nuts II Regions
Authors: Semih Sözer
Abstract:
One of the most common issues in economic systems is understanding characteristics of economic activities in cities and regions. Although there are critics to economic base models in conceptual and empirical aspects, these models are useful tools to examining the economic structure of a nation, regions or cities. This paper uses one of the methodologies of economic base models namely the location quotients model. Data for this model includes employment numbers of provinces and NUTS II regions in Turkey. Time series of data covers the years of 1990, 2000, 2003, and 2009. Aim of this study is finding which sectors are export-base and which sectors are import-base in provinces and regions. Model results show that big provinces or powerful regions (population, size etc.) mostly have basic sectors in their economic system. However, interesting facts came from different sectors in different provinces and regions in the model results.Keywords: economic base, location quotients model, regional economics, regional development
Procedia PDF Downloads 4276589 Modeling and Simulation of Practical Metamaterial Structures
Authors: Ridha Salhi, Mondher Labidi, Fethi Choubani
Abstract:
Metamaterials have attracted much attention in recent years because of their electromagnetic exquisite proprieties. We will present, in this paper, the modeling of three metamaterial structures by equivalent circuit model. We begin by modeling the SRR (Split Ring Resonator), then we model the HIS (High Impedance Surfaces), and finally, we present the model of the CPW (Coplanar Wave Guide). In order to validate models, we compare the results obtained by an equivalent circuit models with numerical simulation.Keywords: metamaterials, SRR, HIS, CPW, IDC
Procedia PDF Downloads 4326588 An Empirical Exploration of Factors Influencing Lecturers' Acceptance of Open Educational Resources for Enhanced Knowledge Sharing in North-East Nigerian Universities
Authors: Bello, A., Muhammed Ibrahim Abba., Abdullahi, M., Dauda, Sabo, & Shittu, A. T.
Abstract:
This study investigated the Predictors of Lecturers Knowledge Sharing Acceptance on Open Educational Resources (OER) in North-East Nigerian in Universities. The study population comprised of 632 lecturers of Federal Universities in North-east Nigeria. The study sample covered 338 lecturers who were selected purposively from Adamawa, Bauchi and Borno State Federal Universities in Nigeria. The study adopted a prediction correlational research design. The instruments used for data collection was the questionnaire. Experts in the field of educational technology validated the instrument and tested it for reliability checks using Cronbach’s alpha. The constructs on lecturers’ acceptance to share OER yielded a reliability coefficient of; α = .956 for Performance Expectancy, α = .925; for Effort Expectancy, α = .955; for Social Influence, α = .879; for Facilitating Conditions and α = .948 for acceptance to share OER. the researchers contacted the Deanery of faculties of education and enlisted local coordinators to facilitate the data collection process at each university. The data was analysed using multiple sequential regression statistic at a significance level of 0.05 using SPSS version 23.0. The findings of the study revealed that performance expectancy (β = 0.658; t = 16.001; p = 0.000), effort expectancy (β = 0.194; t = 3.802; p = 0.000), social influence (β = 0.306; t = 5.246; p = 0.000), collectively indicated that the variables have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. However, the finding revealed that facilitating conditions (β = .053; t = .899; p = 0.369), does not have a predictive capacity to stimulate lecturer’s acceptance to share their resources on OER repository. Based on these findings, the study recommends among others that the university management should consider adjusting OER policy to be centered around actualizing lecturers career progression.Keywords: acceptance, lecturers, open educational resources, knowledge sharing
Procedia PDF Downloads 746587 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column
Authors: G. Rajapakse, S. Jayasinghe, A. Fleming
Abstract:
This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter
Procedia PDF Downloads 1156586 Effective Charge Coupling in Low Dimensional Doped Quantum Antiferromagnets
Authors: Suraka Bhattacharjee, Ranjan Chaudhury
Abstract:
The interaction between the charge degrees of freedom for itinerant antiferromagnets is investigated in terms of generalized charge stiffness constant corresponding to nearest neighbour t-J model and t1-t2-t3-J model. The low dimensional hole doped antiferromagnets are the well known systems that can be described by the t-J-like models. Accordingly, we have used these models to investigate the fermionic pairing possibilities and the coupling between the itinerant charge degrees of freedom. A detailed comparison between spin and charge couplings highlights that the charge and spin couplings show very similar behaviour in the over-doped region, whereas, they show completely different trends in the lower doping regimes. Moreover, a qualitative equivalence between generalized charge stiffness and effective Coulomb interaction is also established based on the comparisons with other theoretical and experimental results. Thus it is obvious that the enhanced possibility of fermionic pairing is inherent in the reduction of Coulomb repulsion with increase in doping concentration. However, the increased possibility can not give rise to pairing without the presence of any other pair producing mechanism outside the t-J model. Therefore, one can conclude that the t-J-like models themselves solely are not capable of producing conventional momentum-based superconducting pairing on their own.Keywords: generalized charge stiffness constant, charge coupling, effective Coulomb interaction, t-J-like models, momentum-space pairing
Procedia PDF Downloads 1616585 The Involvement of the Homing Receptors CCR7 and CD62L in the Pathogenesis of Graft-Versus-Host Disease
Authors: Federico Herrera, Valle Gomez García de Soria, Itxaso Portero Sainz, Carlos Fernández Arandojo, Mercedes Royg, Ana Marcos Jimenez, Anna Kreutzman, Cecilia MuñozCalleja
Abstract:
Introduction: Graft-versus-host disease (GVHD) still remains the major complication associated with allogeneic stem cell transplantation (SCT). The pathogenesis involves migration of donor naïve T-cells into recipient secondary lymphoid organs. Two molecules are important in this process: CD62L and CCR7, which are characteristically expressed in naïve/central memory T-cells. With this background, we aimed to study the influence of CCR7 and CD62L on donor lymphocytes in the development and severity of GVHD. Material and methods: This single center study included 98 donor-recipient pairs. Samples were collected prospectively from the apheresis product and phenotyped by flow cytometry. CCR7 and CD62L expression in CD4+ and CD8+ T-cells were compared between patients who developed acute (n=40) or chronic GVHD (n=33) and those who did not (n=38). Results: The patients who developed acute GVHD were transplanted with a higher percentage of CCR7+CD4+ T-cells (p = 0.05) compared to the no GVHD group. These results were confirmed when these patients were divided in degrees according to the severity of the disease; the more severe disease, the higher percentage of CCR7+CD4+ T-cells. Conversely, chronic GVHD patients received a higher percentage of CCR7+CD8+ T-cells (p=0.02) in comparison to those who did not develop the complication. These data were also confirmed when patients were subdivided in degrees of the disease severity. A multivariable analysis confirmed that percentage of CCR7+CD4+ T-cells is a predictive factor of acute GVHD whereas the percentage of CCR7+CD8+ T-cells is a predictive factor of chronic GVHD. In vitro functional assays (migration and activation assays) supported the idea of CCR7+ T-cells were involved in the development of GVHD. As low levels of CD62L expression were detected in all apheresis products, we tested the hypothesis that CD62L was shed during apheresis procedure. Comparing CD62L surface levels in T-cells from the same donor immediately before collecting the apheresis product, and the final apheresis product we found that this process down-regulated CD62L in both CD4+ and CD8+ T cells (p=0.008). Interestingly, when CD62L levels were analysed in days 30 or 60 after engraftment, they recovered to baseline (p=0.008). However, to investigate the relation between CD62L expression and the development of GVHD in the recipient samples after the engraftment, no differences were observed comparing patients with GVHD to those who did not develop the disease. Discussion: Our prospective study indicates that the CCR7+ T-cells from the donor, which include naïve and central memory T-cells, contain the alloreactive cells with a high ability to mediate GVHD (in the case of both migration and activation). Therefore we suggest that the proportion and functional properties of CCR7+CD4+ and CCR7+CD8+ T-cells in the apheresis could act as a predictive biomarker to both acute and chronic GVHD respectively. Importantly, our study precludes that CD62L is lost in the apheresis and therefore it is not a reliable biomarker for the development of GVHD.Keywords: CCR7, CD62L, GVHD, SCT
Procedia PDF Downloads 2886584 Assimilating Remote Sensing Data Into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 1336583 Assimilating Remote Sensing Data into Crop Models: A Global Systematic Review
Authors: Luleka Dlamini, Olivier Crespo, Jos van Dam
Abstract:
Accurately estimating crop growth and yield is pivotal for timely sustainable agricultural management and ensuring food security. Crop models and remote sensing can complement each other and form a robust analysis tool to improve crop growth and yield estimations when combined. This study thus aims to systematically evaluate how research that exclusively focuses on assimilating RS data into crop models varies among countries, crops, data assimilation methods, and farming conditions. A strict search string was applied in the Scopus and Web of Science databases, and 497 potential publications were obtained. After screening for relevance with predefined inclusion/exclusion criteria, 123 publications were considered in the final review. Results indicate that over 81% of the studies were conducted in countries associated with high socio-economic and technological advancement, mainly China, the United States of America, France, Germany, and Italy. Many of these studies integrated MODIS or Landsat data into WOFOST to improve crop growth and yield estimation of staple crops at the field and regional scales. Most studies use recalibration or updating methods alongside various algorithms to assimilate remotely sensed leaf area index into crop models. However, these methods cannot account for the uncertainties in remote sensing observations and the crop model itself. l. Over 85% of the studies were based on commercial and irrigated farming systems. Despite a great global interest in data assimilation into crop models, limited research has been conducted in resource- and data-limited regions like Africa. We foresee a great potential for such application in those conditions. Hence facilitating and expanding the use of such an approach, from which developing farming communities could benefit.Keywords: crop models, remote sensing, data assimilation, crop yield estimation
Procedia PDF Downloads 836582 Innovative Business Models in the Era of Digital Tourism: Examining Their Impact on International Travel, Local Businesses, and Residents’ Quality of Life
Authors: Madad Ali
Abstract:
In the contemporary landscape of international travel, the infusion of digital technologies has given rise to innovative business models that are reshaping the dynamics of tourism. This research delves into the transformative potential of these novel business models within the realm of digital tourism and their multifaceted impact on local businesses, residents' quality of life, and the overall travel experience. The study focuses on the captivating backdrop of Yunnan Province, China, renowned for its rich cultural heritage and diverse ethnic minorities, to uncover the intricate nuances of this phenomenon. The primary objectives of this research encompass the identification and categorization of emerging business models facilitated by digital technologies, their implications on tourist engagement, and their integration into the operations of local businesses. By employing a mixed-methods approach, blending qualitative techniques like interviews and content analysis with quantitative tools such as surveys and data analysis, the study provides a comprehensive evaluation of these business models' effects on various dimensions of the tourism landscape. The distinctiveness of this research lies in its exclusive focus on Yunnan Province, China. By concentrating on Yunnan Province, the research contributes exceptional insights into the interplay between digital tourism, ethnic diversity, cultural heritage, and sustainable development. The study's outcomes hold significance for both scholarly discourse and the stakeholders involved in shaping the region's tourism strategies.Keywords: business model, digital tourism, international travel, local businesses, quality of life
Procedia PDF Downloads 626581 CFD Simulation of a Large Scale Unconfined Hydrogen Deflagration
Authors: I. C. Tolias, A. G. Venetsanos, N. Markatos
Abstract:
In the present work, CFD simulations of a large scale open deflagration experiment are performed. Stoichiometric hydrogen-air mixture occupies a 20 m hemisphere. Two combustion models are compared and are evaluated against the experiment. The Eddy Dissipation Model and a Multi-physics combustion model which is based on Yakhot’s equation for the turbulent flame speed. The values of models’ critical parameters are investigated. The effect of the turbulence model is also examined. k-ε model and LES approach were tested.Keywords: CFD, deflagration, hydrogen, combustion model
Procedia PDF Downloads 5056580 Predictive Value of Hepatitis B Core-Related Antigen (HBcrAg) during Natural History of Hepatitis B Virus Infection
Authors: Yanhua Zhao, Yu Gou, Shu Feng, Dongdong Li, Chuanmin Tao
Abstract:
The natural history of HBV infection could experience immune tolerant (IT), immune clearance (IC), HBeAg-negative inactive/quienscent carrier (ENQ), and HBeAg-negative hepatitis (ENH). As current biomarkers for discriminating these four phases have some weaknesses, additional serological indicators are needed. Hepatits B core-related antigen (HBcrAg) encoded with precore/core gene contains denatured HBeAg, HBV core antigen (HBcAg) and a 22KDa precore protein (p22cr), which was demonstrated to have a close association with natural history of hepatitis B infection, but no specific cutoff values and diagnostic parameters to evaluate the diagnostic efficacy. This study aimed to clarify the distribution of HBcrAg levels and evaluate its diagnostic performance during the natural history of infection from a Western Chinese perspective. 294 samples collected from treatment-naïve chronic hepatitis B (CHB) patients in different phases (IT=64; IC=72; ENQ=100, and ENH=58). We detected the HBcrAg values and analyzed the relationship between HBcrAg and HBV DNA. HBsAg and other clinical parameters were quantitatively tested. HBcrAg levels of four phases were 9.30 log U/mL, 8.80 log U/mL, 3.00 log U/mL, and 5.10 logU/mL, respectively (p < 0.0001). Receiver operating characteristic curve analysis demonstrated that the area under curves (AUCs) of HBcrAg and quantitative HBsAg at cutoff values of 9.25 log U/mL and 4.355 log IU/mL for distinguishing IT from IC phases were 0.704 and 0.694, with sensitivity 76.39% and 59.72%, specificity 53.13% and 79.69%, respectively. AUCs of HBcrAg and quantitative HBsAg at cutoff values of 4.15 log U/mlmL and 2.395 log IU/mlmL for discriminating between ENQ and ENH phases were 0.931 and 0.653, with sensitivity 87.93% and 84%, specificity 91.38% and 39%, respectively. Therefore, HBcrAg levels varied significantly among four natural phases of HBV infection. It had higher predictive performance than quantitative HBsAg for distinguishing between ENQ-patients and ENH-patients and similar performance with HBsAg for the discrimination between IT and IC phases, which indicated that HBcrAg could be a potential serological marker for CHB.Keywords: chronic hepatitis B, hepatitis B core-related antigen, hepatitis B surface antigens, hepatitis B virus
Procedia PDF Downloads 4226579 Profitability Assessment of Granite Aggregate Production and the Development of a Profit Assessment Model
Authors: Melodi Mbuyi Mata, Blessing Olamide Taiwo, Afolabi Ayodele David
Abstract:
The purpose of this research is to create empirical models for assessing the profitability of granite aggregate production in Akure, Ondo state aggregate quarries. In addition, an artificial neural network (ANN) model and multivariate predicting models for granite profitability were developed in the study. A formal survey questionnaire was used to collect data for the study. The data extracted from the case study mine for this study includes granite marketing operations, royalty, production costs, and mine production information. The following methods were used to achieve the goal of this study: descriptive statistics, MATLAB 2017, and SPSS16.0 software in analyzing and modeling the data collected from granite traders in the study areas. The ANN and Multi Variant Regression models' prediction accuracy was compared using a coefficient of determination (R²), Root mean square error (RMSE), and mean square error (MSE). Due to the high prediction error, the model evaluation indices revealed that the ANN model was suitable for predicting generated profit in a typical quarry. More quarries in Nigeria's southwest region and other geopolitical zones should be considered to improve ANN prediction accuracy.Keywords: national development, granite, profitability assessment, ANN models
Procedia PDF Downloads 1036578 Seismic Response of Belt Truss System in Regular RC Frame Structure at the Different Positions of the Storey
Authors: Mohd Raish Ansari, Tauheed Alam Khan
Abstract:
This research paper is a comparative study of the belt truss in the Regular RC frame structure at the different positions of the floor. The method used in this research is the response spectrum method with the help of the ETABS Software, there are six models in this paper with belt truss. The Indian standard code used in this work are IS 456:2000, IS 800:2007, IS 875 part-1, IS 875 part-1, and IS 1893 Part-1:2016. The cross-section of the belt truss is the I-section, a grade of steel that is made up of Mild Steel. The basic model in this research paper is the same, only position of the belt truss is going to change, and the dimension of the belt truss is remain constant for all models. The plan area of all models is 24.5 meters x 28 meters, and the model has G+20, where the height of the ground floor is 3.5 meters, and all floor height is 3.0 meters remains constant. This comparative research work selected some important seismic parameters to check the stability of all models, the parameters are base shear, fundamental period, storey overturning moment, and maximum storey displacement.Keywords: belt truss, RC frames structure, ETABS, response spectrum analysis, special moment resisting frame
Procedia PDF Downloads 946577 COVID_ICU_BERT: A Fine-Tuned Language Model for COVID-19 Intensive Care Unit Clinical Notes
Authors: Shahad Nagoor, Lucy Hederman, Kevin Koidl, Annalina Caputo
Abstract:
Doctors’ notes reflect their impressions, attitudes, clinical sense, and opinions about patients’ conditions and progress, and other information that is essential for doctors’ daily clinical decisions. Despite their value, clinical notes are insufficiently researched within the language processing community. Automatically extracting information from unstructured text data is known to be a difficult task as opposed to dealing with structured information such as vital physiological signs, images, and laboratory results. The aim of this research is to investigate how Natural Language Processing (NLP) techniques and machine learning techniques applied to clinician notes can assist in doctors’ decision-making in Intensive Care Unit (ICU) for coronavirus disease 2019 (COVID-19) patients. The hypothesis is that clinical outcomes like survival or mortality can be useful in influencing the judgement of clinical sentiment in ICU clinical notes. This paper introduces two contributions: first, we introduce COVID_ICU_BERT, a fine-tuned version of clinical transformer models that can reliably predict clinical sentiment for notes of COVID patients in the ICU. We train the model on clinical notes for COVID-19 patients, a type of notes that were not previously seen by clinicalBERT, and Bio_Discharge_Summary_BERT. The model, which was based on clinicalBERT achieves higher predictive accuracy (Acc 93.33%, AUC 0.98, and precision 0.96 ). Second, we perform data augmentation using clinical contextual word embedding that is based on a pre-trained clinical model to balance the samples in each class in the data (survived vs. deceased patients). Data augmentation improves the accuracy of prediction slightly (Acc 96.67%, AUC 0.98, and precision 0.92 ).Keywords: BERT fine-tuning, clinical sentiment, COVID-19, data augmentation
Procedia PDF Downloads 2116576 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3946575 A Review of Gas Hydrate Rock Physics Models
Authors: Hemin Yuan, Yun Wang, Xiangchun Wang
Abstract:
Gas hydrate is drawing attention due to the fact that it has an enormous amount all over the world, which is almost twice the conventional hydrocarbon reserves, making it a potential alternative source of energy. It is widely distributed in permafrost and continental ocean shelves, and many countries have launched national programs for investigating the gas hydrate. Gas hydrate is mainly explored through seismic methods, which include bottom simulating reflectors (BSR), amplitude blanking, and polarity reverse. These seismic methods are effective at finding the gas hydrate formations but usually contain large uncertainties when applying to invert the micro-scale petrophysical properties of the formations due to lack of constraints. Rock physics modeling links the micro-scale structures of the rocks to the macro-scale elastic properties and can work as effective constraints for the seismic methods. A number of rock physics models have been proposed for gas hydrate modeling, which addresses different mechanisms and applications. However, these models are generally not well classified, and it is confusing to determine the appropriate model for a specific study. Moreover, since the modeling usually involves multiple models and steps, it is difficult to determine the source of uncertainties. To solve these problems, we summarize the developed models/methods and make four classifications of the models according to the hydrate micro-scale morphology in sediments, the purpose of reservoir characterization, the stage of gas hydrate generation, and the lithology type of hosting sediments. Some sub-categories may overlap each other, but they have different priorities. Besides, we also analyze the priorities of different models, bring up the shortcomings, and explain the appropriate application scenarios. Moreover, by comparing the models, we summarize a general workflow of the modeling procedure, which includes rock matrix forming, dry rock frame generating, pore fluids mixing, and final fluid substitution in the rock frame. These procedures have been widely used in various gas hydrate modeling and have been confirmed to be effective. We also analyze the potential sources of uncertainties in each modeling step, which enables us to clearly recognize the potential uncertainties in the modeling. In the end, we explicate the general problems of the current models, including the influences of pressure and temperature, pore geometry, hydrate morphology, and rock structure change during gas hydrate dissociation and re-generation. We also point out that attenuation is also severely affected by gas hydrate in sediments and may work as an indicator to map gas hydrate concentration. Our work classifies rock physics models of gas hydrate into different categories, generalizes the modeling workflow, analyzes the modeling uncertainties and potential problems, which can facilitate the rock physics characterization of gas hydrate bearding sediments and provide hints for future studies.Keywords: gas hydrate, rock physics model, modeling classification, hydrate morphology
Procedia PDF Downloads 1616574 A Content Analysis of Corporate Sustainability Performance and Business Excellence Models
Authors: Kari M. Solomon
Abstract:
Companies with a culture accepting of change management and performance excellence are better suited to determine their sustainability performance and impacts. A mature corporate culture supportive of performance excellence is better positioned to integrate sustainability management tools into their standard business strategy. Companies use various sustainability management tools and reporting standards to communicate levels of sustainability performance to their stakeholders, more often focusing on shareholders and investors. A research gap remains in understanding how companies adapt business excellence models to define corporate sustainability performance. A content analysis of medium-sized enterprises using corporate sustainability reports and business excellence models reveals the challenges and opportunities of reporting sustainability performance in the context of organizational excellence. The outcomes of this content analysis contribute knowledge on the resources needed for companies to build sustainability performance management systems integral to existing management systems. The findings of this research inform academic research areas of corporate sustainability performance, the business community contributing to sustainable development initiatives, and integrating sustainable development issues into business excellence models. There are potential research links between sustainability performance management and the alignment of the United Nations Sustainable Development Goals (UN SDGs) when organizations promote a culture of performance or business excellence.Keywords: business excellence, corporate sustainability, performance excellence, sustainability performance
Procedia PDF Downloads 1866573 Positron Emission Tomography Parameters as Predictors of Pathologic Response and Nodal Clearance in Patients with Stage IIIA NSCLC Receiving Trimodality Therapy
Authors: Andrea L. Arnett, Ann T. Packard, Yolanda I. Garces, Kenneth W. Merrell
Abstract:
Objective: Pathologic response following neoadjuvant chemoradiation (CRT) has been associated with improved overall survival (OS). Conflicting results have been reported regarding the pathologic predictive value of positron emission tomography (PET) response in patients with stage III lung cancer. The aim of this study was to evaluate the correlation between post-treatment PET response and pathologic response utilizing novel FDG-PET parameters. Methods: This retrospective study included patients with non-metastatic, stage IIIA (N2) NSCLC cancer treated with CRT followed by resection. All patients underwent PET prior to and after neoadjuvant CRT. Univariate analysis was utilized to assess correlations between PET response, nodal clearance, pCR, and near-complete pathologic response (defined as the microscopic residual disease or less). Maximal standard uptake value (SUV), standard uptake ratio (SUR) [normalized independently to the liver (SUR-L) and blood pool (SUR-BP)], metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were measured pre- and post-chemoradiation. Results: A total of 44 patients were included for review. Median age was 61.9 years, and median follow-up was 2.6 years. Histologic subtypes included adenocarcinoma (72.2%) and squamous cell carcinoma (22.7%), and the majority of patients had the T2 disease (59.1%). The rate of pCR and near-complete pathologic response within the primary lesion was 28.9% and 44.4%, respectively. The average reduction in SUVmₐₓ was 9.2 units (range -1.9-32.8), and the majority of patients demonstrated some degree of favorable treatment response. SUR-BP and SUR-L showed a mean reduction of 4.7 units (range -0.1-17.3) and 3.5 units (range –1.7-12.6), respectively. Variation in PET response was not significantly associated with histologic subtype, concurrent chemotherapy type, stage, or radiation dose. No significant correlation was found between pathologic response and absolute change in MTV or TLG. Reduction in SUVmₐₓ and SUR were associated with increased rate of pathologic response (p ≤ 0.02). This correlation was not impacted by normalization of SUR to liver versus mediastinal blood pool. A threshold of > 75% decrease in SUR-L correlated with near-complete response, with a sensitivity of 57.9% and specificity of 85.7%, as well as positive and negative predictive values of 78.6% and 69.2%, respectively (diagnostic odds ratio [DOR]: 5.6, p=0.02). A threshold of >50% decrease in SUR was also significantly associated pathologic response (DOR 12.9, p=0.2), but specificity was substantially lower when utilizing this threshold value. No significant association was found between nodal PET parameters and pathologic nodal clearance. Conclusions: Our results suggest that treatment response to neoadjuvant therapy as assessed on PET imaging can be a predictor of pathologic response when evaluated via SUV and SUR. SUR parameters were associated with higher diagnostic odds ratios, suggesting improved predictive utility compared to SUVmₐₓ. MTV and TLG did not prove to be significant predictors of pathologic response but may warrant further investigation in a larger cohort of patients.Keywords: lung cancer, positron emission tomography (PET), standard uptake ratio (SUR), standard uptake value (SUV)
Procedia PDF Downloads 2356572 Utilization of an Object Oriented Tool to Perform Model-Based Safety Analysis According to Extended Failure System Models
Authors: Royia Soliman, Salma ElAnsary, Akram Amin Abdellatif, Florian Holzapfel
Abstract:
Model-Based Safety Analysis (MBSA) is an approach in which the system and safety engineers share a common system model created using a model-based development process. The model can also be extended by the failure modes of the system components. There are two famous approaches for the addition of fault behaviors to system models. The first one is to enclose the failure into the system design directly. The second approach is to develop a fault model separately from the system model, thus combining both independent models for safety analysis. This paper introduces a hybrid approach of MBSA. The approach tries to use informal abstracted models to investigate failure behaviors. The approach will combine various concepts such as directed graph traversal, event lists and Constraint Satisfaction Problems (CSP). The approach is implemented using an Object Oriented programming language. The components are abstracted to its failure logic and relationships of connected components. The implemented approach is tested on various flight control systems, including electrical and multi-domain examples. The various tests are analyzed, and a comparison to different approaches is represented.Keywords: flight control systems, model based safety analysis, safety assessment analysis, system modelling
Procedia PDF Downloads 1676571 Governance Models of Higher Education Institutions
Authors: Zoran Barac, Maja Martinovic
Abstract:
Higher Education Institutions (HEIs) are a special kind of organization, with its unique purpose and combination of actors. From the societal point of view, they are central institutions in the society that are involved in the activities of education, research, and innovation. At the same time, their societal function derives complex relationships between involved actors, ranging from students, faculty and administration, business community and corporate partners, government agencies, to the general public. HEIs are also particularly interesting as objects of governance research because of their unique public purpose and combination of stakeholders. Furthermore, they are the special type of institutions from an organizational viewpoint. HEIs are often described as “loosely coupled systems” or “organized anarchies“ that implies the challenging nature of their governance models. Governance models of HEIs describe roles, constellations, and modes of interaction of the involved actors in the process of strategic direction and holistic control of institutions, taking into account each particular context. Many governance models of the HEIs are primarily based on the balance of power among the involved actors. Besides the actors’ power and influence, leadership style and environmental contingency could impact the governance model of an HEI. Analyzing them through the frameworks of institutional and contingency theories, HEI governance models originate as outcomes of their institutional and contingency adaptation. HEIs tend to fit to institutional context comprised of formal and informal institutional rules. By fitting to institutional context, HEIs are converging to each other in terms of their structures, policies, and practices. On the other hand, contingency framework implies that there is no governance model that is suitable for all situations. Consequently, the contingency approach begins with identifying contingency variables that might impact a particular governance model. In order to be effective, the governance model should fit to contingency variables. While the institutional context creates converging forces on HEI governance actors and approaches, contingency variables are the causes of divergence of actors’ behavior and governance models. Finally, an HEI governance model is a balanced adaptation of the HEIs to the institutional context and contingency variables. It also encompasses roles, constellations, and modes of interaction of involved actors influenced by institutional and contingency pressures. Actors’ adaptation to the institutional context brings benefits of legitimacy and resources. On the other hand, the adaptation of the actors’ to the contingency variables brings high performance and effectiveness. HEI governance models outlined and analyzed in this paper are collegial, bureaucratic, entrepreneurial, network, professional, political, anarchical, cybernetic, trustee, stakeholder, and amalgam models.Keywords: governance, governance models, higher education institutions, institutional context, situational context
Procedia PDF Downloads 3386570 Comparison of the Thermal Characteristics of Induction Motor, Switched Reluctance Motor and Inset Permanent Magnet Motor for Electric Vehicle Application
Authors: Sadeep Sasidharan, T. B. Isha
Abstract:
Modern day electric vehicles require compact high torque/power density motors for electric propulsion. This necessitates proper thermal management of the electric motors. The main focus of this paper is to compare the steady state thermal analysis of a conventional 20 kW 8/6 Switched Reluctance Motor (SRM) with that of an Induction Motor and Inset Permanent Magnet (IPM) motor of the same rating. The goal is to develop a proper thermal model of the three types of models for Finite Element Thermal Analysis. JMAG software is used for the development and simulation of the thermal models. The results show that the induction motor is subjected to more heating when used for electric vehicle application constantly, compared to the SRM and IPM.Keywords: electric vehicles, induction motor, inset permanent magnet motor, loss models, switched reluctance motor, thermal analysis
Procedia PDF Downloads 2286569 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells
Authors: András Szekrényes
Abstract:
Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.Keywords: J-integral, levy method, third-order shell theory, state space solution
Procedia PDF Downloads 1346568 A Review on Modeling and Optimization of Integration of Renewable Energy Resources (RER) for Minimum Energy Cost, Minimum CO₂ Emissions and Sustainable Development, in Recent Years
Authors: M. M. Wagh, V. V. Kulkarni
Abstract:
The rising economic activities, growing population and improving living standards of world have led to a steady growth in its appetite for quality and quantity of energy services. As the economy expands the electricity demand is going to grow further, increasing the challenges of the more generation and stresses on the utility grids. Appropriate energy model will help in proper utilization of the locally available renewable energy sources such as solar, wind, biomass, small hydro etc. to integrate in the available grid, reducing the investments in energy infrastructure. Further to these new technologies like smart grids, decentralized energy planning, energy management practices, energy efficiency are emerging. In this paper, the attempt has been made to study and review the recent energy planning models, energy forecasting models, and renewable energy integration models. In addition, various modeling techniques and tools are reviewed and discussed.Keywords: energy modeling, integration of renewable energy, energy modeling tools, energy modeling techniques
Procedia PDF Downloads 348