Search results for: Hankel polynomials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 82

Search results for: Hankel polynomials

22 Modelling of Polymeric Fluid Flows between Two Coaxial Cylinders Taking into Account the Heat Dissipation

Authors: Alexander Blokhin, Ekaterina Kruglova, Boris Semisalov

Abstract:

Mathematical model based on the mesoscopic theory of polymer dynamics is developed for numerical simulation of the flows of polymeric liquid between two coaxial cylinders. This model is a system of nonlinear partial differential equations written in the cylindrical coordinate system and coupled with the heat conduction equation including a specific dissipation term. The stationary flows similar to classical Poiseuille ones are considered, and the resolving equations for the velocity of flow and for the temperature are obtained. For solving them, a fast pseudospectral method is designed based on Chebyshev approximations, that enables one to simulate the flows through the channels with extremely small relative values of the radius of inner cylinder. The numerical analysis of the dependance of flow on this radius and on the values of dissipation constant is done.

Keywords: dynamics of polymeric liquid, heat dissipation, singularly perturbed problem, pseudospectral method, Chebyshev polynomials, stabilization technique

Procedia PDF Downloads 290
21 Refined Procedures for Second Order Asymptotic Theory

Authors: Gubhinder Kundhi, Paul Rilstone

Abstract:

Refined procedures for higher-order asymptotic theory for non-linear models are developed. These include a new method for deriving stochastic expansions of arbitrary order, new methods for evaluating the moments of polynomials of sample averages, a new method for deriving the approximate moments of the stochastic expansions; an application of these techniques to gather improved inferences with the weak instruments problem is considered. It is well established that Instrumental Variable (IV) estimators in the presence of weak instruments can be poorly behaved, in particular, be quite biased in finite samples. In our application, finite sample approximations to the distributions of these estimators are obtained using Edgeworth and Saddlepoint expansions. Departures from normality of the distributions of these estimators are analyzed using higher order analytical corrections in these expansions. In a Monte-Carlo experiment, the performance of these expansions is compared to the first order approximation and other methods commonly used in finite samples such as the bootstrap.

Keywords: edgeworth expansions, higher order asymptotics, saddlepoint expansions, weak instruments

Procedia PDF Downloads 277
20 Dimensioning of a Solar Dryer with Application of an Experiment Design Method for Drying Food Products

Authors: B. Touati, A. Saad, B. Lips, A. Abdenbi, M. Mokhtari.

Abstract:

The purpose of this study is an application of experiment design method for dimensioning of a solar drying system. NIMROD software was used to build up the matrix of experiments and to analyze the results. The software has the advantages of being easy to use and consists of a forced way, with some choices about the number and range of variation of the parameters, and the desired polynomial shape. The first design of experiments performed concern the drying with constant input characteristics of the hot air in the dryer and a second design of experiments in which the drying chamber is coupled with a solar collector. The first design of experiments allows us to study the influence of various parameters and get the studied answers in a polynomial form. The correspondence between the polynomial thus determined, and the model results were good. The results of the polynomials of the second design of experiments and those of the model are worse than the results in the case of drying with constant input conditions. This is due to the strong link between all the input parameters, especially, the surface of the sensor and the drying chamber, and the mass of the product.

Keywords: solar drying, experiment design method, NIMROD, mint leaves

Procedia PDF Downloads 503
19 The Bernstein Expansion for Exponentials in Taylor Functions: Approximation of Fixed Points

Authors: Tareq Hamadneh, Jochen Merker, Hassan Al-Zoubi

Abstract:

Bernstein's expansion for exponentials in Taylor functions provides lower and upper optimization values for the range of its original function. these values converge to the original functions if the degree is elevated or the domain subdivided. Taylor polynomial can be applied so that the exponential is a polynomial of finite degree over a given domain. Bernstein's basis has two main properties: its sum equals 1, and positive for all x 2 (0; 1). In this work, we prove the existence of fixed points for exponential functions in a given domain using the optimization values of Bernstein. The Bernstein basis of finite degree T over a domain D is defined non-negatively. Any polynomial p of degree t can be expanded into the Bernstein form of maximum degree t ≤ T, where we only need to compute the coefficients of Bernstein in order to optimize the original polynomial. The main property is that p(x) is approximated by the minimum and maximum Bernstein coefficients (Bernstein bound). If the bound is contained in the given domain, then we say that p(x) has fixed points in the same domain.

Keywords: Bernstein polynomials, Stability of control functions, numerical optimization, Taylor function

Procedia PDF Downloads 135
18 Elastohydrodynamic Lubrication Study Using Discontinuous Finite Volume Method

Authors: Prawal Sinha, Peeyush Singh, Pravir Dutt

Abstract:

Problems in elastohydrodynamic lubrication have attracted a lot of attention in the last few decades. Solving a two-dimensional problem has always been a big challenge. In this paper, a new discontinuous finite volume method (DVM) for two-dimensional point contact Elastohydrodynamic Lubrication (EHL) problem has been developed and analyzed. A complete algorithm has been presented for solving such a problem. The method presented is robust and easily parallelized in MPI architecture. GMRES technique is implemented to solve the matrix obtained after the formulation. A new approach is followed in which discontinuous piecewise polynomials are used for the trail functions. It is natural to assume that the advantages of using discontinuous functions in finite element methods should also apply to finite volume methods. The nature of the discontinuity of the trail function is such that the elements in the corresponding dual partition have the smallest support as compared with the Classical finite volume methods. Film thickness calculation is done using singular quadrature approach. Results obtained have been presented graphically and discussed. This method is well suited for solving EHL point contact problem and can probably be used as commercial software.

Keywords: elastohydrodynamic, lubrication, discontinuous finite volume method, GMRES technique

Procedia PDF Downloads 257
17 New Concept for Real Time Selective Harmonics Elimination Based on Lagrange Interpolation Polynomials

Authors: B. Makhlouf, O. Bouchhida, M. Nibouche, K. Laidi

Abstract:

A variety of methods for selective harmonics elimination pulse width modulation have been developed, the most frequently used for real-time implementation based on look-up tables method. To address real-time requirements based in modified carrier signal is proposed in the presented work, with a general formulation to real-time harmonics control/elimination in switched inverters. Firstly, the proposed method has been demonstrated for a single value of the modulation index. However, in reality, this parameter is variable as a consequence of the voltage (amplitude) variability. In this context, a simple interpolation method for calculating the modified sine carrier signal is proposed. The method allows a continuous adjustment in both amplitude and frequency of the fundamental. To assess the performance of the proposed method, software simulations and hardware experiments have been carried out in the case of a single-phase inverter. Obtained results are very satisfactory.

Keywords: harmonic elimination, Particle Swarm Optimisation (PSO), polynomial interpolation, pulse width modulation, real-time harmonics control, voltage inverter

Procedia PDF Downloads 503
16 Theory and Practice of Wavelets in Signal Processing

Authors: Jalal Karam

Abstract:

The methods of Fourier, Laplace, and Wavelet Transforms provide transfer functions and relationships between the input and the output signals in linear time invariant systems. This paper shows the equivalence among these three methods and in each case presenting an application of the appropriate (Fourier, Laplace or Wavelet) to the convolution theorem. In addition, it is shown that the same holds for a direct integration method. The Biorthogonal wavelets Bior3.5 and Bior3.9 are examined and the zeros distribution of their polynomials associated filters are located. This paper also presents the significance of utilizing wavelets as effective tools in processing speech signals for common multimedia applications in general, and for recognition and compression in particular. Theoretically and practically, wavelets have proved to be effective and competitive. The practical use of the Continuous Wavelet Transform (CWT) in processing and analysis of speech is then presented along with explanations of how the human ear can be thought of as a natural wavelet transformer of speech. This generates a variety of approaches for applying the (CWT) to many paradigms analysing speech, sound and music. For perception, the flexibility of implementation of this transform allows the construction of numerous scales and we include two of them. Results for speech recognition and speech compression are then included.

Keywords: continuous wavelet transform, biorthogonal wavelets, speech perception, recognition and compression

Procedia PDF Downloads 416
15 Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes

Authors: Dmitry Dikarev, Ajit Nimbalker, Alexei Davydov

Abstract:

Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard.

Keywords: 5G New Radio, channel coding, cyclic redundancy check, list decoding, polar codes

Procedia PDF Downloads 238
14 3D Modeling for Frequency and Time-Domain Airborne EM Systems with Topography

Authors: C. Yin, B. Zhang, Y. Liu, J. Cai

Abstract:

Airborne EM (AEM) is an effective geophysical exploration tool, especially suitable for ridged mountain areas. In these areas, topography will have serious effects on AEM system responses. However, until now little study has been reported on topographic effect on airborne EM systems. In this paper, an edge-based unstructured finite-element (FE) method is developed for 3D topographic modeling for both frequency and time-domain airborne EM systems. Starting from the frequency-domain Maxwell equations, a vector Helmholtz equation is derived to obtain a stable and accurate solution. Considering that the AEM transmitter and receiver are both located in the air, the scattered field method is used in our modeling. The Galerkin method is applied to discretize the Helmholtz equation for the final FE equations. Solving the FE equations, the frequency-domain AEM responses are obtained. To accelerate the calculation speed, the response of source in free-space is used as the primary field and the PARDISO direct solver is used to deal with the problem with multiple transmitting sources. After calculating the frequency-domain AEM responses, a Hankel’s transform is applied to obtain the time-domain AEM responses. To check the accuracy of present algorithm and to analyze the characteristic of topographic effect on airborne EM systems, both the frequency- and time-domain AEM responses for 3 model groups are simulated: 1) a flat half-space model that has a semi-analytical solution of EM response; 2) a valley or hill earth model; 3) a valley or hill earth with an abnormal body embedded. Numerical experiments show that close to the node points of the topography, AEM responses demonstrate sharp changes. Special attentions need to be paid to the topographic effects when interpreting AEM survey data over rugged topographic areas. Besides, the profile of the AEM responses presents a mirror relation with the topographic earth surface. In comparison to the topographic effect that mainly occurs at the high-frequency end and early time channels, the EM responses of underground conductors mainly occur at low frequencies and later time channels. For the signal of the same time channel, the dB/dt field reflects the change of conductivity better than the B-field. The research of this paper will serve airborne EM in the identification and correction of the topographic effects.

Keywords: 3D, Airborne EM, forward modeling, topographic effect

Procedia PDF Downloads 317
13 Interaction between Trapezoidal Hill and Subsurface Cavity under SH Wave Incidence

Authors: Yuanrui Xu, Zailin Yang, Yunqiu Song, Guanxixi Jiang

Abstract:

It is an important subject of seismology on the influence of local topography on ground motion during earthquake. In mountainous areas with complex terrain, the construction of the tunnel is often the most effective transportation scheme. In these projects, the local terrain can be simplified into hills with different shapes, and the underground tunnel structure can be regarded as a subsurface cavity. The presence of the subsurface cavity affects the strength of the rock mass and changes the deformation and failure characteristics. Moreover, the scattering of the elastic waves by underground structures usually interacts with local terrains, which leads to a significant influence on the surface displacement of the terrains. Therefore, it is of great practical significance to study the surface displacement of local terrains with underground tunnels in earthquake engineering and seismology. In this work, the region is divided into three regions by the method of region matching. By using the fractional Bessel function and Hankel function, the complex function method, and the wave function expansion method, the wavefield expression of SH waves is introduced. With the help of a constitutive relation between the displacement and the stress components, the hoop stress and radial stress is obtained subsequently. Then, utilizing the continuous condition at different region boundaries, the undetermined coefficients in wave fields are solved by the Fourier series expansion and truncation of the finite term. Finally, the validity of the method is verified, and the surface displacement amplitude is calculated. The surface displacement amplitude curve is discussed in the numerical results. The results show that different parameters, such as radius and buried depth of the tunnel, wave number, and incident angle of the SH wave, have a significant influence on the amplitude of surface displacement. For the underground tunnel, the increase of buried depth will make the response of surface displacement amplitude increases at first and then decreases. However, the increase of radius leads the response of surface displacement amplitude to appear an opposite phenomenon. The increase of SH wave number can enlarge the amplitude of surface displacement, and the change of incident angle can obviously affect the amplitude fluctuation.

Keywords: method of region matching, scattering of SH wave, subsurface cavity, trapezoidal hill

Procedia PDF Downloads 133
12 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order

Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao

Abstract:

In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.

Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution

Procedia PDF Downloads 145
11 Percentile Reference Values of Vertical Jumping Performances and Anthropometric Characteristics in Athletic Tunisian Children and Adolescents

Authors: Chirine Aouichaoui, Mohamed Tounsi, Ines Mrizak, Zouhair Tabka, Yassine Trabelsi

Abstract:

The aim of this study was to provide percentile values for vertical jumping performances and anthropometric characteristics for athletic Tunisian children. One thousand and fifty-five athletic Tunisian children and adolescents (643 boys and 412 girls) aged 7-18 years were randomly selected to participate in our study. They were asked to perform squat jumps and countermovement jumps. For each measurement, a least square regression model with high order polynomials was fitted to predict mean and standard deviation of vertical jumping parameters and anthropometric variables. Smoothed percentile curves and percentile values for the 5th, 10th, 25th, 50th, 75th, 90th, and 95th percentiles are presented for boys and girls. In conclusion, percentiles values of vertical jumping performances and anthropometric characteristics are provided. The new Tunisian reference charts obtained can be used as a screening tool to determine growth disorders and to estimate the proportion of adolescents with high or low muscular strength levels. This study may help in verifying the effectiveness of a specific training program and detecting highly talented athletes.

Keywords: percentile values, jump height, leg muscle power, athletes, anthropometry

Procedia PDF Downloads 428
10 Symbolic Partial Differential Equations Analysis Using Mathematica

Authors: Davit Shahnazaryan, Diogo Gomes, Mher Safaryan

Abstract:

Many symbolic computations and manipulations required in the analysis of partial differential equations (PDE) or systems of PDEs are tedious and error-prone. These computations arise when determining conservation laws, entropies or integral identities, which are essential tools for the study of PDEs. Here, we discuss a new Mathematica package for the symbolic analysis of PDEs that automate multiple tasks, saving time and effort. Methodologies: During the research, we have used concepts of linear algebra and partial differential equations. We have been working on creating algorithms based on theoretical mathematics to find results mentioned below. Major Findings: Our package provides the following functionalities; finding symmetry group of different PDE systems, generation of polynomials invariant with respect to different symmetry groups; simplification of integral quantities by integration by parts and null Lagrangian cleaning, computing general forms of expressions by integration by parts; finding equivalent forms of an integral expression that are simpler or more symmetric form; determining necessary and sufficient conditions on the coefficients for the positivity of a given symbolic expression. Conclusion: Using this package, we can simplify integral identities, find conserved and dissipated quantities of time-dependent PDE or system of PDEs. Some examples in the theory of mean-field games and semiconductor equations are discussed.

Keywords: partial differential equations, symbolic computation, conserved and dissipated quantities, mathematica

Procedia PDF Downloads 163
9 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium

Authors: Nidhal Jamia, Sami El-Borgi

Abstract:

In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.

Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method

Procedia PDF Downloads 308
8 Statistical Modeling of Local Area Fading Channels Based on Triply Stochastic Filtered Marked Poisson Point Processes

Authors: Jihad Daba, Jean-Pierre Dubois

Abstract:

Multi path fading noise degrades the performance of cellular communication, most notably in femto- and pico-cells in 3G and 4G systems. When the wireless channel consists of a small number of scattering paths, the statistics of fading noise is not analytically tractable and poses a serious challenge to developing closed canonical forms that can be analysed and used in the design of efficient and optimal receivers. In this context, noise is multiplicative and is referred to as stochastically local fading. In many analytical investigation of multiplicative noise, the exponential or Gamma statistics are invoked. More recent advances by the author of this paper have utilized a Poisson modulated and weighted generalized Laguerre polynomials with controlling parameters and uncorrelated noise assumptions. In this paper, we investigate the statistics of multi-diversity stochastically local area fading channel when the channel consists of randomly distributed Rayleigh and Rician scattering centers with a coherent specular Nakagami-distributed line of sight component and an underlying doubly stochastic Poisson process driven by a lognormal intensity. These combined statistics form a unifying triply stochastic filtered marked Poisson point process model.

Keywords: cellular communication, femto and pico-cells, stochastically local area fading channel, triply stochastic filtered marked Poisson point process

Procedia PDF Downloads 448
7 Application of Rapidly Exploring Random Tree Star-Smart and G2 Quintic Pythagorean Hodograph Curves to the UAV Path Planning Problem

Authors: Luiz G. Véras, Felipe L. Medeiros, Lamartine F. Guimarães

Abstract:

This work approaches the automatic planning of paths for Unmanned Aerial Vehicles (UAVs) through the application of the Rapidly Exploring Random Tree Star-Smart (RRT*-Smart) algorithm. RRT*-Smart is a sampling process of positions of a navigation environment through a tree-type graph. The algorithm consists of randomly expanding a tree from an initial position (root node) until one of its branches reaches the final position of the path to be planned. The algorithm ensures the planning of the shortest path, considering the number of iterations tending to infinity. When a new node is inserted into the tree, each neighbor node of the new node is connected to it, if and only if the extension of the path between the root node and that neighbor node, with this new connection, is less than the current extension of the path between those two nodes. RRT*-smart uses an intelligent sampling strategy to plan less extensive routes by spending a smaller number of iterations. This strategy is based on the creation of samples/nodes near to the convex vertices of the navigation environment obstacles. The planned paths are smoothed through the application of the method called quintic pythagorean hodograph curves. The smoothing process converts a route into a dynamically-viable one based on the kinematic constraints of the vehicle. This smoothing method models the hodograph components of a curve with polynomials that obey the Pythagorean Theorem. Its advantage is that the obtained structure allows computation of the curve length in an exact way, without the need for quadratural techniques for the resolution of integrals.

Keywords: path planning, path smoothing, Pythagorean hodograph curve, RRT*-Smart

Procedia PDF Downloads 167
6 Nonlinear Aerodynamic Parameter Estimation of a Supersonic Air to Air Missile by Using Artificial Neural Networks

Authors: Tugba Bayoglu

Abstract:

Aerodynamic parameter estimation is very crucial in missile design phase, since accurate high fidelity aerodynamic model is required for designing high performance and robust control system, developing high fidelity flight simulations and verification of computational and wind tunnel test results. However, in literature, there is not enough missile aerodynamic parameter identification study for three main reasons: (1) most air to air missiles cannot fly with constant speed, (2) missile flight test number and flight duration are much less than that of fixed wing aircraft, (3) variation of the missile aerodynamic parameters with respect to Mach number is higher than that of fixed wing aircraft. In addition to these challenges, identification of aerodynamic parameters for high wind angles by using classical estimation techniques brings another difficulty in the estimation process. The reason for this, most of the estimation techniques require employing polynomials or splines to model the behavior of the aerodynamics. However, for the missiles with a large variation of aerodynamic parameters with respect to flight variables, the order of the proposed model increases, which brings computational burden and complexity. Therefore, in this study, it is aimed to solve nonlinear aerodynamic parameter identification problem for a supersonic air to air missile by using Artificial Neural Networks. The method proposed will be tested by using simulated data which will be generated with a six degree of freedom missile model, involving a nonlinear aerodynamic database. The data will be corrupted by adding noise to the measurement model. Then, by using the flight variables and measurements, the parameters will be estimated. Finally, the prediction accuracy will be investigated.

Keywords: air to air missile, artificial neural networks, open loop simulation, parameter identification

Procedia PDF Downloads 279
5 Mathematical Anxiety and Misconceptions in Algebra of Grade Vii Students in General Emilio Aguinaldo National High School

Authors: Nessa-Amie T. Peñaflor, Antonio Cinto

Abstract:

This is a descriptive research on the level of math anxiety and mathematics misconceptions in algebra. This research is composed of four parts: (1) analysis of the level of anxiety of the respondents; (2) analysis of the common mathematical misconceptions in algebra; (3) relationship of socio-demographic profile in math anxiety and mathematical misconceptions and (4) analysis of the relationship of math anxiety and misconceptions in algebra. Through the demographic profile questionnaire it was found out that most of the respondents were female. Majority had ages that ranged from 13-15. Most of them had parents who finished secondary education. The biggest portion of Grade Seven students where from families with annual family income ranging from PhP 100, 000 to PhP 299, 999. Most of them came from public school. Mathematics Anxiety Scale for Secondary and Senior Secondary School Students (MAS) and set of 10 open-ended algebraic expressions and polynomials were also administered to determine the anxiety level and the common misconceptions in algebra. Data analysis revealed that respondents had high anxiety in mathematics. Likewise, the common mathematical misconceptions of the Grade Seven students were: combining unlike terms; multiplying the base and exponents; regarding the variable x as 0; squaring the first and second terms only in product of two binomials; wrong meaning attached to brackets; writing the terms next to each other but not simplifying in using the FOIL Method; writing the literal coefficient even if the numerical coefficient is 0; and dividing the denominator by the numerator when the numerical coefficient in the numerator is smaller than the numerical coefficient of the denominator. Results of the study show that the socio-demographic characteristics were not related to mathematics anxiety and misconceptions. Furthermore, students from higher section had high anxiety than those students on the lower section. Thus, belonging to higher or lower section may affect the mathematical misconceptions of the respondents.

Keywords: algebra, grade 7 math, math anxiety, math misconceptions

Procedia PDF Downloads 411
4 Simultaneous Determination of Methotrexate and Aspirin Using Fourier Transform Convolution Emission Data under Non-Parametric Linear Regression Method

Authors: Marwa A. A. Ragab, Hadir M. Maher, Eman I. El-Kimary

Abstract:

Co-administration of methotrexate (MTX) and aspirin (ASP) can cause a pharmacokinetic interaction and a subsequent increase in blood MTX concentrations which may increase the risk of MTX toxicity. Therefore, it is important to develop a sensitive, selective, accurate and precise method for their simultaneous determination in urine. A new hybrid chemometric method has been applied to the emission response data of the two drugs. Spectrofluorimetric method for determination of MTX through measurement of its acid-degradation product, 4-amino-4-deoxy-10-methylpteroic acid (4-AMP), was developed. Moreover, the acid-catalyzed degradation reaction enables the spectrofluorimetric determination of ASP through the formation of its active metabolite salicylic acid (SA). The proposed chemometric method deals with convolution of emission data using 8-points sin xi polynomials (discrete Fourier functions) after the derivative treatment of these emission data. The first and second derivative curves (D1 & D2) were obtained first then convolution of these curves was done to obtain first and second derivative under Fourier functions curves (D1/FF) and (D2/FF). This new application was used for the resolution of the overlapped emission bands of the degradation products of both drugs to allow their simultaneous indirect determination in human urine. Not only this chemometric approach was applied to the emission data but also the obtained data were subjected to non-parametric linear regression analysis (Theil’s method). The proposed method was fully validated according to the ICH guidelines and it yielded linearity ranges as follows: 0.05-0.75 and 0.5-2.5 µg mL-1 for MTX and ASP respectively. It was found that the non-parametric method was superior over the parametric one in the simultaneous determination of MTX and ASP after the chemometric treatment of the emission spectra of their degradation products. The work combines the advantages of derivative and convolution using discrete Fourier function together with the reliability and efficacy of the non-parametric analysis of data. The achieved sensitivity along with the low values of LOD (0.01 and 0.06 µg mL-1) and LOQ (0.04 and 0.2 µg mL-1) for MTX and ASP respectively, by the second derivative under Fourier functions (D2/FF) were promising and guarantee its application for monitoring the two drugs in patients’ urine samples.

Keywords: chemometrics, emission curves, derivative, convolution, Fourier transform, human urine, non-parametric regression, Theil’s method

Procedia PDF Downloads 430
3 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy

Authors: Erick Pruchnicki, Nikhil Padhye

Abstract:

Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.

Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials

Procedia PDF Downloads 113
2 A Robust Optimization of Chassis Durability/Comfort Compromise Using Chebyshev Polynomial Chaos Expansion Method

Authors: Hanwei Gao, Louis Jezequel, Eric Cabrol, Bernard Vitry

Abstract:

The chassis system is composed of complex elements that take up all the loads from the tire-ground contact area and thus it plays an important role in numerous specifications such as durability, comfort, crash, etc. During the development of new vehicle projects in Renault, durability validation is always the main focus while deployment of comfort comes later in the project. Therefore, sometimes design choices have to be reconsidered because of the natural incompatibility between these two specifications. Besides, robustness is also an important point of concern as it is related to manufacturing costs as well as the performance after the ageing of components like shock absorbers. In this paper an approach is proposed aiming to realize a multi-objective optimization between chassis endurance and comfort while taking the random factors into consideration. The adaptive-sparse polynomial chaos expansion method (PCE) with Chebyshev polynomial series has been applied to predict responses’ uncertainty intervals of a system according to its uncertain-but-bounded parameters. The approach can be divided into three steps. First an initial design of experiments is realized to build the response surfaces which represent statistically a black-box system. Secondly within several iterations an optimum set is proposed and validated which will form a Pareto front. At the same time the robustness of each response, served as additional objectives, is calculated from the pre-defined parameter intervals and the response surfaces obtained in the first step. Finally an inverse strategy is carried out to determine the parameters’ tolerance combination with a maximally acceptable degradation of the responses in terms of manufacturing costs. A quarter car model has been tested as an example by applying the road excitations from the actual road measurements for both endurance and comfort calculations. One indicator based on the Basquin’s law is defined to compare the global chassis durability of different parameter settings. Another indicator related to comfort is obtained from the vertical acceleration of the sprung mass. An optimum set with best robustness has been finally obtained and the reference tests prove a good robustness prediction of Chebyshev PCE method. This example demonstrates the effectiveness and reliability of the approach, in particular its ability to save computational costs for a complex system.

Keywords: chassis durability, Chebyshev polynomials, multi-objective optimization, polynomial chaos expansion, ride comfort, robust design

Procedia PDF Downloads 152
1 Evaluation of Prehabilitation Prior to Surgery for an Orthopaedic Pathway

Authors: Stephen McCarthy, Joanne Gray, Esther Carr, Gerard Danjoux, Paul Baker, Rhiannon Hackett

Abstract:

Background: The Go Well Health (GWH) platform is a web-based programme that allows patients to access personalised care plans and resources, aimed at prehabilitation prior to surgery. The online digital platform delivers essential patient education and support for patients prior to undergoing total hip replacements (THR) and total knee replacements (TKR). This study evaluated the impact of an online digital platform (ODP) in terms of functional health outcomes, health related quality of life and hospital length of stay following surgery. Methods: A retrospective cohort study comparing a cohort of patients who used the online digital platform (ODP) to deliver patient education and support (PES) prior to undergoing THR and TKR surgery relative to a cohort of patients who did not access the ODP and received usual care. Routinely collected Patient Reported Outcome Measures (PROMs) data was obtained on 2,406 patients who underwent a knee replacement (n=1,160) or a hip replacement (n=1,246) between 2018 and 2019 in a single surgical centre in the United Kingdom. The Oxford Hip and Knee Score and the European Quality of Life Five-Dimensional tool (EQ5D-5L) was obtained both pre-and post-surgery (at 6 months) along with hospital LOS. Linear regression was used to compare the estimate the impact of GWH on both health outcomes and negative binomial regressions were used to impact on LOS. All analyses adjusted for age, sex, Charlson Comorbidity Score and either pre-operative Oxford Hip/Knee scores or pre-operative EQ-5D scores. Fractional polynomials were used to represent potential non-linear relationships between the factors included in the regression model. Findings: For patients who underwent a knee replacement, GWH had a statistically significant impact on Oxford Knee Scores and EQ5D-5L utility post-surgery (p=0.039 and p=0.002 respectively). GWH did not have a statistically significant impact on the hospital length of stay. For those patients who underwent a hip replacement, GWH had a statistically significant impact on Oxford Hip Scores and EQ5D-5L utility post (p=0.000 and p=0.009 respectively). GWH also had a statistically significant reduction in the hospital length of stay (p=0.000). Conclusion: Health Outcomes were higher for patients who used the GWH platform and underwent THR and TKR relative to those who received usual care prior to surgery. Patients who underwent a hip replacement and used GWH also had a reduced hospital LOS. These findings are important for health policy and or decision makers as they suggest that prehabilitation via an ODP can maximise health outcomes for patients following surgery whilst potentially making efficiency savings with reductions in LOS.

Keywords: digital prehabilitation, online digital platform, orthopaedics, surgery

Procedia PDF Downloads 190