Search results for: traditional learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22397

Search results for: traditional learning approach

21647 Current Methods for Drug Property Prediction in the Real World

Authors: Jacob Green, Cecilia Cabrera, Maximilian Jakobs, Andrea Dimitracopoulos, Mark van der Wilk, Ryan Greenhalgh

Abstract:

Predicting drug properties is key in drug discovery to enable de-risking of assets before expensive clinical trials and to find highly active compounds faster. Interest from the machine learning community has led to the release of a variety of benchmark datasets and proposed methods. However, it remains unclear for practitioners which method or approach is most suitable, as different papers benchmark on different datasets and methods, leading to varying conclusions that are not easily compared. Our large-scale empirical study links together numerous earlier works on different datasets and methods, thus offering a comprehensive overview of the existing property classes, datasets, and their interactions with different methods. We emphasise the importance of uncertainty quantification and the time and, therefore, cost of applying these methods in the drug development decision-making cycle. To the best of the author's knowledge, it has been observed that the optimal approach varies depending on the dataset and that engineered features with classical machine learning methods often outperform deep learning. Specifically, QSAR datasets are typically best analysed with classical methods such as Gaussian Processes, while ADMET datasets are sometimes better described by Trees or deep learning methods such as Graph Neural Networks or language models. Our work highlights that practitioners do not yet have a straightforward, black-box procedure to rely on and sets a precedent for creating practitioner-relevant benchmarks. Deep learning approaches must be proven on these benchmarks to become the practical method of choice in drug property prediction.

Keywords: activity (QSAR), ADMET, classical methods, drug property prediction, empirical study, machine learning

Procedia PDF Downloads 83
21646 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: machine learning, imbalanced data, data mining, big data

Procedia PDF Downloads 132
21645 Embodied Communication - Examining Multimodal Actions in a Digital Primary School Project

Authors: Anne Öman

Abstract:

Today in Sweden and in other countries, a variety of digital artefacts, such as laptops, tablets, interactive whiteboards, are being used at all school levels. From an educational perspective, digital artefacts challenge traditional teaching because they provide a range of modes for expression and communication and are not limited to the traditional medium of paper. Digital technologies offer new opportunities for representations and physical interactions with objects, which put forward the role of the body in interaction and learning. From a multimodal perspective the emphasis is on the use of multiple semiotic resources for meaning- making and the study presented here has examined the differential use of semiotic resources by pupils interacting in a digitally designed task in a primary school context. The instances analyzed in this paper come from a case study where the learning task was to create an advertising film in a film-software. The study in focus involves the analysis of a single case with the emphasis on the examination of the classroom setting. The research design used in this paper was based on a micro ethnographic perspective and the empirical material was collected through video recordings of small-group work in order to explore pupils’ communication within the group activity. The designed task described here allowed students to build, share, collaborate upon and publish the redesigned products. The analysis illustrates the variety of communicative modes such as body position, gestures, visualizations, speech and the interaction between these modes and the representations made by the pupils. The findings pointed out the importance of embodied communication during the small- group processes from a learning perspective as well as a pedagogical understanding of pupils’ representations, which were similar from a cultural literacy perspective. These findings open up for discussions with further implications for the school practice concerning the small- group processes as well as the redesigned products. Wider, the findings could point out how multimodal interactions shape the learning experience in the meaning-making processes taking into account that language in a globalized society is more than reading and writing skills.

Keywords: communicative learning, interactive learning environments, pedagogical issues, primary school education

Procedia PDF Downloads 410
21644 Modified Form of Margin Based Angular Softmax Loss for Speaker Verification

Authors: Jamshaid ul Rahman, Akhter Ali, Adnan Manzoor

Abstract:

Learning-based systems have received increasing interest in recent years; recognition structures, including end-to-end speak recognition, are one of the hot topics in this area. A famous work on end-to-end speaker verification by using Angular Softmax Loss gained significant importance and is considered useful to directly trains a discriminative model instead of the traditional adopted i-vector approach. The margin-based strategy in angular softmax is beneficial to learn discriminative speaker embeddings where the random selection of margin values is a big issue in additive angular margin and multiplicative angular margin. As a better solution in this matter, we present an alternative approach by introducing a bit similar form of an additive parameter that was originally introduced for face recognition, and it has a capacity to adjust automatically with the corresponding margin values and is applicable to learn more discriminative features than the Softmax. Experiments are conducted on the part of Fisher dataset, where it observed that the additive parameter with angular softmax to train the front-end and probabilistic linear discriminant analysis (PLDA) in the back-end boosts the performance of the structure.

Keywords: additive parameter, angular softmax, speaker verification, PLDA

Procedia PDF Downloads 104
21643 A Learning-Based EM Mixture Regression Algorithm

Authors: Yi-Cheng Tian, Miin-Shen Yang

Abstract:

The mixture likelihood approach to clustering is a popular clustering method where the expectation and maximization (EM) algorithm is the most used mixture likelihood method. In the literature, the EM algorithm had been used for mixture regression models. However, these EM mixture regression algorithms are sensitive to initial values with a priori number of clusters. In this paper, to resolve these drawbacks, we construct a learning-based schema for the EM mixture regression algorithm such that it is free of initializations and can automatically obtain an approximately optimal number of clusters. Some numerical examples and comparisons demonstrate the superiority and usefulness of the proposed learning-based EM mixture regression algorithm.

Keywords: clustering, EM algorithm, Gaussian mixture model, mixture regression model

Procedia PDF Downloads 510
21642 Automated Feature Extraction and Object-Based Detection from High-Resolution Aerial Photos Based on Machine Learning and Artificial Intelligence

Authors: Mohammed Al Sulaimani, Hamad Al Manhi

Abstract:

With the development of Remote Sensing technology, the resolution of optical Remote Sensing images has greatly improved, and images have become largely available. Numerous detectors have been developed for detecting different types of objects. In the past few years, Remote Sensing has benefited a lot from deep learning, particularly Deep Convolution Neural Networks (CNNs). Deep learning holds great promise to fulfill the challenging needs of Remote Sensing and solving various problems within different fields and applications. The use of Unmanned Aerial Systems in acquiring Aerial Photos has become highly used and preferred by most organizations to support their activities because of their high resolution and accuracy, which make the identification and detection of very small features much easier than Satellite Images. And this has opened an extreme era of Deep Learning in different applications not only in feature extraction and prediction but also in analysis. This work addresses the capacity of Machine Learning and Deep Learning in detecting and extracting Oil Leaks from Flowlines (Onshore) using High-Resolution Aerial Photos which have been acquired by UAS fixed with RGB Sensor to support early detection of these leaks and prevent the company from the leak’s losses and the most important thing environmental damage. Here, there are two different approaches and different methods of DL have been demonstrated. The first approach focuses on detecting the Oil Leaks from the RAW Aerial Photos (not processed) using a Deep Learning called Single Shoot Detector (SSD). The model draws bounding boxes around the leaks, and the results were extremely good. The second approach focuses on detecting the Oil Leaks from the Ortho-mosaiced Images (Georeferenced Images) by developing three Deep Learning Models using (MaskRCNN, U-Net and PSP-Net Classifier). Then, post-processing is performed to combine the results of these three Deep Learning Models to achieve a better detection result and improved accuracy. Although there is a relatively small amount of datasets available for training purposes, the Trained DL Models have shown good results in extracting the extent of the Oil Leaks and obtaining excellent and accurate detection.

Keywords: GIS, remote sensing, oil leak detection, machine learning, aerial photos, unmanned aerial systems

Procedia PDF Downloads 34
21641 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 137
21640 Designing AI-Enabled Smart Maintenance Scheduler: Enhancing Object Reliability through Automated Management

Authors: Arun Prasad Jaganathan

Abstract:

In today's rapidly evolving technological landscape, the need for efficient and proactive maintenance management solutions has become increasingly evident across various industries. Traditional approaches often suffer from drawbacks such as reactive strategies, leading to potential downtime, increased costs, and decreased operational efficiency. In response to these challenges, this paper proposes an AI-enabled approach to object-based maintenance management aimed at enhancing reliability and efficiency. The paper contributes to the growing body of research on AI-driven maintenance management systems, highlighting the transformative impact of intelligent technologies on enhancing object reliability and operational efficiency.

Keywords: AI, machine learning, predictive maintenance, object-based maintenance, expert team scheduling

Procedia PDF Downloads 60
21639 A Study of Various Ontology Learning Systems from Text and a Look into Future

Authors: Fatima Al-Aswadi, Chan Yong

Abstract:

With the large volume of unstructured data that increases day by day on the web, the motivation of representing the knowledge in this data in the machine processable form is increased. Ontology is one of the major cornerstones of representing the information in a more meaningful way on the semantic Web. The goal of Ontology learning from text is to elicit and represent domain knowledge in the machine readable form. This paper aims to give a follow-up review on the ontology learning systems from text and some of their defects. Furthermore, it discusses how far the ontology learning process will enhance in the future.

Keywords: concept discovery, deep learning, ontology learning, semantic relation, semantic web

Procedia PDF Downloads 525
21638 Use of Artificial Intelligence Should Be Centred Around Emotions to Create Effective Learning Environment in the Corporate Workplace

Authors: Artur Willoński

Abstract:

This research introduces the concept of Emotions Based Collaborative Prompting (EBCP) as a response to the need for a unified learning environment in the corporate workplace. The first section examines the key characteristics of workplace learning, presenting three core propositions: (1) workplace learning is both informal and diverse, requiring adaptable approaches; (2) corporate settings provide inherent structures that can be leveraged for collaborative learning; and (3) emotional engagement and human interaction play a central role in effective learning processes. The second section describes how EBCP framework creates an environment that helps identify emotions, assign emotions with parameters, and allows these parameters to be collected, analysed, and turned into a context-aware learning environment. It concludes that EBCP allows people who come from different social backgrounds, age groups, and positions in the organisation to collaborate and generate knowledge based on both formal and informal interactions.

Keywords: collaborative learning, self-regulated learning, emotions, AI

Procedia PDF Downloads 16
21637 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
21636 Learning Object Repositories as Developmental Resources for Educational Institutions in the 21st Century

Authors: Hanan A. Algamdi, Huda Y. Alyami

Abstract:

Learning object repositories contribute to developing educational process through its advantages; as they employ technology effectively, and use it to create new resources for effective learning, as well as they provide opportunities for collaboration in content through providing the ability for editing, modifying and developing it. This supports the relationships between communities that benefit from these repositories, and reflects positively on the content quality. Therefore, this study aims at exploring the most prominent learning topics in the 21st century, which should be included in learning object repositories, and identifying the necessary set of learning skills that the repositories should develop among today students. For conducting this study, the analytical descriptive method will be employed, and study sample will include a group of leaders, experts, and specialists in curricula and e-learning at ministry of education in Kingdom of Saudi Arabia.

Keywords: learning object, repositories, 21st century, quality

Procedia PDF Downloads 306
21635 Experimental Verification of the Relationship between Physiological Indexes and the Presence or Absence of an Operation during E-learning

Authors: Masaki Omata, Shumma Hosokawa

Abstract:

An experiment to verify the relationships between physiological indexes of an e-learner and the presence or absence of an operation during e-learning is described. Electroencephalogram (EEG), hemoencephalography (HEG), skin conductance (SC), and blood volume pulse (BVP) values were measured while participants performed experimental learning tasks. The results show that there are significant differences between the SC values when reading with clicking on learning materials and the SC values when reading without clicking, and between the HEG ratio when reading (with and without clicking) and the HEG ratio when resting for four of five participants. We conclude that the SC signals can be used to estimate whether or not a learner is performing an active task and that the HEG ratios can be used to estimate whether a learner is learning.

Keywords: e-learning, physiological index, physiological signal, state of learning

Procedia PDF Downloads 380
21634 ICTs Knowledge as a Way of Enhancing Literacy and Lifelong Learning in Nigeria

Authors: Jame O. Ezema, Odenigbo Veronica

Abstract:

The study covers the topic Information Communication and Technology (ICTs) knowledge as a way of enhancing Literacy and Lifelong learning in Nigeria. This work delved into defining of ICTs. Types of ICTs and media technologies were also mentioned. It further explained how ICTs can be strengthened and the uses of ICTs in education was duly emphasized. The paper also enumerated some side effects of ICTs on learners while the role of ICTs in enhancing literacy was explained. The study carried out strategies to use ICTs meaningfully in Literacy Programs and also emphasized the word lifelong learning in Nigeria. Some recommendations were made towards acquiring ICTs knowledge, so as to enhance Literacy and Lifelong learning in Nigeria.

Keywords: literacy, distance-learning, life-long learning for sustainable development, e-learning

Procedia PDF Downloads 507
21633 Rating Agreement: Machine Learning for Environmental, Social, and Governance Disclosure

Authors: Nico Rosamilia

Abstract:

The study evaluates the importance of non-financial disclosure practices for regulators, investors, businesses, and markets. It aims to create a sector-specific set of indicators for environmental, social, and governance (ESG) performances alternative to the ratings of the agencies. The existing literature extensively studies the implementation of ESG rating systems. Conversely, this study has a twofold outcome. Firstly, it should generalize incentive systems and governance policies for ESG and sustainable principles. Therefore, it should contribute to the EU Sustainable Finance Disclosure Regulation. Secondly, it concerns the market and the investors by highlighting successful sustainable investing. Indeed, the study contemplates the effect of ESG adoption practices on corporate value. The research explores the asset pricing angle in order to shed light on the fragmented argument on the finance of ESG. Investors may be misguided about the positive or negative effects of ESG on performances. The paper proposes a different method to evaluate ESG performances. By comparing the results of a traditional econometric approach (Lasso) with a machine learning algorithm (Random Forest), the study establishes a set of indicators for ESG performance. Therefore, the research also empirically contributes to the theoretical strands of literature regarding model selection and variable importance in a finance framework. The algorithms will spit out sector-specific indicators. This set of indicators defines an alternative to the compounded scores of ESG rating agencies and avoids the possible offsetting effect of scores. With this approach, the paper defines a sector-specific set of indicators to standardize ESG disclosure. Additionally, it tries to shed light on the absence of a clear understanding of the direction of the ESG effect on corporate value (the problem of endogeneity).

Keywords: ESG ratings, non-financial information, value of firms, sustainable finance

Procedia PDF Downloads 85
21632 A Development of Personalized Edutainment Contents through Storytelling

Authors: Min Kyeong Cha, Ju Yeon Mun, Seong Baeg Kim

Abstract:

Recently, ‘play of learning’ became important and is emphasized as a useful learning tool. Therefore, interest in edutainment contents is growing. Storytelling is considered first as a method that improves the transmission of information and learner's interest when planning edutainment contents. In this study, we designed edutainment contents in the form of an adventure game that applies the storytelling method. This content provides questions and items constituted dynamically and reorganized learning contents through analysis of test results. It allows learners to solve various questions through effective iterative learning. As a result, the learners can reach mastery learning.

Keywords: storytelling, edutainment, mastery learning, computer operating principle

Procedia PDF Downloads 319
21631 A Co-Constructed Picture of Chinese Teachers' Conceptions of Learning at Play

Authors: Shu-Chen Wu

Abstract:

This qualitative study investigated Chinese teachers’ perspectives on learning at play. Six kindergarten teachers were interviewed to obtain their understanding of learning at play. Exemplary play episodes from their classrooms were selected with the assistance of the participating teachers. Four three-minute videos containing the largest amount of learning elements based on the teachers’ views were selected for analysis. Applying video-stimulated interviews, the selected video clips were shown to eight teachers in two focus groups to elicit their perspectives on learning at play. The findings revealed that Chinese teachers have a very structured representation of learning at play, which should contribute to the development of professional practices and curricular policies.

Keywords: learning at play, teachers’ perspectives, co-constructed views, video-stimulated interviews

Procedia PDF Downloads 233
21630 Content and Langauge Integrated Learning: English and Art History

Authors: Craig Mertens

Abstract:

Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.

Keywords: art history, EFL, content and language integration learning, critical thinking

Procedia PDF Downloads 599
21629 Upgrading Engineering Education in Häme University of Applied Sciences: Towards Teacher Teams, Flexible Processes and Versatile Company Collaboration

Authors: Jussi Horelli, Salla Niittymäki

Abstract:

In this acceleratingly developing world, it will be crucial for our students to not only to adapt to continuous change, but to be the driving force of it. This raises the question of how can the educational processes motivate and encourage the students to learn the perhaps most important skill there for their further work career: the ability to learn and absorb more by themselves. In engineering education, the learning contents and methods have traditionally been very substance oriented and teacher-centered. In Häme University of Applied Sciences (HAMK), the pedagogical model has been completely renewed during the past few years. Terms like phenomenon or skills-based learning and collaborative teaching are things which have not very often been related to engineering education, but are now the foundation of HAMK’s pedagogical model in all disciplines, even in engineering studies. In this paper, a new flexible way of executing engineering studies will be introduced. The paper will summarize three years’ experiences and observations of a process where traditional teacher-centric mechanical engineering teaching was converted into a model where teachers work collaboratively in teams supporting the students’ learning processes.

Keywords: team teaching, collaborative learning, engineering education, new pedagogy

Procedia PDF Downloads 222
21628 Making ‘Space’ For Work-integrated Learning In Singapore: Recognising The Next Wave Of Talents Through Skillsfuture Movement

Authors: Catherine Chua, Kashif Raza

Abstract:

Work-integrated learning (WIL) has been heightened in the last few years across countries. With a specific attention on working adults, the key objective is to integrate work experiences with academic studies so that they will be given more opportunities to advance, gather relevant skills and credentials to enable them to contribute more positively to the labour market. In Singapore, developing talent through WIL aims to develop specialist and enduring skills for the industries. Collaborating with the institutes of higher education in Singapore, the Integrated Work Study Programs (IWSP) seek to harmonize classroom learning with practical work experiences so that adult students can develop skills and knowledge that are needed in the existing and future workplaces. Local higher education institutions will also work closely with industry partners, and design courses that support these students to deepen their skills. Using Critical Discourse Analysis, this paper examines the Singapore government policies in WIL and argues that despite the various supports and interventions provided by the government, it is equally important to create a ‘space’ in the society whereby there is a greater recognition for WIL as a valuable education approach, i.e., “continuous meritocracy”. This is especially so in Singapore where academic excellence and conventional front-loaded approach to education are valued.

Keywords: work-integrated learning, adult learners, continuous meritocracy, skillsfuture singapore

Procedia PDF Downloads 66
21627 Creating Positive Learning Environment

Authors: Samia Hassan, Fouzia Latif

Abstract:

In many countries, education is still far from being a knowledge industry in the sense of own practices that are not yet being transformed by knowledge about the efficacy of those practices. The core question of this paper is why students get bored in class? Have we balanced between the creation and advancement of an engaging learning community and effective learning environment? And between, giving kids confidence to achieve their maximum and potential goals, we sand managing student’s behavior. We conclude that creating a positive learning environment enhances opportunities for young children to feel safe, secure, and to supported in order to do their best learning. Many factors can use in classrooms aid to the positive environment like course content, class preparation, and behavior.

Keywords: effective, environment, learning, positive

Procedia PDF Downloads 576
21626 Machine Learning Approach for Yield Prediction in Semiconductor Production

Authors: Heramb Somthankar, Anujoy Chakraborty

Abstract:

This paper presents a classification study on yield prediction in semiconductor production using machine learning approaches. A complicated semiconductor production process is generally monitored continuously by signals acquired from sensors and measurement sites. A monitoring system contains a variety of signals, all of which contain useful information, irrelevant information, and noise. In the case of each signal being considered a feature, "Feature Selection" is used to find the most relevant signals. The open-source UCI SECOM Dataset provides 1567 such samples, out of which 104 fail in quality assurance. Feature extraction and selection are performed on the dataset, and useful signals were considered for further study. Afterward, common machine learning algorithms were employed to predict whether the signal yields pass or fail. The most relevant algorithm is selected for prediction based on the accuracy and loss of the ML model.

Keywords: deep learning, feature extraction, feature selection, machine learning classification algorithms, semiconductor production monitoring, signal processing, time-series analysis

Procedia PDF Downloads 110
21625 Simulation versus Hands-On Learning Methodologies: A Comparative Study for Engineering and Technology Curricula

Authors: Mohammed T. Taher, Usman Ghani, Ahmed S. Khan

Abstract:

This paper compares the findings of two studies conducted to determine the effectiveness of simulation-based, hands-on and feedback mechanism on students learning by answering the following questions: 1). Does the use of simulation improve students’ learning outcomes? 2). How do students perceive the instructional design features embedded in the simulation program such as exploration and scaffolding support in learning new concepts? 3.) What is the effect of feedback mechanisms on students’ learning in the use of simulation-based labs? The paper also discusses the other aspects of findings which reveal that simulation by itself is not very effective in promoting student learning. Simulation becomes effective when it is followed by hands-on activity and feedback mechanisms. Furthermore, the paper presents recommendations for improving student learning through the use of simulation-based, hands-on, and feedback-based teaching methodologies.

Keywords: simulation-based teaching, hands-on learning, feedback-based learning, scaffolding

Procedia PDF Downloads 464
21624 Sustainable Traditional Urban Design of the Old City of Ghadames

Authors: Hazem Bunkheila

Abstract:

Ghadames is an oasis on the edge of the Sahara Desert in southwestern Libya at the border with Algeria and Tunisia. It is the oldest oasis in the world that provides a fascinating example of traditional urban in the desert environment. The urban of the small city is considered a genuine adaptation to the harsh desert climate. The historic city of Ghadames remained unaffected by the rapid after oil changes. That makes it a good field to study sustainable, vernacular, earth architecture and urban design. The aim of this paper is to investigate the urban structure, concept, and fabric of the old oasis. The research also surveys the environmental considerations in the city that shades the sustainable features in this traditional residential area. In addition, the paper addresses the modern applications in the new city of Ghadams and sides of success and failure compared to the traditional urban fabric.

Keywords: dessert climate design, Ghadames, sustainable urban design, traditional urban design

Procedia PDF Downloads 362
21623 Students' Perceptions and Gender Relationships towards the Mobile Learning in Polytechnic Mukah Sarawak (Malaysia)

Authors: Habsah Mohamad Sabli, Mohammad Fardillah Wahi

Abstract:

The main aim of this research study is to better understand and measure students' perceptions towards the effectiveness of mobile learning. This paper reports on the results of a survey of three hundred nineteen students at Polytechnic Mukah Sarawak (PMU) about their perception to the use of mobile technology in education. An analysis of the quantitative survey findings is presented focusing on the ramification for mobile-learning (m-learning) practices in higher learning and teaching environments. In this paper we present our research findings about the level of perception and gender correlations with perceived ease of use and perceived usefulness using M-Learning in learning activities among students in Polytechnic Mukah (PMU). Based on gender respondent, were 150 female (47.0%) and 169 male (53.0%). The survey findings further revealed that perception of students are in moderately high and agree for using m-learning. The perceived ease of use and perceived usefulness is significant with weak correlations between students to adapt m-learning for active learning activities. The outcome of this research can benefit the decision makers of higher institution in Mukah Sarawak regard to way to enhance m-learning and promote effective teaching and learning activities as well as strengthening the quality of learning delivery.

Keywords: M-learning, student attitudes, student perception, mobile technology

Procedia PDF Downloads 503
21622 The Modern Significance of Chinese Traditional Gardens for the Development of Modern Eco-Garden Cities

Authors: Liang Zhang

Abstract:

Chinese traditional gardens are the historical and cultural treasures of the whole mankind, among which the excellent parts still have important guiding significance for modern urban design. Based on the background of eco-garden city and reality, through the analysis of various design elements of classical gardens, combined with the needs of today's urban development, starting from the three needs of landscape, energy saving and environmental protection. To explore how Chinese traditional gardens can be revitalized in modern urban planning.

Keywords: Chinese traditional gardens, eco-garden city, modern urban planning, urban development

Procedia PDF Downloads 178
21621 Diversity in Finance Literature Revealed through the Lens of Machine Learning: A Topic Modeling Approach on Academic Papers

Authors: Oumaima Lahmar

Abstract:

This paper aims to define a structured topography for finance researchers seeking to navigate the body of knowledge in their extrapolation of finance phenomena. To make sense of the body of knowledge in finance, a probabilistic topic modeling approach is applied on 6000 abstracts of academic articles published in three top journals in finance between 1976 and 2020. This approach combines both machine learning techniques and natural language processing to statistically identify the conjunctions between research articles and their shared topics described each by relevant keywords. The topic modeling analysis reveals 35 coherent topics that can well depict finance literature and provide a comprehensive structure for the ongoing research themes. Comparing the extracted topics to the Journal of Economic Literature (JEL) classification system, a significant similarity was highlighted between the characterizing keywords. On the other hand, we identify other topics that do not match the JEL classification despite being relevant in the finance literature.

Keywords: finance literature, textual analysis, topic modeling, perplexity

Procedia PDF Downloads 171
21620 A Deep Learning Approach to Detect Complete Safety Equipment for Construction Workers Based on YOLOv7

Authors: Shariful Islam, Sharun Akter Khushbu, S. M. Shaqib, Shahriar Sultan Ramit

Abstract:

In the construction sector, ensuring worker safety is of the utmost significance. In this study, a deep learning-based technique is presented for identifying safety gear worn by construction workers, such as helmets, goggles, jackets, gloves, and footwear. The suggested method precisely locates these safety items by using the YOLO v7 (You Only Look Once) object detection algorithm. The dataset utilized in this work consists of labeled images split into training, testing and validation sets. Each image has bounding box labels that indicate where the safety equipment is located within the image. The model is trained to identify and categorize the safety equipment based on the labeled dataset through an iterative training approach. We used custom dataset to train this model. Our trained model performed admirably well, with good precision, recall, and F1-score for safety equipment recognition. Also, the model's evaluation produced encouraging results, with a [email protected] score of 87.7%. The model performs effectively, making it possible to quickly identify safety equipment violations on building sites. A thorough evaluation of the outcomes reveals the model's advantages and points up potential areas for development. By offering an automatic and trustworthy method for safety equipment detection, this research contributes to the fields of computer vision and workplace safety. The proposed deep learning-based approach will increase safety compliance and reduce the risk of accidents in the construction industry.

Keywords: deep learning, safety equipment detection, YOLOv7, computer vision, workplace safety

Procedia PDF Downloads 68
21619 Learning in Multicultural Workspaces: A Case of Aged Care

Authors: Robert John Godby

Abstract:

To be responsive now and in the future, workplaces must address the demands of multicultural teams as they become more common elements of the global labor force. This is especially the case for aged care due to the aging population, industry growth and migrant recruitment. This research identifies influences on and improvements for learning in these environments. Its unique contribution is to illuminate how culturally diverse workplaces can work and learn together more effectively. A mixed-methods approach was used to gather data about this topic in two phases. Firstly, the research methods included a survey of 102 aged care workers around Australia from two multi-site aged care organisations. The questionnaire elicited both quantitative and qualitative data about worker characteristics and perspectives on working and learning in aged care. Secondly, a case study of one aged care worksite was formulated drawing on worksite information and interviews with workers. A review of the literature suggests that learning in multicultural work environments is influenced by three main factors: 1) the individual workers themselves, 2) their interaction with each other and 3) the environment in which they work. There are various accounts of these three factors, how they are manifested and how they lead to a change in workers’ disposition, knowledge, or expertise when confronted with new circumstances. The study has found that a key individual factor influencing learning is cultural background. Their unique view of the world was shown to affect their approach to both their work and co-working. Interactional factors suggest that the high requirement for collaboration in aged care positively supports learning in this context; however, it can be hindered by cultural bias and spoken accent. The study also found that environmental factors, such as disruptions caused by the pandemic, were another key influence. For example, the need to wear face masks hindered the communication needed for workplace learning. This was especially challenging due to the diverse language backgrounds and abilities within the teams. Potential improvements for learning in multicultural aged care work environments were identified. These include more frequent and structured inter-peer learning (e.g. buddying), communication training (e.g. English language usage for both native and non-native speaking workers) and support for cross-cultural habitude (e.g. recognizing and adapting to cultural differences). Workplace learning in cross-cultural aged care environments is an area that is not extensively dealt with in the literature. This study addresses this gap and holds the potential to contribute practical insights to aged care and other diverse industries.

Keywords: cross-cultural learning, learning in aged care, migrant learning, workplace learning

Procedia PDF Downloads 159
21618 The Same Rules of Traditional Chinese Herbal Medicine in Treating Chronic Idiopathic Urticaria and Hypertension

Authors: Heng W. Chang, Mao F. Sun

Abstract:

Chronic Idiopathic Urticaria (CIU) and hypertension are rarely discussed together in modern and traditional Chinese medicine, and often belong to different medical departments. However, in traditional Chinese medicinal theory, the two diseases have some similar characters. For example, they are both relevant to 'wind'. This study conducted a literature review using the China National Knowledge Infrastructure to identify herbs yielding the same effect for the two diseases. The finding showed that the common herbs used most frequently is Rehmanniae. The conclusion is that the same TCM (Traditional Chinese Medicine) mechanism of the two diseases may be 'blood heat'. It requires further study to prove it in the future.

Keywords: urticaria, herbs, hypertension, Rehmanniae

Procedia PDF Downloads 156