Search results for: automated monitoring system.
19323 Experimental Simulation Set-Up for Validating Out-Of-The-Loop Mitigation when Monitoring High Levels of Automation in Air Traffic Control
Authors: Oliver Ohneiser, Francesca De Crescenzio, Gianluca Di Flumeri, Jan Kraemer, Bruno Berberian, Sara Bagassi, Nicolina Sciaraffa, Pietro Aricò, Gianluca Borghini, Fabio Babiloni
Abstract:
An increasing degree of automation in air traffic will also change the role of the air traffic controller (ATCO). ATCOs will fulfill significantly more monitoring tasks compared to today. However, this rather passive role may lead to Out-Of-The-Loop (OOTL) effects comprising vigilance decrement and less situation awareness. The project MINIMA (Mitigating Negative Impacts of Monitoring high levels of Automation) has conceived a system to control and mitigate such OOTL phenomena. In order to demonstrate the MINIMA concept, an experimental simulation set-up has been designed. This set-up consists of two parts: 1) a Task Environment (TE) comprising a Terminal Maneuvering Area (TMA) simulator as well as 2) a Vigilance and Attention Controller (VAC) based on neurophysiological data recording such as electroencephalography (EEG) and eye-tracking devices. The current vigilance level and the attention focus of the controller are measured during the ATCO’s active work in front of the human machine interface (HMI). The derived vigilance level and attention trigger adaptive automation functionalities in the TE to avoid OOTL effects. This paper describes the full-scale experimental set-up and the component development work towards it. Hence, it encompasses a pre-test whose results influenced the development of the VAC as well as the functionalities of the final TE and the two VAC’s sub-components.Keywords: automation, human factors, air traffic controller, MINIMA, OOTL (Out-Of-The-Loop), EEG (Electroencephalography), HMI (Human Machine Interface)
Procedia PDF Downloads 38419322 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.Keywords: connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations
Procedia PDF Downloads 9219321 The Role of BPSK (Consumer Dispute Settlement Body) in the Monitoring of Standard Clause Inclusion within Indonesian Customer Protection Law
Authors: Deviana Yuanitasari
Abstract:
The rapid development of world commerce and trade nowadays has created fast-paced demand in every business activities and transactions. That also includes the need for ready to use and practical form of standard contract. For the company or business owner, the use of standard contract is an alternative way to achieve economic goals faster, effectively and efficiently. In the other hand, for the consumer the practice of using standard contract usually unfavorable, because the contract clauses usually have been defined by the company and cannot be individually negotiated. That means consumer cannot influence the substances of the contract clauses. The purpose of this study is to get deeper understanding and analyze the role of Consumer Dispute Settlement Body in the monitoring of standard clause inclusion by businesses and industries within the context of practicing consumer protection law. Furthermore, this study will focus on the procedure of sanction and the effectiveness of the sanction for the business practitioners which disregard the inclusion of the prohibited standard clause. Therefore, this study will depict the law issues and other phenomenon that related with the role of Consumer Dispute Settlement Body in monitoring the inclusion of standard clause and procedure of sanction for the business practitioners that still use exemption clause within Consumer Protection Law System. This study results that BPSK has been assigned to monitor the inclusion of standard clause and settle consumer dispute. At this stage, BPSK role is passive, which means BPSK only takes an action if there are consumer complaints. The procedure of sanction is not part of BPSK tasks, since should there be a violation of standard clause; BPSK can only ask the business practitioners to remove the prohibited clause and not give a sanction. As a result, the procedure of sanction rule for the Standard Clause violation in this context can be considered as ineffective.Keywords: standard contract, standard clause, consumer protection law, consumer dispute settlement body
Procedia PDF Downloads 33519320 An ALM Matrix Completion Algorithm for Recovering Weather Monitoring Data
Authors: Yuqing Chen, Ying Xu, Renfa Li
Abstract:
The development of matrix completion theory provides new approaches for data gathering in Wireless Sensor Networks (WSN). The existing matrix completion algorithms for WSN mainly consider how to reduce the sampling number without considering the real-time performance when recovering the data matrix. In order to guarantee the recovery accuracy and reduce the recovery time consumed simultaneously, we propose a new ALM algorithm to recover the weather monitoring data. A lot of experiments have been carried out to investigate the performance of the proposed ALM algorithm by using different parameter settings, different sampling rates and sampling models. In addition, we compare the proposed ALM algorithm with some existing algorithms in the literature. Experimental results show that the ALM algorithm can obtain better overall recovery accuracy with less computing time, which demonstrate that the ALM algorithm is an effective and efficient approach for recovering the real world weather monitoring data in WSN.Keywords: wireless sensor network, matrix completion, singular value thresholding, augmented Lagrange multiplier
Procedia PDF Downloads 38519319 The Possibility to Assess the Industrial Enterprise Sustainability
Authors: G. Khasaev, S. Ashmarina , A. Zotova
Abstract:
The priority of Russian enterprises development has been given to the optimization process of industrial enterprise activity for their sustainable development in a long-term period. The assessment of sustainable development level as one of the most efficient instruments of sustainable development management at the industrial enterprise gives a complex view of its state. In order to perform accurate analysis of the current state of the industrial enterprise, it is necessary to perform the assessment of its sustainable development and using its results to elaborate the further tactic of enterprise functioning. The assessment of sustainable development level of the enterprise may help the effective management of strategy development only if the corresponding indicators system is created. The elaboration and usage the sustainable development indicators allows the enterprise to implement analysis of its activity results and monitoring of sustainable enterprise functioning. The authors’ methods are based on general aspects of the industrial enterprise functioning such as finance, customers, inner economic process, and staff system.Keywords: assessment methods, indicators system, industrial enterprise, sustainable development
Procedia PDF Downloads 36719318 A Data-Driven Monitoring Technique Using Combined Anomaly Detectors
Authors: Fouzi Harrou, Ying Sun, Sofiane Khadraoui
Abstract:
Anomaly detection based on Principal Component Analysis (PCA) was studied intensively and largely applied to multivariate processes with highly cross-correlated process variables. Monitoring metrics such as the Hotelling's T2 and the Q statistics are usually used in PCA-based monitoring to elucidate the pattern variations in the principal and residual subspaces, respectively. However, these metrics are ill suited to detect small faults. In this paper, the Exponentially Weighted Moving Average (EWMA) based on the Q and T statistics, T2-EWMA and Q-EWMA, were developed for detecting faults in the process mean. The performance of the proposed methods was compared with that of the conventional PCA-based fault detection method using synthetic data. The results clearly show the benefit and the effectiveness of the proposed methods over the conventional PCA method, especially for detecting small faults in highly correlated multivariate data.Keywords: data-driven method, process control, anomaly detection, dimensionality reduction
Procedia PDF Downloads 29919317 Health Monitoring of Composite Pile Construction Using Fiber Bragg Gratings Sensor Arrays
Authors: B. Atli-Veltin, A. Vosteen, D. Megan, A. Jedynska, L. K. Cheng
Abstract:
Composite materials combine the advantages of being lightweight and possessing high strength. This is in particular of interest for the development of large constructions, e.g., aircraft, space applications, wind turbines, etc. One of the shortcomings of using composite materials is the complex nature of the failure mechanisms which makes it difficult to predict the remaining lifetime. Therefore, condition and health monitoring are essential for using composite material for critical parts of a construction. Different types of sensors are used/developed to monitor composite structures. These include ultrasonic, thermography, shearography and fiber optic. The first 3 technologies are complex and mostly used for measurement in laboratory or during maintenance of the construction. Optical fiber sensor can be surface mounted or embedded in the composite construction to provide the unique advantage of in-operation measurement of mechanical strain and other parameters of interest. This is identified to be a promising technology for Structural Health Monitoring (SHM) or Prognostic Health Monitoring (PHM) of composite constructions. Among the different fiber optic sensing technologies, Fiber Bragg Grating (FBG) sensor is the most mature and widely used. FBG sensors can be realized in an array configuration with many FBGs in a single optical fiber. In the current project, different aspects of using embedded FBG for composite wind turbine monitoring are investigated. The activities are divided into two parts. Firstly, FBG embedded carbon composite laminate is subjected to tensile and bending loading to investigate the response of FBG which are placed in different orientations with respect to the fiber. Secondly, the demonstration of using FBG sensor array for temperature and strain sensing and monitoring of a 5 m long scale model of a glass fiber mono-pile is investigated. Two different FBG types are used; special in-house fibers and off-the-shelf ones. The results from the first part of the study are showing that the FBG sensors survive the conditions during the production of the laminate. The test results from the tensile and the bending experiments are indicating that the sensors successfully response to the change of strain. The measurements from the sensors will be correlated with the strain gauges that are placed on the surface of the laminates.Keywords: Fiber Bragg Gratings, embedded sensors, health monitoring, wind turbine towers
Procedia PDF Downloads 24319316 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 11919315 In situ Modelling of Lateral-Torsional Vibration of a Rotor-Stator with Multiple Parametric Excitations
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
This paper presents a 4-DOF nonlinear model of a cracked of Laval rotor established based on Energy Principles. The model has been used to simulate coupled torsional-lateral response of the cracked rotor stator-system with multiple parametric excitations, namely, rotor-stator-rub, a breathing transverse crack, unbalanced mass, and an axial force. Nonlinearity due to a “breathing” crack is incorporated by considering a simple hinge model which is suitable for small breathing crack. The vibration response of a cracked rotor passing through its critical speed with rotor-stator interaction is analyzed, and an attempt for crack detection and monitoring explored. Effects of unbalanced eccentricity with phase and acceleration are investigated. By solving the motion equations, steady-state vibration response is obtained in presence of several rotor faults. The presence of a crack is observable in the power spectrum despite the excitation by the axial force and rotor-stator rub impact. Presented results are consistent with existing literature and could be adopted into rotor condition monitoring strategiesKeywords: rotor, crack, rubbing, axial force, non linear
Procedia PDF Downloads 40119314 Design, Construction and Characterization of a 3He Proportional Counter for Detecting Thermal Neutron
Authors: M. Fares, S. Mameri, I. Abdlani, K. Negara
Abstract:
Neutron detectors in general, proportional counters gas filling based isotope 3He in particular are going to be essential for monitoring and control of certain nuclear facilities, monitoring of experimentation around neutron beams and channels nuclear research reactors, radiation protection instruments and other tools multifaceted exploration and testing of materials, etc. This work consists of a measurement campaign features two Proportional Counters 3He (3He: LND252/USA CP, CP prototype: 3He LND/DDM). This is to make a comparison study of a CP 3He LND252/USA reference one hand, and in the context of routine periodic monitoring of the characteristics of the detectors for controlling the operation especially for laboratory prototypes. In this paper, we have described the different characteristics of the detectors and the experimental protocols used. Tables of measures have been developed and the different curves were plotted. The experimental campaign at stake: 2 PC 3He were thus characterized: Their characteristics (sensitivity, energy pulse height distribution spectra, gas amplification etc.) Were identified: 01 PC 3He 1'' Type: prototype DEDIN/DDM, 01 PC 3He 1'' Type: LND252/USA.Keywords: PC 3He, sensitivity, pulse height distribution spectra, gas amplification
Procedia PDF Downloads 44419313 Acid Injection PTFE Internal Lining in Raw Water System
Authors: Fikri Suwaileh
Abstract:
In the reverse osmosis (RO) water treatment plant, operation was suffering from several leaks on the acid injection point spool and downstream spools, due to insufficient injection monitoring and the coating failure leading to pin holes. The paper will go over the background of the leaks in the acid injection point, the process in the RO plant, the material, and coating used in the existing spools, the impact of these repeated leaks, the type of damage mechanism that occurred in the system due to the manner of acid injection and the heat in the spools, which lead to coating failure, leaks and water release. This paper will also look at the analysis, both the short- and long-term recommendations, and the utilization of Teflon internal lining to stop the leaks. Sharing this case study will enhance the knowledge of the importance of taking all factors that will lead to leaks in the acid injection points, along with the importance of utilizing the appropriate coating material lining to enhance the full system.Keywords: corrosion, coating, raw water, lining
Procedia PDF Downloads 2119312 Feasibility of Voluntary Deep Inspiration Breath-Hold Radiotherapy Technique Implementation without Deep Inspiration Breath-Hold-Assisting Device
Authors: Auwal Abubakar, Shazril Imran Shaukat, Noor Khairiah A. Karim, Mohammed Zakir Kassim, Gokula Kumar Appalanaido, Hafiz Mohd Zin
Abstract:
Background: Voluntary deep inspiration breath-hold radiotherapy (vDIBH-RT) is an effective cardiac dose reduction technique during left breast radiotherapy. This study aimed to assess the accuracy of the implementation of the vDIBH technique among left breast cancer patients without the use of a special device such as a surface-guided imaging system. Methods: The vDIBH-RT technique was implemented among thirteen (13) left breast cancer patients at the Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia. Breath-hold monitoring was performed based on breath-hold skin marks and laser light congruence observed on zoomed CCTV images from the control console during each delivery. The initial setup was verified using cone beam computed tomography (CBCT) during breath-hold. Each field was delivered using multiple beam segments to allow a delivery time of 20 seconds, which can be tolerated by patients in breath-hold. The data were analysed using an in-house developed MATLAB algorithm. PTV margin was computed based on van Herk's margin recipe. Results: The setup error analysed from CBCT shows that the population systematic error in lateral (x), longitudinal (y), and vertical (z) axes was 2.28 mm, 3.35 mm, and 3.10 mm, respectively. Based on the CBCT image guidance, the Planning target volume (PTV) margin that would be required for vDIBH-RT using CCTV/Laser monitoring technique is 7.77 mm, 10.85 mm, and 10.93 mm in x, y, and z axes, respectively. Conclusion: It is feasible to safely implement vDIBH-RT among left breast cancer patients without special equipment. The breath-hold monitoring technique is cost-effective, radiation-free, easy to implement, and allows real-time breath-hold monitoring.Keywords: vDIBH, cone beam computed tomography, radiotherapy, left breast cancer
Procedia PDF Downloads 5719311 Preliminary Design of Maritime Energy Management System: Naval Architectural Approach to Resolve Recent Limitations
Authors: Seyong Jeong, Jinmo Park, Jinhyoun Park, Boram Kim, Kyoungsoo Ahn
Abstract:
Energy management in the maritime industry is being required by economics and in conformity with new legislative actions taken by the International Maritime Organization (IMO) and the European Union (EU). In response, the various performance monitoring methodologies and data collection practices have been examined by different stakeholders. While many assorted advancements in operation and technology are applicable, their adoption in the shipping industry stays small. This slow uptake can be considered due to many different barriers such as data analysis problems, misreported data, and feedback problems, etc. This study presents a conceptual design of an energy management system (EMS) and proposes the methodology to resolve the limitations (e.g., data normalization using naval architectural evaluation, management of misrepresented data, and feedback from shore to ship through management of performance analysis history). We expect this system to make even short-term charterers assess the ship performance properly and implement sustainable fleet control.Keywords: data normalization, energy management system, naval architectural evaluation, ship performance analysis
Procedia PDF Downloads 44919310 Automated Building Internal Layout Design Incorporating Post-Earthquake Evacuation Considerations
Authors: Sajjad Hassanpour, Vicente A. González, Yang Zou, Jiamou Liu
Abstract:
Earthquakes pose a significant threat to both structural and non-structural elements in buildings, putting human lives at risk. Effective post-earthquake evacuation is critical for ensuring the safety of building occupants. However, current design practices often neglect the integration of post-earthquake evacuation considerations into the early-stage architectural design process. To address this gap, this paper presents a novel automated internal architectural layout generation tool that optimizes post-earthquake evacuation performance. The tool takes an initial plain floor plan as input, along with specific requirements from the user/architect, such as minimum room dimensions, corridor width, and exit lengths. Based on these inputs, firstly, the tool randomly generates different architectural layouts. Secondly, the human post-earthquake evacuation behaviour will be thoroughly assessed for each generated layout using the advanced Agent-Based Building Earthquake Evacuation Simulation (AB2E2S) model. The AB2E2S prototype is a post-earthquake evacuation simulation tool that incorporates variables related to earthquake intensity, architectural layout, and human factors. It leverages a hierarchical agent-based simulation approach, incorporating reinforcement learning to mimic human behaviour during evacuation. The model evaluates different layout options and provides feedback on evacuation flow, time, and possible casualties due to earthquake non-structural damage. By integrating the AB2E2S model into the automated layout generation tool, architects and designers can obtain optimized architectural layouts that prioritize post-earthquake evacuation performance. Through the use of the tool, architects and designers can explore various design alternatives, considering different minimum room requirements, corridor widths, and exit lengths. This approach ensures that evacuation considerations are embedded in the early stages of the design process. In conclusion, this research presents an innovative automated internal architectural layout generation tool that integrates post-earthquake evacuation simulation. By incorporating evacuation considerations into the early-stage design process, architects and designers can optimize building layouts for improved post-earthquake evacuation performance. This tool empowers professionals to create resilient designs that prioritize the safety of building occupants in the face of seismic events.Keywords: agent-based simulation, automation in design, architectural layout, post-earthquake evacuation behavior
Procedia PDF Downloads 10619309 ARGO: An Open Designed Unmanned Surface Vehicle Mapping Autonomous Platform
Authors: Papakonstantinou Apostolos, Argyrios Moustakas, Panagiotis Zervos, Dimitrios Stefanakis, Manolis Tsapakis, Nektarios Spyridakis, Mary Paspaliari, Christos Kontos, Antonis Legakis, Sarantis Houzouris, Konstantinos Topouzelis
Abstract:
For years unmanned and remotely operated robots have been used as tools in industry research and education. The rapid development and miniaturization of sensors that can be attached to remotely operated vehicles in recent years allowed industry leaders and researchers to utilize them as an affordable means for data acquisition in air, land, and sea. Despite the recent developments in the ground and unmanned airborne vehicles, a small number of Unmanned Surface Vehicle (USV) platforms are targeted for mapping and monitoring environmental parameters for research and industry purposes. The ARGO project is developed an open-design USV equipped with multi-level control hardware architecture and state-of-the-art sensors and payloads for the autonomous monitoring of environmental parameters in large sea areas. The proposed USV is a catamaran-type USV controlled over a wireless radio link (5G) for long-range mapping capabilities and control for a ground-based control station. The ARGO USV has a propulsion control using 2x fully redundant electric trolling motors with active vector thrust for omnidirectional movement, navigation with opensource autopilot system with high accuracy GNSS device, and communication with the 2.4Ghz digital link able to provide 20km of Line of Sight (Los) range distance. The 3-meter dual hull design and composite structure offer well above 80kg of usable payload capacity. Furthermore, sun and friction energy harvesting methods provide clean energy to the propulsion system. The design is highly modular, where each component or payload can be replaced or modified according to the desired task (industrial or research). The system can be equipped with Multiparameter Sonde, measuring up to 20 water parameters simultaneously, such as conductivity, salinity, turbidity, dissolved oxygen, etc. Furthermore, a high-end multibeam echo sounder can be installed in a specific boat datum for shallow water high-resolution seabed mapping. The system is designed to operate in the Aegean Sea. The developed USV is planned to be utilized as a system for autonomous data acquisition, mapping, and monitoring bathymetry and various environmental parameters. ARGO USV can operate in small or large ports with high maneuverability and endurance to map large geographical extends at sea. The system presents state of the art solutions in the following areas i) the on-board/real-time data processing/analysis capabilities, ii) the energy-independent and environmentally friendly platform entirely made using the latest aeronautical and marine materials, iii) the integration of advanced technology sensors, all in one system (photogrammetric and radiometric footprint, as well as its connection with various environmental and inertial sensors) and iv) the information management application. The ARGO web-based application enables the system to depict the results of the data acquisition process in near real-time. All the recorded environmental variables and indices are presented, allowing users to remotely access all the raw and processed information using the implemented web-based GIS application.Keywords: monitor marine environment, unmanned surface vehicle, mapping bythometry, sea environmental monitoring
Procedia PDF Downloads 14219308 Runtime Monitoring Using Policy-Based Approach to Control Information Flow for Mobile Apps
Authors: Mohamed Sarrab, Hadj Bourdoucen
Abstract:
Mobile applications are verified to check the correctness or evaluated to check the performance with respect to specific security properties such as availability, integrity, and confidentiality. Where they are made available to the end users of the mobile application is achievable only to a limited degree using software engineering static verification techniques. The more sensitive the information, such as credit card data, personal medical information or personal emails being processed by mobile application, the more important it is to ensure the confidentiality of this information. Monitoring non-trusted mobile application during execution in an environment where sensitive information is present is difficult and unnerving. The paper addresses the issue of monitoring and controlling the flow of confidential information during non-trusted mobile application execution. The approach concentrates on providing a dynamic and usable information security solution by interacting with the mobile users during the run-time of mobile application in response to information flow events.Keywords: mobile application, run-time verification, usable security, direct information flow
Procedia PDF Downloads 38119307 Segmentation Using Multi-Thresholded Sobel Images: Application to the Separation of Stuck Pollen Grains
Authors: Endrick Barnacin, Jean-Luc Henry, Jimmy Nagau, Jack Molinie
Abstract:
Being able to identify biological particles such as spores, viruses, or pollens is important for health care professionals, as it allows for appropriate therapeutic management of patients. Optical microscopy is a technology widely used for the analysis of these types of microorganisms, because, compared to other types of microscopy, it is not expensive. The analysis of an optical microscope slide is a tedious and time-consuming task when done manually. However, using machine learning and computer vision, this process can be automated. The first step of an automated microscope slide image analysis process is segmentation. During this step, the biological particles are localized and extracted. Very often, the use of an automatic thresholding method is sufficient to locate and extract the particles. However, in some cases, the particles are not extracted individually because they are stuck to other biological elements. In this paper, we propose a stuck particles separation method based on the use of the Sobel operator and thresholding. We illustrate it by applying it to the separation of 813 images of adjacent pollen grains. The method correctly separated 95.4% of these images.Keywords: image segmentation, stuck particles separation, Sobel operator, thresholding
Procedia PDF Downloads 13119306 Formalizing a Procedure for Generating Uncertain Resource Availability Assumptions Based on Real Time Logistic Data Capturing with Auto-ID Systems for Reactive Scheduling
Authors: Lars Laußat, Manfred Helmus, Kamil Szczesny, Markus König
Abstract:
As one result of the project “Reactive Construction Project Scheduling using Real Time Construction Logistic Data and Simulation”, a procedure for using data about uncertain resource availability assumptions in reactive scheduling processes has been developed. Prediction data about resource availability is generated in a formalized way using real-time monitoring data e.g. from auto-ID systems on the construction site and in the supply chains. The paper focuses on the formalization of the procedure for monitoring construction logistic processes, for the detection of disturbance and for generating of new and uncertain scheduling assumptions for the reactive resource constrained simulation procedure that is and will be further described in other papers.Keywords: auto-ID, construction logistic, fuzzy, monitoring, RFID, scheduling
Procedia PDF Downloads 51619305 On-Line Data-Driven Multivariate Statistical Prediction Approach to Production Monitoring
Authors: Hyun-Woo Cho
Abstract:
Detection of incipient abnormal events in production processes is important to improve safety and reliability of manufacturing operations and reduce losses caused by failures. The construction of calibration models for predicting faulty conditions is quite essential in making decisions on when to perform preventive maintenance. This paper presents a multivariate calibration monitoring approach based on the statistical analysis of process measurement data. The calibration model is used to predict faulty conditions from historical reference data. This approach utilizes variable selection techniques, and the predictive performance of several prediction methods are evaluated using real data. The results shows that the calibration model based on supervised probabilistic model yielded best performance in this work. By adopting a proper variable selection scheme in calibration models, the prediction performance can be improved by excluding non-informative variables from their model building steps.Keywords: calibration model, monitoring, quality improvement, feature selection
Procedia PDF Downloads 35719304 Dynamic Process Monitoring of an Ammonia Synthesis Fixed-Bed Reactor
Authors: Bothinah Altaf, Gary Montague, Elaine B. Martin
Abstract:
This study involves the modeling and monitoring of an ammonia synthesis fixed-bed reactor using partial least squares (PLS) and its variants. The process exhibits complex dynamic behavior due to the presence of heat recycling and feed quench. One limitation of static PLS model in this situation is that it does not take account of the process dynamics and hence dynamic PLS was used. Although it showed, superior performance to static PLS in terms of prediction, the monitoring scheme was inappropriate hence adaptive PLS was considered. A limitation of adaptive PLS is that non-conforming observations also contribute to the model, therefore, a new adaptive approach was developed, robust adaptive dynamic PLS. This approach updates a dynamic PLS model and is robust to non-representative data. The developed methodology showed a clear improvement over existing approaches in terms of the modeling of the reactor and the detection of faults.Keywords: ammonia synthesis fixed-bed reactor, dynamic partial least squares modeling, recursive partial least squares, robust modeling
Procedia PDF Downloads 39319303 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence
Authors: Getaneh Berie Tarekegn
Abstract:
A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 7119302 Integrating a Security Operations Centre with an Organization’s Existing Procedures, Policies and Information Technology Systems
Authors: M. Mutemwa
Abstract:
A Cybersecurity Operation Centre (SOC) is a centralized hub for network event monitoring and incident response. SOCs are critical when determining an organization’s cybersecurity posture because they can be used to detect, analyze and report on various malicious activities. For most organizations, a SOC is not part of the initial design and implementation of the Information Technology (IT) environment but rather an afterthought. As a result, it is not natively a plug and play component; therefore, there are integration challenges when a SOC is introduced into an organization. A SOC is an independent hub that needs to be integrated with existing procedures, policies and IT systems of an organization such as the service desk, ticket logging system, reporting, etc. This paper discussed the challenges of integrating a newly developed SOC to an organization’s existing IT environment. Firstly, the paper begins by looking at what data sources should be incorporated into the Security Information and Event Management (SIEM) such as which host machines, servers, network end points, software, applications, web servers, etc. for security posture monitoring. That is which systems need to be monitored first and the order by which the rest of the systems follow. Secondly, the paper also describes how to integrate the organization’s ticket logging system with the SOC SIEM. That is how the cybersecurity related incidents should be logged by both analysts and non-technical employees of an organization. Also the priority matrix for incident types and notifications of incidents. Thirdly, the paper looks at how to communicate awareness campaigns from the SOC and also how to report on incidents that are found inside the SOC. Lastly, the paper looks at how to show value for the large investments that are poured into designing, building and running a SOC.Keywords: cybersecurity operation centre, incident response, priority matrix, procedures and policies
Procedia PDF Downloads 15519301 A Visual Analytics Tool for the Structural Health Monitoring of an Aircraft Panel
Authors: F. M. Pisano, M. Ciminello
Abstract:
Aerospace, mechanical, and civil engineering infrastructures can take advantages from damage detection and identification strategies in terms of maintenance cost reduction and operational life improvements, as well for safety scopes. The challenge is to detect so called “barely visible impact damage” (BVID), due to low/medium energy impacts, that can progressively compromise the structure integrity. The occurrence of any local change in material properties, that can degrade the structure performance, is to be monitored using so called Structural Health Monitoring (SHM) systems, in charge of comparing the structure states before and after damage occurs. SHM seeks for any "anomalous" response collected by means of sensor networks and then analyzed using appropriate algorithms. Independently of the specific analysis approach adopted for structural damage detection and localization, textual reports, tables and graphs describing possible outlier coordinates and damage severity are usually provided as artifacts to be elaborated for information extraction about the current health conditions of the structure under investigation. Visual Analytics can support the processing of monitored measurements offering data navigation and exploration tools leveraging the native human capabilities of understanding images faster than texts and tables. Herein, a SHM system enrichment by integration of a Visual Analytics component is investigated. Analytical dashboards have been created by combining worksheets, so that a useful Visual Analytics tool is provided to structural analysts for exploring the structure health conditions examined by a Principal Component Analysis based algorithm.Keywords: interactive dashboards, optical fibers, structural health monitoring, visual analytics
Procedia PDF Downloads 12519300 Signals Monitored During Anaesthesia
Authors: Launcelot McGrath
Abstract:
A comprehensive understanding of physiological data is a vital aid to the anaesthesiologist in monitoring and maintaining the well-being of a patient undergoing surgery. Bio signal analysis is one of the most important topics that researchers have tried to develop over the last century to understand numerous human diseases. Understanding which biological signals are most important during anaesthesia is critically important. It is important that the anaesthesiologist understand both the signals themselves and the limitations introduced by the processes of acquisition. In this article, we provide an overview of different types of biological signals as well as the mechanisms applied to acquire them.Keywords: biological signals, signal acquisition, anaesthesiology, patient monitoring
Procedia PDF Downloads 13819299 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage
Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara
Abstract:
Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy
Procedia PDF Downloads 14419298 Geo Spatial Database for Railway Assets Management
Authors: Muhammad Umar
Abstract:
Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan
Procedia PDF Downloads 49319297 Monitoring of Educational Achievements of Kazakhstani 4th and 9th Graders
Authors: Madina Tynybayeva, Sanya Zhumazhanova, Saltanat Kozhakhmetova, Merey Mussabayeva
Abstract:
One of the leading indicators of the education quality is the level of students’ educational achievements. The processes of modernization of Kazakhstani education system have predetermined the need to improve the national system by assessing the quality of education. The results of assessment greatly contribute to addressing questions about the current state of the educational system in the country. The monitoring of students’ educational achievements (MEAS) is the systematic measurement of the quality of education for compliance with the state obligatory standard of Kazakhstan. This systematic measurement is independent of educational organizations and approved by the order of the Minister of Education and Scienceof Kazakhstan. The MEAS was conducted in the regions of Kazakhstanfor the first time in 2022 by the National Testing Centre. The measurement does not have legal consequences either for students or for educational organizations. Students’ achievements were measured in three subject areas: reading, mathematics and science literacy. MEAS was held for the first time in April this year, 105 thousand students from 1436 schools of Kazakhstan took part in the testing. The monitoring was accompanied by a survey of students, teachers, and school leaders. The goal is to identify which contextual factors affect learning outcomes. The testing was carried out in a computer format. The test tasks of MEAS are ranked according to the three levels of difficulty: basic, medium, and high. Fourth graders are asked to complete 30 closed-type tasks. The average score of the results is 21 points out of 30, which means 70% of tasks were successfully completed. The total number of test tasks for 9th grade students – 75 questions. The results of ninth graders are comparatively lower, the success rate of completing tasks is 63%. MEAS participants did not reveal a statistically significant gap in results in terms of the language of instruction, territorial status, and type of school. The trend of reducing the gap in these indicators is also noted in the framework of recent international studies conducted across the country, in particular PISA for schools in Kazakhstan. However, there is a regional gap in MOES performance. The difference in the values of the indicators of the highest and lowest scores of the regions was 11% of the success of completing tasks in the 4th grade, 14% in the 9thgrade. The results of the 4th grade students in reading, mathematics, and science literacy are: 71.5%, 70%, and 66.9%, respectively. The results of ninth-graders in reading, mathematics, and science literacy are 69.6%, 54%, and 60.8%, respectively. From the surveys, it was revealed that the educational achievements of students are considerably influenced by such factors as the subject competences of teachers, as well as the school climate and motivation of students. Thus, the results of MEAS indicate the need for an integrated approach to improving the quality of education. In particular, the combination of improving the content of curricula and textbooks, internal and external assessment of the educational achievements of students, educational programs of pedagogical specialties, and advanced training courses is required.Keywords: assessment, secondary school, monitoring, functional literacy, kazakhstan
Procedia PDF Downloads 10819296 Automatic Identification and Monitoring of Wildlife via Computer Vision and IoT
Authors: Bilal Arshad, Johan Barthelemy, Elliott Pilton, Pascal Perez
Abstract:
Getting reliable, informative, and up-to-date information about the location, mobility, and behavioural patterns of animals will enhance our ability to research and preserve biodiversity. The fusion of infra-red sensors and camera traps offers an inexpensive way to collect wildlife data in the form of images. However, extracting useful data from these images, such as the identification and counting of animals remains a manual, time-consuming, and costly process. In this paper, we demonstrate that such information can be automatically retrieved by using state-of-the-art deep learning methods. Another major challenge that ecologists are facing is the recounting of one single animal multiple times due to that animal reappearing in other images taken by the same or other camera traps. Nonetheless, such information can be extremely useful for tracking wildlife and understanding its behaviour. To tackle the multiple count problem, we have designed a meshed network of camera traps, so they can share the captured images along with timestamps, cumulative counts, and dimensions of the animal. The proposed method takes leverage of edge computing to support real-time tracking and monitoring of wildlife. This method has been validated in the field and can be easily extended to other applications focusing on wildlife monitoring and management, where the traditional way of monitoring is expensive and time-consuming.Keywords: computer vision, ecology, internet of things, invasive species management, wildlife management
Procedia PDF Downloads 14219295 Intelligent Wireless Patient Monitoring and Tracking System
Authors: Ch. Sandeep Kumar Subudhi, S. Sivanandam
Abstract:
Our system is to monitor the human body temperature, blood pressure (BP), Pulse Rate and ECG and tracking the patient location. In our system the body temperature is detected by using LM35 temperature sensor, blood pressure is detected by the BP sensor, pulse rate is detected by the ear plug pulse sensor and the ECG is detected by the three lead ECG sensor in the working environment of the patient. The sensed information is sent to the PIC16F877 microcontroller through signal conditioning circuit. A desired amount of sensor value is set and if it is exceeded preliminary steps should be taken by indication by buzzer. The sensor information will be transmitted from the patient unit to the main controller unit with the help of Zigbee communication medium which is connected with the microcontrollers in the both units. The main controller unit will send those sensor data as well as the location of that patient by the help of GPS module to the observer/doctor. The observer/doctor can receive the SMS sent by GSM module and further decision can be taken. The message is sent to a cell phone using global system mobile (GSM) Modem. MAX232 acts as a driver between microcontroller and modem.Keywords: LM35, heart beat sensor, ECG Sensor, BP Sensor, Zigbee module, GSM module, GPS module, PIC16F877A microcontroller
Procedia PDF Downloads 38319294 Using Automated Agents to Facilitate Instructions in a Large Online Course
Authors: David M Gilstrap
Abstract:
In an online course with a large enrollment, the potential exists for the instructor to become overburdened with having to respond to students’ emails, which consequently decreases the instructor’s efficiency in teaching the course. Repetition of instructions is an effective way of reducing confusion among students, which in turn increases their efficiencies, as well. World of Turf is the largest online course at Michigan State University, which employs Brightspace as its management system (LMS) software. Recently, the LMS upgraded its capabilities to utilize agents, which are auto generated email notifications to students based on certain criteria. Agents are additional tools that can enhance course design. They can be run on-demand or according to a schedule. Agents can be timed to effectively remind students of approaching deadlines. The content of these generated emails can also include reinforced instructions. With a large online course, even a small percentage of students that either do not read or do not comprehend the course syllabus or do not notice instructions on course pages can result in numerous emails to the instructor, often near the deadlines for assignments. Utilizing agents to decrease the number of emails from students has enabled the instructor to efficiently instruct more than one thousand students per semester without any graduate student teaching assistants.Keywords: agents, Brightspace, large enrollment, learning management system, repetition of instructions
Procedia PDF Downloads 203