Search results for: empirical marker method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21236

Search results for: empirical marker method

13616 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: classification, feature extraction, fuzzy, inspection system, image analysis, macroscopic images

Procedia PDF Downloads 419
13615 Nitric Oxide and Blood Based Ratios as Promising Immuno-Markers in Patients with Complicated Crohn’s Disease: Benefits for Predicting Therapy Response

Authors: Imene Soufli, Abdelkrim Hablal, Manel Amri, Moussa Labsi, Rania Sihem Boussa, Nassim Sid Idris, Chafia Touil-Boukoffa

Abstract:

Crohn’s Disease (CD) is a relapsing–remitting inflammatory bowel disease with a progressive course. The aim of our study was to evaluate the relationship between the immunomarkers: Nitric Oxide (NO), pro-inflammatory cytokines, and blood count-based ratios and the outcome of corticosteroid or anti-TNF-α therapy in patients with complicated Crohn’s Disease. In this context, we evaluated the NLR as the ratio of neutrophil count to lymphocyte count, PLR as the ratio of platelet counts to lymphocyte count, and MLR as the ratio of monocyte count to lymphocyte count in patients and controls. Furthermore, we assessed NO production by the Griess method in plasma along with iNOS and NF-κB expression by immunofluorescence method in intestinal tissues of patients and controls. In the same way, we evaluated plasma TNF-α, IL-17A, and IL-10 levels using ELISA. Our results indicate that blood count-based ratios NLR, PLR, and MLR were significantly higher in patients compared to controls. In addition, increased systemic levels of NO, TNF-α, and IL-17A and colonic expression of iNOS and NF-κB were observed in the same patients. Interestingly, the high ratio of NLR and MLR, as well as NO production, was significantly decreased in treated patients. Collectively, our findings suggest that Nitric Oxide, as well as the blood count-based ratios (NLR, PLR, MLR), could constitute useful immuno-markers in complicated Crohn’s Disease, predicting the response to treatment

Keywords: complicated crohn’s disease, nitric oxide, blood count-based ratios, treatments, pro-inflammatory cytokines

Procedia PDF Downloads 74
13614 The Synthesis and Analysis of Two Long Lasting Phosphorescent Compounds: SrAl2O4: Eu2+, Dy3+

Authors: Ghayah Alsaleem

Abstract:

This research project focussed on specific compounds, whereas a literature review was completed on the broader subject of long-lasting phosphorescence. For the review and subsequent laboratory work, long lasting phosphorescence compounds were defined as materials that have an afterglow decay time greater than a few minutes. The decay time is defined as the time between the end of excitation and the moment the light intensity drops below 0.32mcd/m2. This definition is widely used in industry and in most research studies. The experimental work focused on known long-lasting phosphorescence compounds – strontium aluminate (SrAl2O4: Eu2+, Dy3+). At first, preparation was similar to literary methods. Temperature, dopant levels and mixing methods were then varied in order to expose their effects on long-lasting phosphorescence. The effect of temperature was investigated for SrAl2O4: Eu2+, Dy3+, and resulted in the discovery that 1350°C was the only temperature that the compound could be heated to in the Differential scanning calorimetry (DSC) in order to achieve any phosphorescence. However, no temperatures above 1350°C were investigated. The variation of mixing method and co-dopant level in the strontium aluminate compounds resulted in the finding that the dry mixing method using a Turbula mixer resulted in the longest afterglow. It was also found that an increase of europium inclusion, from 1mol% to 2mol% in these compounds, increased the brightest of the phosphorescence. As this increased batch was mixed using sonication, the phosphorescent time was actually reduced which produced green long-lasting phosphorescence for up to 20 minutes following 30 minutes excitation and 50 minutes when the europium content was doubled and mixed using sonication.

Keywords: long lasting, phosphorescence, excitation, europium

Procedia PDF Downloads 178
13613 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens

Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima

Abstract:

Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.

Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria

Procedia PDF Downloads 411
13612 Numerical Analysis of Core-Annular Blood Flow in Microvessels at Low Reynolds Numbers

Authors: L. Achab, F. Iachachene

Abstract:

In microvessels, red blood cells (RBCs) exhibit a tendency to migrate towards the vessel center, establishing a core-annular flow pattern. The core region, marked by a high concentration of RBCs, is governed by significantly non-Newtonian viscosity. Conversely, the annular layer, composed of cell-free plasma, is characterized by Newtonian low viscosity. This property enables the plasma layer to act as a lubricant for the vessel walls, efficiently reducing resistance to the movement of blood cells. In this study, we investigate the factors influencing blood flow in microvessels and the thickness of the annular plasma layer using a non-miscible fluids approach in a 2D axisymmetric geometry. The governing equations of an incompressible unsteady flow are solved numerically through the Volume of Fluid (VOF) method to track the interface between the two immiscible fluids. To model blood viscosity in the core region, we adopt the Quemada constitutive law which is accurately captures the shear-thinning blood rheology over a wide range of shear rates. Our results are then compared to an established theoretical approach under identical flow conditions, particularly concerning the radial velocity profile and the thickness of the annular plasma layer. The simulation findings for low Reynolds numbers, demonstrate a notable agreement with the theoretical solution, emphasizing the pivotal role of blood’s rheological properties in the core region in determining the thickness of the annular plasma layer.

Keywords: core-annular flows, microvessels, Quemada model, plasma layer thickness, volume of fluid method

Procedia PDF Downloads 48
13611 Studying the Temperature Field of Hypersonic Vehicle Structure with Aero-Thermo-Elasticity Deformation

Authors: Geng Xiangren, Liu Lei, Gui Ye-Wei, Tang Wei, Wang An-ling

Abstract:

The malfunction of thermal protection system (TPS) caused by aerodynamic heating is a latent trouble to aircraft structure safety. Accurately predicting the structure temperature field is quite important for the TPS design of hypersonic vehicle. Since Thornton’s work in 1988, the coupled method of aerodynamic heating and heat transfer has developed rapidly. However, little attention has been paid to the influence of structural deformation on aerodynamic heating and structural temperature field. In the flight, especially the long-endurance flight, the structural deformation, caused by the aerodynamic heating and temperature rise, has a direct impact on the aerodynamic heating and structural temperature field. Thus, the coupled interaction cannot be neglected. In this paper, based on the method of static aero-thermo-elasticity, considering the influence of aero-thermo-elasticity deformation, the aerodynamic heating and heat transfer coupled results of hypersonic vehicle wing model were calculated. The results show that, for the low-curvature region, such as fuselage or center-section wing, structure deformation has little effect on temperature field. However, for the stagnation region with high curvature, the coupled effect is not negligible. Thus, it is quite important for the structure temperature prediction to take into account the effect of elastic deformation. This work has laid a solid foundation for improving the prediction accuracy of the temperature distribution of aircraft structures and the evaluation capacity of structural performance.

Keywords: aerothermoelasticity, elastic deformation, structural temperature, multi-field coupling

Procedia PDF Downloads 338
13610 A Review of the Agroecological Farming System as a Viable Alternative Food Production Approach in South Africa

Authors: Michael Rudolph, Evans Muchesa, Katiya Yassim, Venkatesha Prasad

Abstract:

Input-intensive production systems characterise industrial agriculture as an unsustainable means to address food and nutrition security and sustainable livelihoods. There is extensive empirical evidence that supports the diversification and reorientation of industrial agriculture and that incorporates ecological practices viewed as essential for achieving balanced and productive farming systems. An agroecological farming system is a viable alternative approach that can improve food production, especially for the most vulnerable communities and households. Furthermore, substantial proof and supporting evidence show that such a system holds the key to increasing dietary diversity at the local level and reducing the multiple health and environmental risks stemming from industrial agriculture. This paper, therefore, aims to demonstrate the benefits of the agroecology food system through an evidenced-based approach that shows how the broader agricultural network structures can play a meaningful role, particularly for impoverished households in today’s reality. The methodology is centered on a structured literature review that analyses urban agriculture, agroecology, and food insecurity. Notably, ground-truthing, practical experiences, and field observation of agroecological farming were deployed. This paper places particular emphasis on the practical application of the agroecological approach in urban and peri-urban settings. Several evaluation reports on local and provincial initiatives clearly show that very few households engage in food gardens and urban agriculture. These households do not make use of their backyards or nearby open spaces for a number of reasons, such as stringent city by-laws, restricted access to land, little or no knowledge of innovative or alternative farming practices, and a general lack of interest. Furthermore, limited resources such as water and energy and lack of capacity building and training implementation are additional constraints that are hampering small scale food gardens and farms in other settings. The Agroecology systems approach is viewed as one of the key solutions to tackling these problems.

Keywords: agroecology, water-energy-food nexus, sutainable development goals, social, environmental and economc impact

Procedia PDF Downloads 104
13609 A Mixing Matrix Estimation Algorithm for Speech Signals under the Under-Determined Blind Source Separation Model

Authors: Jing Wu, Wei Lv, Yibing Li, Yuanfan You

Abstract:

The separation of speech signals has become a research hotspot in the field of signal processing in recent years. It has many applications and influences in teleconferencing, hearing aids, speech recognition of machines and so on. The sounds received are usually noisy. The issue of identifying the sounds of interest and obtaining clear sounds in such an environment becomes a problem worth exploring, that is, the problem of blind source separation. This paper focuses on the under-determined blind source separation (UBSS). Sparse component analysis is generally used for the problem of under-determined blind source separation. The method is mainly divided into two parts. Firstly, the clustering algorithm is used to estimate the mixing matrix according to the observed signals. Then the signal is separated based on the known mixing matrix. In this paper, the problem of mixing matrix estimation is studied. This paper proposes an improved algorithm to estimate the mixing matrix for speech signals in the UBSS model. The traditional potential algorithm is not accurate for the mixing matrix estimation, especially for low signal-to noise ratio (SNR).In response to this problem, this paper considers the idea of an improved potential function method to estimate the mixing matrix. The algorithm not only avoids the inuence of insufficient prior information in traditional clustering algorithm, but also improves the estimation accuracy of mixing matrix. This paper takes the mixing of four speech signals into two channels as an example. The results of simulations show that the approach in this paper not only improves the accuracy of estimation, but also applies to any mixing matrix.

Keywords: DBSCAN, potential function, speech signal, the UBSS model

Procedia PDF Downloads 132
13608 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction

Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare

Abstract:

The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.

Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction

Procedia PDF Downloads 186
13607 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee

Authors: Lior B. Navon

Abstract:

The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.

Keywords: biopower, female ejaculation, new media, bodily knowledge

Procedia PDF Downloads 154
13606 Evolutionary Swarm Robotics: Dynamic Subgoal-Based Path Formation and Task Allocation for Exploration and Navigation in Unknown Environments

Authors: Lavanya Ratnabala, Robinroy Peter, E. Y. A. Charles

Abstract:

This research paper addresses the challenges of exploration and navigation in unknown environments from an evolutionary swarm robotics perspective. Path formation plays a crucial role in enabling cooperative swarm robots to accomplish these tasks. The paper presents a method called the sub-goal-based path formation, which establishes a path between two different locations by exploiting visually connected sub-goals. Simulation experiments conducted in the Argos simulator demonstrate the successful formation of paths in the majority of trials. Furthermore, the paper tackles the problem of inter-collision (traffic) among a large number of robots engaged in path formation, which negatively impacts the performance of the sub-goal-based method. To mitigate this issue, a task allocation strategy is proposed, leveraging local communication protocols and light signal-based communication. The strategy evaluates the distance between points and determines the required number of robots for the path formation task, reducing unwanted exploration and traffic congestion. The performance of the sub-goal-based path formation and task allocation strategy is evaluated by comparing path length, time, and resource reduction against the A* algorithm. The simulation experiments demonstrate promising results, showcasing the scalability, robustness, and fault tolerance characteristics of the proposed approach.

Keywords: swarm, path formation, task allocation, Argos, exploration, navigation, sub-goal

Procedia PDF Downloads 38
13605 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain

Authors: Bita Payami-Shabestari, Dariush Eslami

Abstract:

The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.

Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory

Procedia PDF Downloads 124
13604 Operative Tips of Strattice Based Breast Reconstruction

Authors: Cho Ee Ng, Hazem Khout, Tarannum Fasih

Abstract:

Acellular dermal matrices are increasingly used to reinforce the lower pole of the breast during implant breast reconstruction. There is no standard technique described in literature for the use of this product. In this article, we share our operative method of fixation.

Keywords: strattice, acellular dermal matric, breast reconstruction, implant

Procedia PDF Downloads 394
13603 Prenatal Diagnosis of Beta Thalassemia Intermedia in Vietnamese Family: Case Report

Authors: Ha T. T. Ly, Truc B. Truc, Hai N. Truong, Mai P. T. Nguyen, Ngoc D. Ngo, Khanh V. Tran, Hai T. Le

Abstract:

Beta thalassemia is one of the most common inherited blood disorders, which is characterized by decreased or absent in beta globin expression. Patients with Beta thalassemia whose anemia is not so severe as to necessitate transfusions are said to have thalassemia intermedia. Objective: The goal of this study is prenatal diagnosis for pregnancy woman with Beta thalassemia intermedia and her husband with Beta thalassemia carrier at high risk of Beta thalassemia major in Northern of Vietnam. Material and method: The family has a 6 years-old compound heterozygous thalassemia major for CD71/72(+A) and Hbb:c. -78A>G/nt-28(A>G) male child. The father was heterozygous for CD71/72(+A) mutation which is Beta plus type and the mother was compound heterozygosity of two different variants, namely, Hbb: c. -78A>G/nt-28(A>G) and CD26(A-G) HbE. Prenatal Beta thalassemia mutation detection in fetal DNA was carried out using multiplex Amplification-refractory mutation system ARMS-PCR and confirmed by direct Sanger-sequencing Hbb gene. Prenatal diagnoses were perfomed by amniotic fluid sampling from pregnant woman in the 16-18th week of pregnancy after the genotypes of parents of the probands were identified. Result: When amniotic fluid sample was analyzed for Beta globin gene (Hbb), we found that the genotype is heterozygous for CD71/72(+A) and CD26(A-G) HbE. This genotype is different from the 1st child of this family. Conclusion: Prenatal diagnosis helps the parents to know the genotype and the thalassemia status of the fetus, so they can have early decision on their pregnancy. Genetic diagnosis provided a useful method in diagnosis for familial members in pedigree, genetic counseling and prenatal diagnosis.

Keywords: beta thalassemia intermedia, Hbb gene, pedigree, prenatal diagnosis

Procedia PDF Downloads 379
13602 Development of a Risk Disclosure Index and Examination of Its Determinants: An Empirical Study in Indian Context

Authors: M. V. Shivaani, P. K. Jain, Surendra S. Yadav

Abstract:

Worldwide regulators, practitioners and researchers view risk-disclosure as one of the most important steps that will promote corporate accountability and transparency. Recognizing this growing significance of risk disclosures, the paper first develops a risk disclosure index. Covering 69 risk items/themes, this index is developed by employing thematic content analysis and encompasses three attributes of disclosure: namely, nature (qualitative or quantitative), time horizon (backward-looking or forward-looking) and tone (no impact, positive impact or negative impact). As the focus of study is on substantive rather than symbolic disclosure, content analysis has been carried out manually. The study is based on non-financial companies of Nifty500 index and covers a ten year period from April 1, 2005 to March 31, 2015, thus yielding 3,872 annual reports for analysis. The analysis reveals that (on an average) only about 14% of risk items (i.e. about 10 out 69 risk items studied) are being disclosed by Indian companies. Risk items that are frequently disclosed are mostly macroeconomic in nature and their disclosures tend to be qualitative, forward-looking and conveying both positive and negative aspects of the concerned risk. The second objective of the paper is to gauge the factors that affect the level of disclosures in annual reports. Given the panel nature of data, and possible endogeneity amongst variables, Diff-GMM regression has been applied. The results indicate that age and size of firms have a significant positive impact on disclosure quality, whereas growth rate does not have a significant impact. Further, post-recession period (2009-2015) has witnessed significant improvement in quality of disclosures. In terms of corporate governance variables, board size, board independence, CEO duality, presence of CRO and constitution of risk management committee appear to be significant factors in determining the quality of risk disclosures. It is noteworthy that the study contributes to literature by putting forth a variant to existing disclosure indices that not only captures the quantity but also the quality of disclosures (in terms of semantic attributes). Also, the study is a first of its kind attempt in a prominent emerging market i.e. India. Therefore, this study is expected to facilitate regulators in mandating and regulating risk disclosures and companies in their endeavor to reduce information asymmetry.

Keywords: risk disclosure, voluntary disclosures, corporate governance, Diff-GMM

Procedia PDF Downloads 156
13601 Literature Review of the Management of Parry Romberg Syndrome with Fillers

Authors: Sana Ilyas

Abstract:

Parry-Romberg syndrome is a rare condition clinically defined by slowly progressive atrophy of the skin and soft tissues. This usually effects one side of the face, although a few cases have been documented of bilateral presentation. It is more prevalent in females and usually affects the left side of the face. The syndrome can also be accompanied by neurological abnormalities. It usually occurs in the first two decades of life with a variable rate of progression. The aetiology is unknown, and the disease eventually stabilises. The treatment options usually involve surgical management. The least invasive of these options is the management of facial asymmetry, associated with Parry Romberg syndrome, through the use of tissue fillers. This paper will review the existing literature on the management of Parry Romberg syndrome with tissue filler. Aim: The aim of the study is to explore the current published literature for the management of Parry Romberg syndrome with fillers. It is to assess the development that has been made in this method of management, its benefits and limitations, and its effectiveness for the management of Parry Romberg syndrome. Methodology: There was a thorough assessment of the current literature published on this topic. PubMed database was used for search of the published literature on this method of the management. Papers were analysed and compared with one another to assess the success and limitation of the management of Parry Romberg with dermal fillers Results and Conclusion: Case reports of the use of tissue fillers discuss the varying degrees of success with the treatment. However, this procedure has it’s limitation, which are discussed in the paper in detail. However, it is still the least invasive of all the surgical options for the management of Parry Romberg Syndrome, and therefore, it is important to explore this option with patients, as they may be more comfortable with pursuingtreatment that is less invasive and can still improve their facial asymmetry

Keywords: dermal fillers, facial asymmetry, parry romberg syndrome, tissue fillers

Procedia PDF Downloads 83
13600 Wetting Characterization of High Aspect Ratio Nanostructures by Gigahertz Acoustic Reflectometry

Authors: C. Virgilio, J. Carlier, P. Campistron, M. Toubal, P. Garnier, L. Broussous, V. Thomy, B. Nongaillard

Abstract:

Wetting efficiency of microstructures or nanostructures patterned on Si wafers is a real challenge in integrated circuits manufacturing. In fact, bad or non-uniform wetting during wet processes limits chemical reactions and can lead to non-complete etching or cleaning inside the patterns and device defectivity. This issue is more and more important with the transistors size shrinkage and concerns mainly high aspect ratio structures. Deep Trench Isolation (DTI) structures enabling pixels’ isolation in imaging devices are subject to this phenomenon. While low-frequency acoustic reflectometry principle is a well-known method for Non Destructive Test applications, we have recently shown that it is also well suited for nanostructures wetting characterization in a higher frequency range. In this paper, we present a high-frequency acoustic reflectometry characterization of DTI wetting through a confrontation of both experimental and modeling results. The acoustic method proposed is based on the evaluation of the reflection of a longitudinal acoustic wave generated by a 100 µm diameter ZnO piezoelectric transducer sputtered on the silicon wafer backside using MEMS technologies. The transducers have been fabricated to work at 5 GHz corresponding to a wavelength of 1.7 µm in silicon. The DTI studied structures, manufactured on the wafer frontside, are crossing trenches of 200 nm wide and 4 µm deep (aspect ratio of 20) etched into a Si wafer frontside. In that case, the acoustic signal reflection occurs at the bottom and at the top of the DTI enabling its characterization by monitoring the electrical reflection coefficient of the transducer. A Finite Difference Time Domain (FDTD) model has been developed to predict the behavior of the emitted wave. The model shows that the separation of the reflected echoes (top and bottom of the DTI) from different acoustic modes is possible at 5 Ghz. A good correspondence between experimental and theoretical signals is observed. The model enables the identification of the different acoustic modes. The evaluation of DTI wetting is then performed by focusing on the first reflected echo obtained through the reflection at Si bottom interface, where wetting efficiency is crucial. The reflection coefficient is measured with different water / ethanol mixtures (tunable surface tension) deposited on the wafer frontside. Two cases are studied: with and without PFTS hydrophobic treatment. In the untreated surface case, acoustic reflection coefficient values with water show that liquid imbibition is partial. In the treated surface case, the acoustic reflection is total with water (no liquid in DTI). The impalement of the liquid occurs for a specific surface tension but it is still partial for pure ethanol. DTI bottom shape and local pattern collapse of the trenches can explain these incomplete wetting phenomena. This high-frequency acoustic method sensitivity coupled with a FDTD propagative model thus enables the local determination of the wetting state of a liquid on real structures. Partial wetting states for non-hydrophobic surfaces or low surface tension liquids are then detectable with this method.

Keywords: wetting, acoustic reflectometry, gigahertz, semiconductor

Procedia PDF Downloads 325
13599 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent

Authors: Hiroyuki Aoki

Abstract:

The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.

Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging

Procedia PDF Downloads 125
13598 An Investigation of the Fracture Behavior of Model MgO-C Refractories Using the Discrete Element Method

Authors: Júlia Cristina Bonaldo, Christophe L. Martin, Martiniano Piccico, Keith Beale, Roop Kishore, Severine Romero-Baivier

Abstract:

Refractory composite materials employed in steel casting applications are prone to cracking and material damage because of the very high operating temperature (thermal shock) and mismatched properties of the constituent phases. The fracture behavior of a model MgO-C composite refractory is investigated to quantify and characterize its thermal shock resistance, employing a cold crushing test and Brazilian test with fractographic analysis. The discrete element method (DEM) is used to generate numerical refractory composites. The composite in DEM is represented by an assembly of bonded particle clusters forming perfectly spherical aggregates and single spherical particles. For the stresses to converge with a low standard deviation and a minimum number of particles to allow reasonable CPU calculation time, representative volume element (RVE) numerical packings are created with various numbers of particles. Key microscopic properties are calibrated sequentially by comparing stress-strain curves from crushing experimental data. Comparing simulations with experiments also allows for the evaluation of crack propagation, fracture energy, and strength. The crack propagation during Brazilian experimental tests is monitored with digital image correlation (DIC). Simulations and experiments reveal three distinct types of fracture. The crack may spread throughout the aggregate, at the aggregate-matrix interface, or throughout the matrix.

Keywords: refractory composite, fracture mechanics, crack propagation, DEM

Procedia PDF Downloads 73
13597 Development of a Matlab® Program for the Bi-Dimensional Truss Analysis Using the Stiffness Matrix Method

Authors: Angel G. De Leon Hernandez

Abstract:

A structure is defined as a physical system or, in certain cases, an arrangement of connected elements, capable of bearing certain loads. The structures are presented in every part of the daily life, e.g., in the designing of buildings, vehicles and mechanisms. The main goal of a structure designer is to develop a secure, aesthetic and maintainable system, considering the constraint imposed to every case. With the advances in the technology during the last decades, the capabilities of solving engineering problems have increased enormously. Nowadays the computers, play a critical roll in the structural analysis, pitifully, for university students the vast majority of these software are inaccessible due to the high complexity and cost they represent, even when the software manufacturers offer student versions. This is exactly the reason why the idea of developing a more reachable and easy-to-use computing tool. This program is designed as a tool for the university students enrolled in courser related to the structures analysis and designs, as a complementary instrument to achieve a better understanding of this area and to avoid all the tedious calculations. Also, the program can be useful for graduated engineers in the field of structural design and analysis. A graphical user interphase is included in the program to make it even simpler to operate it and understand the information requested and the obtained results. In the present document are included the theoretical basics in which the program is based to solve the structural analysis, the logical path followed in order to develop the program, the theoretical results, a discussion about the results and the validation of those results.

Keywords: stiffness matrix method, structural analysis, Matlab® applications, programming

Procedia PDF Downloads 117
13596 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 304
13595 Dielectric, Electrical and Magnetic Properties of Elastomer Filled with in situ Thermally Reduced Graphene Oxide and Spinel Ferrite NiFe₂O₄ Nanoparticles

Authors: Raghvendra Singh Yadav, Ivo Kuritka, Jarmila Vilcakova, Pavel Urbanek, Michal Machovsky, David Skoda, Milan Masar

Abstract:

The elastomer nanocomposites were synthesized by solution mixing method with an elastomer as a matrix and in situ thermally reduced graphene oxide (RGO) and spinel ferrite NiFe₂O₄ nanoparticles as filler. Spinel ferrite NiFe₂O₄ nanoparticles were prepared by the starch-assisted sol-gel auto-combustion method. The influence of filler on the microstructure, morphology, dielectric, electrical and magnetic properties of Reduced Graphene Oxide-Nickel Ferrite-Elastomer nanocomposite was characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray photoelectron spectroscopy, the Dielectric Impedance analyzer, and vibrating sample magnetometer. Scanning electron microscopy study revealed that the fillers were incorporated in elastomer matrix homogeneously. The dielectric constant and dielectric tangent loss of nanocomposites was decreased with the increase of frequency, whereas, the dielectric constant increases with the addition of filler. Further, AC conductivity was increased with the increase of frequency and addition of fillers. Furthermore, the prepared nanocomposites exhibited ferromagnetic behavior. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic – Program NPU I (LO1504).

Keywords: polymer-matrix composites, nanoparticles as filler, dielectric property, magnetic property

Procedia PDF Downloads 165
13594 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 331
13593 Flow Field Optimization for Proton Exchange Membrane Fuel Cells

Authors: Xiao-Dong Wang, Wei-Mon Yan

Abstract:

The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.

Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection

Procedia PDF Downloads 294
13592 Ergosterol Biosynthesis: Non-Conventional Method for Improving Process

Authors: Madalina Postaru, Alexandra Tucaliuc, Dan Cascaval, Anca Irina Galaction

Abstract:

Ergosterol (ergosta-5,7,22-trien-3β-ol) is the precursor of vitamin D2 (ergocalciferol), known as provitamin D2 as it is converted under UV radiation to this vitamin. The natural sources of ergosterol are mainly the yeasts (Saccharomyces sp., Candida sp.), but it can be also found in fungus (Claviceps sp.) or plants (orchids). As ergosterol is mainly accumulated in yeast cell membranes, especially in free form in the plasma-membrane, and the chemical synthesis of ergosterol does not represent an efficient method for its production, this study aimed to analyze the influence of aeration efficiency on ergosterol production by S. cerevisiae in batch and fed-batch fermentations, by considering different levels of mixing intensity, aeration rate, and n-dodecane concentration. Our previous studies on ergosterol production by S. cerevisiae in batch and fed-batch fermentation systems indicated that the addition of n-dodecane led to the increase of almost 50% of this sterol concentration, the highest productivity being reached for the fed-batch process. The experiments were carried out in a laboratory stirred bioreactor, provided with computer-controlled and recorded parameters. In batch fermentation system, the study indicated that the oxygen mass transfer coefficient, kLa, is amplified for about 3 times by increasing the volumetric concentration of n-dodecane from 0 to 15%. Moreover, the increase of dissolved oxygen concentration by adding n-dodecane leads to the diminution for 3.5 times of the produced alcohol amount. In fed-batch fermentation process, the positive influence of hydrocarbon on oxygen transfer rate is amplified mainly at its higher concentration level, as the result of the increased yeasts cells amount. Thus, by varying n-dodecane concentration from 0 to 15% vol., the kLa value increase becomes more important than for the batch fermentation, being of 4 times

Keywords: ergosterol, yeast fermentation, n-dodecane, oxygen-vector

Procedia PDF Downloads 114
13591 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration

Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw

Abstract:

Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.

Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel

Procedia PDF Downloads 343
13590 Geosynthetic Reinforced Unpaved Road: Literature Study and Design Example

Authors: D. Jayalakshmi, S. S. Bhosale

Abstract:

This paper, in its first part, presents the state-of-the-art literature of design approaches for geosynthetic reinforced unpaved roads. The literature starting since 1970 and the critical appraisal of flexible pavement design by Giroud and Han (2004) and Jonathan Fannin (2006) is presented. The design example is illustrated for Indian conditions. The example emphasizes the results computed by Giroud and Han's (2004) design method with the Indian road congress guidelines by IRC SP 72 -2015. The input data considered are related to the subgrade soil condition of Maharashtra State in India. The unified soil classification of the subgrade soil is inorganic clay with high plasticity (CH), which is expansive with a California bearing ratio (CBR) of 2% to 3%. The example exhibits the unreinforced case and geotextile as reinforcement by varying the rut depth from 25 mm to 100 mm. The present result reveals the base thickness for the unreinforced case from the IRC design catalogs is in good agreement with Giroud and Han (2004) approach for a range of 75 mm to 100 mm rut depth. Since Giroud and Han (2004) method is applicable for both reinforced and unreinforced cases, for the same data with appropriate Nc factor, for the same rut depth, the base thickness for the reinforced case has arrived for the Indian condition. From this trial, for the CBR of 2%, the base thickness reduction due to geotextile inclusion is 35%. For the CBR range of 2% to 5% with different stiffness in geosynthetics, the reduction in base course thickness will be evaluated, and the validation will be executed by the full-scale accelerated pavement testing set up at the College of Engineering Pune (COE), India.

Keywords: base thickness, design approach, equation, full scale accelerated pavement set up, Indian condition

Procedia PDF Downloads 189
13589 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 328
13588 Analysis of the Level of Production Failures by Implementing New Assembly Line

Authors: Joanna Kochanska, Dagmara Gornicka, Anna Burduk

Abstract:

The article examines the process of implementing a new assembly line in a manufacturing enterprise of the household appliances industry area. At the initial stages of the project, a decision was made that one of its foundations should be the concept of lean management. Because of that, eliminating as many errors as possible in the first phases of its functioning was emphasized. During the start-up of the line, there were identified and documented all production losses (from serious machine failures, through any unplanned downtime, to micro-stops and quality defects). During 6 weeks (line start-up period), all errors resulting from problems in various areas were analyzed. These areas were, among the others, production, logistics, quality, and organization. The aim of the work was to analyze the occurrence of production failures during the initial phase of starting up the line and to propose a method for determining their critical level during its full functionality. There was examined the repeatability of the production losses in various areas and at different levels at such an early stage of implementation, by using the methods of statistical process control. Based on the Pareto analysis, there were identified the weakest points in order to focus improvement actions on them. The next step was to examine the effectiveness of the actions undertaken to reduce the level of recorded losses. Based on the obtained results, there was proposed a method for determining the critical failures level in the studied areas. The developed coefficient can be used as an alarm in case of imbalance of the production, which is caused by the increased failures level in production and production support processes in the period of the standardized functioning of the line.

Keywords: production failures, level of production losses, new production line implementation, assembly line, statistical process control

Procedia PDF Downloads 123
13587 Economic and Environmental Assessment of Heat Recovery in Beer and Spirit Production

Authors: Isabel Schestak, Jan Spriet, David Styles, Prysor Williams

Abstract:

Breweries and distilleries are well-known for their high water usage. The water consumption in a UK brewery to produce one litre of beer reportedly ranges from 3-9 L and in a distillery from 7-45 L to produce a litre of spirit. This includes product water such as mashing water, but also water for wort and distillate cooling and for cleaning of tanks, casks, and kegs. When cooling towers are used, cooling water can be the dominating water consumption in a brewery or distillery. Interlinked to the high water use is a substantial heating requirement for mashing, wort boiling, or distillation, typically met by fossil fuel combustion such as gasoil. Many water and waste water streams are leaving the processes hot, such as the returning cooling water or the pot ales. Therefore, several options exist to optimise water and energy efficiency of spirit production through heat recovery. Although these options are known in the sector, they are often not applied in practice due to planning efforts or financial obstacles. In this study, different possibilities and design options for heat recovery systems are explored in four breweries/distilleries in the UK and assessed from an economic but also environmental point of view. The eco-efficiency methodology, according to ISO 14045, is applied to combine both assessment criteria to determine the optimum solution for heat recovery application in practice. The economic evaluation is based on the total value added (TVA) while the Life Cycle Assessment (LCA) methodology is applied to account for the environmental impacts through the installations required for heat recovery. The four case study businesses differ in a) production scale with mashing volumes ranging from 2500 to 40,000 L, in b) terms of heating and cooling technology used, and in c) the extent to which heat recovery is/is not applied. This enables the evaluation of different cases for heat recovery based on empirical data. The analysis provides guidelines for practitioners in the brewing and distilling sector in and outside the UK for the realisation of heat recovery measures. Financial and environmental payback times are showcased for heat recovery systems in the four distilleries which are operating at different production scales. The results are expected to encourage the application of heat recovery where environmentally and economically beneficial and ultimately contribute to a reduction of the water and energy footprint in brewing and distilling businesses.

Keywords: brewery, distillery, eco-efficiency, heat recovery from process and waste water, life cycle assessment

Procedia PDF Downloads 117