Search results for: sentinel node biopsy (SLNB)
24 Adjustment of the Level of Vibrational Force on Targeted Teeth
Authors: Amin Akbari, Dongcai Wang, Huiru Li, Xiaoping Du, Jie Chen
Abstract:
The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value.Keywords: finite element method, orthodontic treatment, stress analysis, tooth movement, vibrational force
Procedia PDF Downloads 22423 DTI Connectome Changes in the Acute Phase of Aneurysmal Subarachnoid Hemorrhage Improve Outcome Classification
Authors: Sarah E. Nelson, Casey Weiner, Alexander Sigmon, Jun Hua, Haris I. Sair, Jose I. Suarez, Robert D. Stevens
Abstract:
Graph-theoretical information from structural connectomes indicated significant connectivity changes and improved acute prognostication in a Random Forest (RF) model in aneurysmal subarachnoid hemorrhage (aSAH), which can lead to significant morbidity and mortality and has traditionally been fraught by poor methods to predict outcome. This study’s hypothesis was that structural connectivity changes occur in canonical brain networks of acute aSAH patients, and that these changes are associated with functional outcome at six months. In a prospective cohort of patients admitted to a single institution for management of acute aSAH, patients underwent diffusion tensor imaging (DTI) as part of a multimodal MRI scan. A weighted undirected structural connectome was created of each patient’s images using Constant Solid Angle (CSA) tractography, with 176 regions of interest (ROIs) defined by the Johns Hopkins Eve atlas. ROIs were sorted into four networks: Default Mode Network, Executive Control Network, Salience Network, and Whole Brain. The resulting nodes and edges were characterized using graph-theoretic features, including Node Strength (NS), Betweenness Centrality (BC), Network Degree (ND), and Connectedness (C). Clinical (including demographics and World Federation of Neurologic Surgeons scale) and graph features were used separately and in combination to train RF and Logistic Regression classifiers to predict two outcomes: dichotomized modified Rankin Score (mRS) at discharge and at six months after discharge (favorable outcome mRS 0-2, unfavorable outcome mRS 3-6). A total of 56 aSAH patients underwent DTI a median (IQR) of 7 (IQR=8.5) days after admission. The best performing model (RF) combining clinical and DTI graph features had a mean Area Under the Receiver Operator Characteristic Curve (AUROC) of 0.88 ± 0.00 and Area Under the Precision Recall Curve (AUPRC) of 0.95 ± 0.00 over 500 trials. The combined model performed better than the clinical model alone (AUROC 0.81 ± 0.01, AUPRC 0.91 ± 0.00). The highest-ranked graph features for prediction were NS, BC, and ND. These results indicate reorganization of the connectome early after aSAH. The performance of clinical prognostic models was increased significantly by the inclusion of DTI-derived graph connectivity metrics. This methodology could significantly improve prognostication of aSAH.Keywords: connectomics, diffusion tensor imaging, graph theory, machine learning, subarachnoid hemorrhage
Procedia PDF Downloads 18922 Pulmonary Complication of Chronic Liver Disease and the Challenges Identifying and Managing Three Patients
Authors: Aidan Ryan, Nahima Miah, Sahaj Kaur, Imogen Sutherland, Mohamed Saleh
Abstract:
Pulmonary symptoms are a common presentation to the emergency department. Due to a lack of understanding of the underlying pathophysiology, chronic liver disease is not often considered a cause of dyspnea. We present three patients who were admitted with significant respiratory distress secondary to hepatopulmonary syndrome, portopulmonary hypertension, and hepatic hydrothorax. The first is a 27-year-old male with a 6-month history of progressive dyspnea. The patient developed a severe type 1 respiratory failure with a PaO₂ of 6.3kPa and was escalated to critical care, where he was managed with non-invasive ventilation to maintain oxygen saturation. He had an agitated saline contrast echocardiogram, which showed the presence of a possible shunt. A CT angiogram revealed significant liver cirrhosis, portal hypertension, and large para esophageal varices. Ultrasound of the abdomen showed coarse liver echo patter and enlarged spleen. Along with these imaging findings, his biochemistry demonstrated impaired synthetic liver function with an elevated international normalized ratio (INR) of 1.4 and hypoalbuminaemia of 28g/L. The patient was then transferred to a tertiary center for further management. Further investigations confirmed a shunt of 56%, and liver biopsy confirmed cirrhosis suggestive of alpha-1-antitripsyin deficiency. The findings were consistent with a diagnosis of hepatopulmonary syndrome, and the patient is awaiting a liver transplant. The second patient is a 56-year-old male with a 12-month history of worsening dyspnoea, jaundice, confusion. His medical history included liver cirrhosis, portal hypertension, and grade 1 oesophageal varices secondary to significant alcohol excess. On admission, he developed a type 1 respiratory failure with PaO₂ of 6.8kPa requiring 10L of oxygen. CT pulmonary angiogram was negative for pulmonary embolism but showed evidence of chronic pulmonary hypertension, liver cirrhosis, and portal hypertension. An echocardiogram revealed a grossly dilated right heart with reduced function, pulmonary and tricuspid regurgitation, and pulmonary artery pressures estimated at 78mmHg. His biochemical markers showed impaired synthetic liver function with an INR of 3.2, albumin of 29g/L, along with raised bilirubin of 148mg/dL. During his long admission, he was managed with diuretics with little improvement. After three weeks, he was diagnosed with portopulmonary hypertension and was commenced on terlipressin. This resulted in successfully weaning off oxygen, and he was discharged home. The third patient is a 61-year-old male who presented to the local ambulatory care unit for therapeutic paracentesis on a background of decompensated liver cirrhosis. On presenting, he complained of a 2-day history of worsening dyspnoea and a productive cough. Chest x-ray showed a large pleural effusion, increasing in size over the previous eight months, and his abdomen was visibly distended with ascitic fluid. Unfortunately, the patient deteriorated, developing a larger effusion along with an increase in oxygen demand, and passed away. Without underlying cardiorespiratory disease, in the presence of a persistent pleural effusion with underlying decompensated cirrhosis, he was diagnosed with hepatic hydrothorax. While each presented with dyspnoea, the cause and underlying pathophysiology differ significantly from case to case. By describing these complications, we hope to improve awareness and aid prompt and accurate diagnosis, vital for improving outcomes.Keywords: dyspnea, hepatic hydrothorax, hepatopulmonary syndrome, portopulmonary syndrome
Procedia PDF Downloads 12121 The Spatial Circuit of the Audiovisual Industry in Argentina: From Monopoly and Geographic Concentration to New Regionalization and Democratization Policies
Authors: André Pasti
Abstract:
Historically, the communication sector in Argentina is characterized by intense monopolization and geographical concentration in the city of Buenos Aires. In 2000, the four major media conglomerates in operation – Clarín, Telefónica, America and Hadad – controlled 84% of the national media market. By 2009, new policies were implemented as a result of civil society organizations demands. Legally, a new regulatory framework was approved: the law 26,522 of Audiovisual Communications Services. Supposedly, these policies intend to create new conditions for the development of the audiovisual economy in the territory of Argentina. The regionalization of audiovisual production and the democratization of channels and access to media were among the priorities. This paper analyses the main changes and continuities in the organization of the spatial circuit of the audiovisual industry in Argentina provoked by these new policies. These new policies aim at increasing the diversity of audiovisual producers and promoting regional audiovisual industries. For this purpose, a national program for the development of audiovisual centers within the country was created. This program fostered a federalized production network, based on nine audiovisual regions and 40 nodes. Each node has created technical, financial and organizational conditions to gather different actors in audiovisual production – such as SMEs, social movements and local associations. The expansion of access to technical networks was also a concern of other policies, such as ‘Argentina connected’, whose objective was to expand access to broadband Internet. The Open Digital Television network also received considerable investments. Furthermore, measures have been carried out in order to impose limits on the concentration of ownership as well as to eliminate the oligopolies and to ensure more competition in the sector. These actions intended to force a divide of the media conglomerates into smaller groups. Nevertheless, the corporations that compose these conglomerates resist strongly, making full use of their economic and judiciary power. Indeed, the absence of effective impact of such measures can be testified by the fact that the audiovisual industry remains strongly concentrated in Argentina. Overall, these new policies were designed properly to decentralize audiovisual production and expand the regional diversity of the audiovisual industry. However, the effective transformation of the organization of the audiovisual circuit in the territory faced several resistances. This can be explained firstly and foremost by the ideological and economic power of the media conglomerates. In the second place, there is an inherited inertia from the unequal distribution of the objects needed for the audiovisual production and consumption. Lastly, the resistance also relies on financial needs and in the excessive dependence of the state for the promotion of regional audiovisual production.Keywords: Argentina, audiovisual industry, communication policies, geographic concentration, regionalization, spatial circuit
Procedia PDF Downloads 21620 A Formal Microlectic Framework for Biological Circularchy
Authors: Ellis D. Cooper
Abstract:
“Circularchy” is supposed to be an adjustable formal framework with enough expressive power to articulate biological theory about Earthly Life in the sense of multi-scale biological autonomy constrained by non-equilibrium thermodynamics. “Formal framework” means specifically a multi-sorted first-order-theorywithequality (for each sort). Philosophically, such a theory is one kind of “microlect,” which means a “way of speaking” (or, more generally, a “way of behaving”) for overtly expressing a “mental model” of some “referent.” Other kinds of microlect include “natural microlect,” “diagrammatic microlect,” and “behavioral microlect,” with examples such as “political theory,” “Euclidean geometry,” and “dance choreography,” respectively. These are all describable in terms of a vocabulary conforming to grammar. As aspects of human culture, they are possibly reminiscent of Ernst Cassirer’s idea of “symbolic form;” as vocabularies, they are akin to Richard Rorty’s idea of “final vocabulary” for expressing a mental model of one’s life. A formal microlect is presented by stipulating sorts, variables, calculations, predicates, and postulates. Calculations (a.k.a., “terms”) may be composed to form more complicated calculations; predicates (a.k.a., “relations”) may be logically combined to form more complicated predicates; and statements (a.k.a., “sentences”) are grammatically correct expressions which are true or false. Conclusions are statements derived using logical rules of deduction from postulates, other assumed statements, or previously derived conclusions. A circularchy is a formal microlect constituted by two or more sub-microlects, each with its distinct stipulations of sorts, variables, calculations, predicates, and postulates. Within a sub-microlect some postulates or conclusions are equations which are statements that declare equality of specified calculations. An equational bond between an equation in one sub-microlect and an equation in either the same sub-microlect or in another sub-microlect is a predicate that declares equality of symbols occurring in a side of one equation with symbols occurring in a side of the other equation. Briefly, a circularchy is a network of equational bonds between sub-microlects. A circularchy is solvable if there exist solutions for all equations that satisfy all equational bonds. If a circularchy is not solvable, then a challenge would be to discover the obstruction to solvability and then conjecture what adjustments might remove the obstruction. Adjustment means changes in stipulated ingredients (sorts, etc.) of sub-microlects, or changes in equational bonds between sub-microlects, or introduction of new sub-microlects and new equational bonds. A circularchy is modular insofar as each sub-microlect is a node in a network of equation bonds. Solvability of a circularchy may be conjectured. Efforts to prove solvability may be thwarted by a counter-example or may lead to the construction of a solution. An automated theorem-proof assistant would likely be necessary for investigating a substantial circularchy, such as one purported to represent Earthly Life. Such investigations (chains of statements) would be concurrent with and no substitute for simulations (chains of numbers).Keywords: autonomy, first-order theory, mathematics, thermodynamics
Procedia PDF Downloads 22019 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method
Authors: Lee Yan Nian
Abstract:
Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation
Procedia PDF Downloads 12318 Computational Team Dynamics and Interaction Patterns in New Product Development Teams
Authors: Shankaran Sitarama
Abstract:
New Product Development (NPD) is invariably a team effort and involves effective teamwork. NPD team has members from different disciplines coming together and working through the different phases all the way from conceptual design phase till the production and product roll out. Creativity and Innovation are some of the key factors of successful NPD. Team members going through the different phases of NPD interact and work closely yet challenge each other during the design phases to brainstorm on ideas and later converge to work together. These two traits require the teams to have a divergent and a convergent thinking simultaneously. There needs to be a good balance. The team dynamics invariably result in conflicts among team members. While some amount of conflict (ideational conflict) is desirable in NPD teams to be creative as a group, relational conflicts (or discords among members) could be detrimental to teamwork. Team communication truly reflect these tensions and team dynamics. In this research, team communication (emails) between the members of the NPD teams is considered for analysis. The email communication is processed through a semantic analysis algorithm (LSA) to analyze the content of communication and a semantic similarity analysis to arrive at a social network graph that depicts the communication amongst team members based on the content of communication. The amount of communication (content and not frequency of communication) defines the interaction strength between the members. Social network adjacency matrix is thus obtained for the team. Standard social network analysis techniques based on the Adjacency Matrix (AM) and Dichotomized Adjacency Matrix (DAM) based on network density yield network graphs and network metrics like centrality. The social network graphs are then rendered for visual representation using a Metric Multi-Dimensional Scaling (MMDS) algorithm for node placements and arcs connecting the nodes (representing team members) are drawn. The distance of the nodes in the placement represents the tie-strength between the members. Stronger tie-strengths render nodes closer. Overall visual representation of the social network graph provides a clear picture of the team’s interactions. This research reveals four distinct patterns of team interaction that are clearly identifiable in the visual representation of the social network graph and have a clearly defined computational scheme. The four computational patterns of team interaction defined are Central Member Pattern (CMP), Subgroup and Aloof member Pattern (SAP), Isolate Member Pattern (IMP), and Pendant Member Pattern (PMP). Each of these patterns has a team dynamics implication in terms of the conflict level in the team. For instance, Isolate member pattern, clearly points to a near break-down in communication with the member and hence a possible high conflict level, whereas the subgroup or aloof member pattern points to a non-uniform information flow in the team and some moderate level of conflict. These pattern classifications of teams are then compared and correlated to the real level of conflict in the teams as indicated by the team members through an elaborate self-evaluation, team reflection, feedback form and results show a good correlation.Keywords: team dynamics, team communication, team interactions, social network analysis, sna, new product development, latent semantic analysis, LSA, NPD teams
Procedia PDF Downloads 6917 The Practical Application of Sensory Awareness in Developing Healthy Communication, Emotional Regulation, and Emotional Introspection
Authors: Node Smith
Abstract:
Developmental psychology has long focused on modeling consciousness, often neglecting practical application and clinical utility. This paper aims to bridge this gap by exploring the practical application of physical and sensory tracking and awareness in fostering essential skills for conscious development. Higher conscious development requires practical skills such as self-agency, the ability to hold multiple perspectives, and genuine altruism. These are not personality characteristics but areas of skillfulness that address many cultural deficiencies impacting our world. They are intertwined with individual as well as collective conscious development. Physical, sensory tracking and awareness are crucial for developing these skills and offer the added benefit of cultivating healthy communication, emotional regulation, and introspection. Unlike skills such as throwing a baseball, which can be developed through practice or innate ability, the ability to introspect, track physical sensations, and observe oneself objectively is essential for advancing consciousness. Lacking these skills leads to cultural and individual anxiety, helplessness, and a lack of agency, manifesting as blame-shifting and irresponsibility. The inability to hold multiple perspectives stifles altruism, as genuine consideration for a global community requires accepting other perspectives without conditions. Physical and sensory tracking enhances self-awareness by grounding individuals in their bodily experiences. This grounding is critical for emotional regulation, allowing individuals to identify and process emotions in real-time, preventing overwhelm and fostering balance. Techniques like mindfulness meditation and body scan exercises attune individuals to their physical sensations, providing insights into their emotional states. Sensory awareness also facilitates healthy communication by fostering empathy and active listening. When individuals are in tune with their physical sensations, they become more present in interactions, picking up on subtle cues and responding thoughtfully. This presence reduces misunderstandings and conflicts, promoting more effective communication. The ability to introspect and observe oneself objectively is key to emotional introspection. This skill allows individuals to reflect on their thoughts, feelings, and behaviors, identify patterns, recognize areas for growth, and make conscious choices aligned with their values and goals. In conclusion, physical and sensory tracking and awareness are vital for developing the skills necessary for higher consciousness development. By fostering self-agency, emotional regulation, and the ability to hold multiple perspectives, these practices contribute to healthier communication, deeper emotional introspection, and a more altruistic and connected global community. Integrating these practices into developmental psychology and therapeutic interventions holds significant promise for both individual and societal transformation.Keywords: conscious development, emotional introspection, emotional regulation, self-agency, stages of development
Procedia PDF Downloads 4316 Case Report of Left Atrial Myxoma Diagnosed by Bedside Echocardiography
Authors: Anthony S. Machi, Joseph Minardi
Abstract:
We present a case report of left atrial myxoma diagnosed by bedside transesophageal (TEE) ultrasound. Left atrial myxoma is the most common benign cardiac tumor and can obstruct blood flow and cause valvular insufficiency. Common symptoms consist of dyspnea, pulmonary edema and other features of left heart failure in addition to thrombus release in the form of tumor fragments. The availability of bedside ultrasound equipment is essential for the quick diagnosis and treatment of various emergency conditions including cardiac neoplasms. A 48-year-old Caucasian female with a four-year history of an untreated renal mass and anemia presented to the ED with two months of sharp, intermittent, bilateral flank pain radiating into the abdomen. She also reported intermittent vomiting and constipation along with generalized body aches, night sweats, and 100-pound weight loss over last year. She had a CT in 2013 showing a 3 cm left renal mass and a second CT in April 2016 showing a 3.8 cm left renal mass along with a past medical history of diverticulosis, chronic bronchitis, dyspnea on exertion, uncontrolled hypertension, and hyperlipidemia. Her maternal family history is positive for breast cancer, hypertension, and Type II Diabetes. Her paternal family history is positive for stroke. She was a current everyday smoker with an 11 pack/year history. Alcohol and drug use were denied. Physical exam was notable for a Grade II/IV systolic murmur at the right upper sternal border, dyspnea on exertion without angina, and a tender left lower quadrant. Her vitals and labs were notable for a blood pressure of 144/96, heart rate of 96 beats per minute, pulse oximetry of 96%, hemoglobin of 7.6 g/dL, hypokalemia, hypochloremia, and multiple other abnormalities. Physicians ordered a CT to evaluate her flank pain which revealed a 7.2 x 8.9 x 10.5 cm mixed cystic/solid mass in the lower pole of the left kidney and a filling defect in the left atrium. Bedside TEE was ordered to follow up on the filling defect. TEE reported an ejection fraction of 60-65% and visualized a mobile 6 x 3 cm mass in the left atrium attached to the interatrial septum extending into the mitral valve. Cardiothoracic Surgery and Urology were consulted and confirmed a diagnosis of left atrial myxoma and clear cell renal cell carcinoma. The patient returned a week later due to worsening nausea and vomiting and underwent emergent nephrectomy, lymph node dissection, and colostomy due to a necrotic colon. Her condition declined over the next four months due to lung and brain metastases, infections, and other complications until she passed away.Keywords: bedside ultrasound, echocardiography, emergency medicine, left atrial myxoma
Procedia PDF Downloads 32915 Edmonton Urban Growth Model as a Support Tool for the City Plan Growth Scenarios Development
Authors: Sinisa J. Vukicevic
Abstract:
Edmonton is currently one of the youngest North American cities and has achieved significant growth over the past 40 years. Strong urban shift requires a new approach to how the city is envisioned, planned, and built. This approach is evidence-based scenario development, and an urban growth model was a key support tool in framing Edmonton development strategies, developing urban policies, and assessing policy implications. The urban growth model has been developed using the Metronamica software platform. The Metronamica land use model evaluated the dynamic of land use change under the influence of key development drivers (population and employment), zoning, land suitability, and land and activity accessibility. The model was designed following the Big City Moves ideas: become greener as we grow, develop a rebuildable city, ignite a community of communities, foster a healing city, and create a city of convergence. The Big City Moves were converted to three development scenarios: ‘Strong Central City’, ‘Node City’, and ‘Corridor City’. Each scenario has a narrative story that expressed scenario’s high level goal, scenario’s approach to residential and commercial activities, to transportation vision, and employment and environmental principles. Land use demand was calculated for each scenario according to specific density targets. Spatial policies were analyzed according to their level of importance within the policy set definition for the specific scenario, but also through the policy measures. The model was calibrated on the way to reproduce known historical land use pattern. For the calibration, we used 2006 and 2011 land use data. The validation is done independently, which means we used the data we did not use for the calibration. The model was validated with 2016 data. In general, the modeling process contain three main phases: ‘from qualitative storyline to quantitative modelling’, ‘model development and model run’, and ‘from quantitative modelling to qualitative storyline’. The model also incorporates five spatial indicators: distance from residential to work, distance from residential to recreation, distance to river valley, urban expansion and habitat fragmentation. The major finding of this research could be looked at from two perspectives: the planning perspective and technology perspective. The planning perspective evaluates the model as a tool for scenario development. Using the model, we explored the land use dynamic that is influenced by a different set of policies. The model enables a direct comparison between the three scenarios. We explored the similarities and differences of scenarios and their quantitative indicators: land use change, population change (and spatial allocation), job allocation, density (population, employment, and dwelling unit), habitat connectivity, proximity to objects of interest, etc. From the technology perspective, the model showed one very important characteristic: the model flexibility. The direction for policy testing changed many times during the consultation process and model flexibility in applying all these changes was highly appreciated. The model satisfied our needs as scenario development and evaluation tool, but also as a communication tool during the consultation process.Keywords: urban growth model, scenario development, spatial indicators, Metronamica
Procedia PDF Downloads 9514 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).
Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe
Abstract:
Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media
Procedia PDF Downloads 6513 Resolving Urban Mobility Issues through Network Restructuring of Urban Mass Transport
Authors: Aditya Purohit, Neha Bansal
Abstract:
Unplanned urbanization and multidirectional sprawl of the cities have resulted in increased motorization and deteriorating transport conditions like traffic congestion, longer commuting, pollution, increased carbon footprint, and above all increased fatalities. In order to overcome these problems, various practices have been adopted including– promoting and implementing mass transport; traffic junction channelization; smart transport etc. However, these methods are found to be primarily focusing on vehicular mobility rather than people accessibility. With this research gap, this paper tries to resolve the mobility issues for Ahmedabad city in India, which being the economic capital Gujarat state has a huge commuter and visitor inflow. This research aims to resolve the traffic congestion and urban mobility issues focusing on Gujarat State Regional Transport Corporation (GSRTC) for the city of Ahmadabad by analyzing the existing operations and network structure of GSRTC followed by finding possibilities of integrating it with other modes of urban transport. The network restructuring (NR) methodology is used with appropriate variations, based on commuter demand and growth pattern of the city. To do these ‘scenarios’ based on priority issues (using 12 parameters) and their best possible solution, are established after route network analysis for 2700 population sample of 20 traffic junctions/nodes across the city. Approximately 5% sample (of passenger inflow) at each node is considered using random stratified sampling technique two scenarios are – Scenario 1: Resolving mobility issues by use of Special Purpose Vehicle (SPV) in joint venture to GSRTC and Private Operators for establishing feeder service, which shall provide a transfer service for passenger for movement from inner city area to identified peripheral terminals; and Scenario 2: Augmenting existing mass transport services such as BRTS and AMTS for using them as feeder service to the identified peripheral terminals. Each of these has now been analyzed for the best suitability/feasibility in network restructuring. A desire-line diagram is constructed using this analysis which indicated that on an average 62% of designated GSRTC routes are overlapping with mass transportation service routes of BRTS and AMTS in the city. This has resulted in duplication of bus services causing traffic congestion especially in the Central Bus Station (CBS). Terminating GSRTC services on the periphery of the city is found to be the best restructuring network proposal. This limits the GSRTC buses at city fringe area and prevents them from entering into the city core areas. These end-terminals of GSRTC are integrated with BRTS and AMTS services which help in segregating intra-state and inter-state bus services. The research concludes that absence of integrated multimodal transport network resulted in complexity of transport access to the commuters. As a further scope of research comparing and understanding of value of access time in total travel time and its implication on generalized cost on trip and how it varies city wise may be taken up.Keywords: mass transportation, multi-modal integration, network restructuring, travel behavior, urban transport
Procedia PDF Downloads 19712 Social Network Roles in Organizations: Influencers, Bridges, and Soloists
Authors: Sofia Dokuka, Liz Lockhart, Alex Furman
Abstract:
Organizational hierarchy, traditionally composed of individual contributors, middle management, and executives, is enhanced by the understanding of informal social roles. These roles, identified with organizational network analysis (ONA), might have an important effect on organizational functioning. In this paper, we identify three social roles – influencers, bridges, and soloists, and provide empirical analysis based on real-world organizational networks. Influencers are employees with broad networks and whose contacts also have rich networks. Influence is calculated using PageRank, initially proposed for measuring website importance, but now applied in various network settings, including social networks. Influencers, having high PageRank, become key players in shaping opinions and behaviors within an organization. Bridges serve as links between loosely connected groups within the organization. Bridges are identified using betweenness and Burt’s constraint. Betweenness quantifies a node's control over information flows by evaluating its role in the control over the shortest paths within the network. Burt's constraint measures the extent of interconnection among an individual's contacts. A high constraint value suggests fewer structural holes and lesser control over information flows, whereas a low value suggests the contrary. Soloists are individuals with fewer than 5 stable social contacts, potentially facing challenges due to reduced social interaction and hypothetical lack of feedback and communication. We considered social roles in the analysis of real-world organizations (N=1,060). Based on data from digital traces (Slack, corporate email and calendar) we reconstructed an organizational communication network and identified influencers, bridges and soloists. We also collected employee engagement data through an online survey. Among the top-5% of influencers, 10% are members of the Executive Team. 56% of the Executive Team members are part of the top influencers group. The same proportion of top influencers (10%) is individual contributors, accounting for just 0.6% of all individual contributors in the company. The majority of influencers (80%) are at the middle management level. Out of all middle managers, 19% hold the role of influencers. However, individual contributors represent a small proportion of influencers, and having information about these individuals who hold influential roles can be crucial for management in identifying high-potential talents. Among the bridges, 4% are members of the Executive Team, 16% are individual contributors, and 80% are middle management. Predominantly middle management acts as a bridge. Bridge positions of some members of the executive team might indicate potential micromanagement on the leader's part. Recognizing the individuals serving as bridges in an organization uncovers potential communication problems. The majority of soloists are individual contributors (96%), and 4% of soloists are from middle management. These managers might face communication difficulties. We found an association between being an influencer and attitude toward a company's direction. There is a statistically significant 20% higher perception that the company is headed in the right direction among influencers compared to non-influencers (p < 0.05, Mann-Whitney test). Taken together, we demonstrate that considering social roles in the company might indicate both positive and negative aspects of organizational functioning that should be considered in data-driven decision-making.Keywords: organizational network analysis, social roles, influencer, bridge, soloist
Procedia PDF Downloads 10411 Numerical Solution of Momentum Equations Using Finite Difference Method for Newtonian Flows in Two-Dimensional Cartesian Coordinate System
Authors: Ali Ateş, Ansar B. Mwimbo, Ali H. Abdulkarim
Abstract:
General transport equation has a wide range of application in Fluid Mechanics and Heat Transfer problems. In this equation, generally when φ variable which represents a flow property is used to represent fluid velocity component, general transport equation turns into momentum equations or with its well known name Navier-Stokes equations. In these non-linear differential equations instead of seeking for analytic solutions, preferring numerical solutions is a more frequently used procedure. Finite difference method is a commonly used numerical solution method. In these equations using velocity and pressure gradients instead of stress tensors decreases the number of unknowns. Also, continuity equation, by integrating the system, number of equations is obtained as number of unknowns. In this situation, velocity and pressure components emerge as two important parameters. In the solution of differential equation system, velocities and pressures must be solved together. However, in the considered grid system, when pressure and velocity values are jointly solved for the same nodal points some problems confront us. To overcome this problem, using staggered grid system is a referred solution method. For the computerized solutions of the staggered grid system various algorithms were developed. From these, two most commonly used are SIMPLE and SIMPLER algorithms. In this study Navier-Stokes equations were numerically solved for Newtonian flow, whose mass or gravitational forces were neglected, for incompressible and laminar fluid, as a hydro dynamically fully developed region and in two dimensional cartesian coordinate system. Finite difference method was chosen as the solution method. This is a parametric study in which varying values of velocity components, pressure and Reynolds numbers were used. Differential equations were discritized using central difference and hybrid scheme. The discritized equation system was solved by Gauss-Siedel iteration method. SIMPLE and SIMPLER were used as solution algorithms. The obtained results, were compared for central difference and hybrid as discritization methods. Also, as solution algorithm, SIMPLE algorithm and SIMPLER algorithm were compared to each other. As a result, it was observed that hybrid discritization method gave better results over a larger area. Furthermore, as computer solution algorithm, besides some disadvantages, it can be said that SIMPLER algorithm is more practical and gave result in short time. For this study, a code was developed in DELPHI programming language. The values obtained in a computer program were converted into graphs and discussed. During sketching, the quality of the graph was increased by adding intermediate values to the obtained result values using Lagrange interpolation formula. For the solution of the system, number of grid and node was found as an estimated. At the same time, to indicate that the obtained results are satisfactory enough, by doing independent analysis from the grid (GCI analysis) for coarse, medium and fine grid system solution domain was obtained. It was observed that when graphs and program outputs were compared with similar studies highly satisfactory results were achieved.Keywords: finite difference method, GCI analysis, numerical solution of the Navier-Stokes equations, SIMPLE and SIMPLER algoritms
Procedia PDF Downloads 39010 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction
Authors: Yan Zhang
Abstract:
Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.Keywords: Internet of Things, machine learning, predictive maintenance, streaming data
Procedia PDF Downloads 3869 Geochemical Characterization of Geothermal Waters in Albania, Preliminary Results
Authors: Aurela Jahja, Katarzyna Wątor, Arjan Beqiraj, Piotr Rusiniak, Nevton Kodhelaj
Abstract:
Albanian geological terrains represent an important node of the Alpine – Mediterranean mountain belt and are divided into several predominantly NNW - SSE striking geotectonic units, which, based on the presence or lack of Cretaceous transgression and magmatic rocks, belong to Internal or External Albanides. The internal (Korabi, Mirdita and Gashi) units are characterized by the Lower Cretaceous discordance and the presence of abundant magmatic rocks whereas in the external (Alps, Krasta-Cukali, Kruja, Ionian, Sazani and Peri Adriatic Depression) units an almost continuous sedimentation from Triassic to Paleogene is evidenced. The internal and external units show relevant differences in both geothermal and heat flow density values. The gradient values vary from 15-21.3 to 36 mK/m, while the heat flow density ranges from 42 to 60 mW/m2, in the external (Preadriatic Depression) and internal (ophiolitic belt) units, respectively. The geothermal fluids, which are found in natural springs and deep oil wells of Albania, are located in four thermo-mineral provinces: a) Peshkopi (Korabi) province; b) Kruja province; c) Preadriatic basin province, and d) South Ionian province. Thirteen geothermal waters were sampled from 11 natural springs and 2 deep wells, of which 6 springs and 2 wells from Kruja, 1 spring from Peshkopia, 2 springs from Preadriatic basin and 2 springs South Ionian province. Temperature, pH and Electrical Conductivity were measured in situ, while in laboratory were analyzed by ICP method major anions and cations and several trace elements (B, Li, Sr, Rb, I, Br, etc.). The measured values of temperature, pH and electrical conductivity range within 17-63°C, 6.26-7.92 and 724- 26856µS/cm intervals, respectively. The chemical type of the Albania thermal waters is variable. In the Kruja province prevail the Cl-SO4-NaCa and Cl-Na-Ca water types; while SO4-Ca, HCO3-Ca and Cl-HCO3-Na-Ca, and Cl-Na are found in the provinces of Peshkopi, Ionian and Preadriatic basin, respectively. In the Cl-SO4-HCO3 triangular diagram most of the geothermal waters are close to the chloride corner that belong to “mature waters”, typical of geothermal deep and hot fluids. Only samples from the Ionian province are located within the region of high bicarbonate concentration and they can be classified as peripheral waters that may have mixed with cold groundwater. In the Na-Ca-Mg and Na-K-Mg triangular diagram the majority of waters fall in the corner of sodium, suggesting that their cation ratios are controlled by mineral-solution equilibrium. There is a linear relationship between Cl and B which indicates the mixing of geothermal water with cold water, where the low-chlorine thermal waters from Ionian basin and Preadriatic depression provinces are distinguished by high-chlorine thermal waters from Kruja province. The Cl/Br molar ration of the thermal waters from Kruja province ranges from 1000 to 2660 and separates them from the thermal waters of Ionian basin and Preadriatic depression provinces having Cl/Br molar ratio lower than 650. The apparent increase of Cl/Br molar ratio that correlates with the increasing of the chloride, is probably related with dissolution of the Halite.Keywords: geothermal fluids, geotectonic units, natural springs, deep wells, mature waters, peripheral waters
Procedia PDF Downloads 2178 Guiding Urban Development in a Traditional Neighbourhood: Case Application of Kolkata
Authors: Nabamita Nath, Sanghamitra Sarkar
Abstract:
Urban development in traditional neighbourhoods of cities is undergoing a sea change due to imposition of irregular development patterns on a predominantly inclusive urban fabric. In recent times, traditional neighbourhoods of Kolkata have experienced irregular urban development which has resulted in transformation of its immediate urban character. The goal is to study and analyse impact of new urban developments within traditional neighbourhoods of Kolkata and establish development guidelines to balance the old with the new. Various cities predominantly in third world countries are also experiencing similar development patterns in their traditional neighbourhoods. Existing literature surveys of development patterns in such neighbourhoods have established 9 major parameters viz. edge, movement, node, landmark, size-density, pattern-grain-texture, open spaces, urban spaces, urban form and views-vistas of the neighbourhood. To evaluate impact of urban development in traditional neighbourhoods of Kolkata, 3 different areas have been chronologically selected based on their settlement patterns. Parameters established through literature surveys have been applied to the selected areas to study and analyse the existing patterns of development. The main sources of this study included extensive on-site surveys, academic archive, census data, organisational records and informational websites. Applying the established parameters, 5 major conclusions were derived. Firstly, it was found that pedestrian friendly neighbourhoods of the city were becoming more car-centric. This has resulted in loss of interactive and social spaces which defined the cultural heritage of Kolkata. Secondly, the urban pattern which was composed of dense and compact fabric is gradually losing its character due to incorporation of new building typologies. Thirdly, the new building typologies include gated communities with private open spaces which is a stark departure from the existing built typology. However, these open spaces have not contributed in creation of inclusive public places for the community which are a significant part of such heritage neighbourhood precincts. Fourthly, commercial zones that primarily developed along major access routes have now infiltrated within these neighbourhoods. Gated communities do not favour formation of on-street commercial activities generating haphazard development patterns. Lastly, individual residential buildings that reflected Indo-saracenic and Neo-gothic architectural styles are converting into multi-storeyed residential apartments. As a result, the axis that created a definite visual identity for a neighbourhood is progressively following an irregular pattern. Thus, uniformity of the old skyline is gradually becoming inconsistent. The major issue currently is threat caused by irregular urban development to heritage zones and buildings of traditional neighbourhoods. Streets, lanes, courtyards, open spaces and buildings of old neighbourhoods imparted a unique cultural identity to the city that is disappearing with emerging urban development patterns. It has been concluded that specific guidelines for urban development should be regulated primarily based on existing urban form of traditional neighbourhoods. Such neighbourhood development strategies should be formulated for various cities of third world countries to control irregular developments thereby balancing heritage and development.Keywords: heritage, Kolkata, traditional neighbourhood, urban development
Procedia PDF Downloads 1797 Microplastics in Fish from Grenada, West Indies: Problems and Opportunities
Authors: Michelle E. Taylor, Clare E. Morrall
Abstract:
Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter.Keywords: Caribbean, microplastics, pollution, small island developing nation
Procedia PDF Downloads 2116 A Real-Time Bayesian Decision-Support System for Predicting Suspect Vehicle’s Intended Target Using a Sparse Camera Network
Authors: Payam Mousavi, Andrew L. Stewart, Huiwen You, Aryeh F. G. Fayerman
Abstract:
We present a decision-support tool to assist an operator in the detection and tracking of a suspect vehicle traveling to an unknown target destination. Multiple data sources, such as traffic cameras, traffic information, weather, etc., are integrated and processed in real-time to infer a suspect’s intended destination chosen from a list of pre-determined high-value targets. Previously, we presented our work in the detection and tracking of vehicles using traffic and airborne cameras. Here, we focus on the fusion and processing of that information to predict a suspect’s behavior. The network of cameras is represented by a directional graph, where the edges correspond to direct road connections between the nodes and the edge weights are proportional to the average time it takes to travel from one node to another. For our experiments, we construct our graph based on the greater Los Angeles subset of the Caltrans’s “Performance Measurement System” (PeMS) dataset. We propose a Bayesian approach where a posterior probability for each target is continuously updated based on detections of the suspect in the live video feeds. Additionally, we introduce the concept of ‘soft interventions’, inspired by the field of Causal Inference. Soft interventions are herein defined as interventions that do not immediately interfere with the suspect’s movements; rather, a soft intervention may induce the suspect into making a new decision, ultimately making their intent more transparent. For example, a soft intervention could be temporarily closing a road a few blocks from the suspect’s current location, which may require the suspect to change their current course. The objective of these interventions is to gain the maximum amount of information about the suspect’s intent in the shortest possible time. Our system currently operates in a human-on-the-loop mode where at each step, a set of recommendations are presented to the operator to aid in decision-making. In principle, the system could operate autonomously, only prompting the operator for critical decisions, allowing the system to significantly scale up to larger areas and multiple suspects. Once the intended target is identified with sufficient confidence, the vehicle is reported to the authorities to take further action. Other recommendations include a selection of road closures, i.e., soft interventions, or to continue monitoring. We evaluate the performance of the proposed system using simulated scenarios where the suspect, starting at random locations, takes a noisy shortest path to their intended target. In all scenarios, the suspect’s intended target is unknown to our system. The decision thresholds are selected to maximize the chances of determining the suspect’s intended target in the minimum amount of time and with the smallest number of interventions. We conclude by discussing the limitations of our current approach to motivate a machine learning approach, based on reinforcement learning in order to relax some of the current limiting assumptions.Keywords: autonomous surveillance, Bayesian reasoning, decision support, interventions, patterns of life, predictive analytics, predictive insights
Procedia PDF Downloads 1155 Predictive Analytics for Theory Building
Authors: Ho-Won Jung, Donghun Lee, Hyung-Jin Kim
Abstract:
Predictive analytics (data analysis) uses a subset of measurements (the features, predictor, or independent variable) to predict another measurement (the outcome, target, or dependent variable) on a single person or unit. It applies empirical methods in statistics, operations research, and machine learning to predict the future, or otherwise unknown events or outcome on a single or person or unit, based on patterns in data. Most analyses of metabolic syndrome are not predictive analytics but statistical explanatory studies that build a proposed model (theory building) and then validate metabolic syndrome predictors hypothesized (theory testing). A proposed theoretical model forms with causal hypotheses that specify how and why certain empirical phenomena occur. Predictive analytics and explanatory modeling have their own territories in analysis. However, predictive analytics can perform vital roles in explanatory studies, i.e., scientific activities such as theory building, theory testing, and relevance assessment. In the context, this study is to demonstrate how to use our predictive analytics to support theory building (i.e., hypothesis generation). For the purpose, this study utilized a big data predictive analytics platform TM based on a co-occurrence graph. The co-occurrence graph is depicted with nodes (e.g., items in a basket) and arcs (direct connections between two nodes), where items in a basket are fully connected. A cluster is a collection of fully connected items, where the specific group of items has co-occurred in several rows in a data set. Clusters can be ranked using importance metrics, such as node size (number of items), frequency, surprise (observed frequency vs. expected), among others. The size of a graph can be represented by the numbers of nodes and arcs. Since the size of a co-occurrence graph does not depend directly on the number of observations (transactions), huge amounts of transactions can be represented and processed efficiently. For a demonstration, a total of 13,254 metabolic syndrome training data is plugged into the analytics platform to generate rules (potential hypotheses). Each observation includes 31 predictors, for example, associated with sociodemographic, habits, and activities. Some are intentionally included to get predictive analytics insights on variable selection such as cancer examination, house type, and vaccination. The platform automatically generates plausible hypotheses (rules) without statistical modeling. Then the rules are validated with an external testing dataset including 4,090 observations. Results as a kind of inductive reasoning show potential hypotheses extracted as a set of association rules. Most statistical models generate just one estimated equation. On the other hand, a set of rules (many estimated equations from a statistical perspective) in this study may imply heterogeneity in a population (i.e., different subpopulations with unique features are aggregated). Next step of theory development, i.e., theory testing, statistically tests whether a proposed theoretical model is a plausible explanation of a phenomenon interested in. If hypotheses generated are tested statistically with several thousand observations, most of the variables will become significant as the p-values approach zero. Thus, theory validation needs statistical methods utilizing a part of observations such as bootstrap resampling with an appropriate sample size.Keywords: explanatory modeling, metabolic syndrome, predictive analytics, theory building
Procedia PDF Downloads 2764 Hanta Virus Infection in a Child and Sequelae
Authors: Vijay Samuel, Tina Thekkekkara, Shoma Ganguly
Abstract:
There is no reported Hanta Seoul virus infection in children in the UK so far, making it quite challenging for clinicians in diagnosing, predicting and prognosticating the outcome of the infection to patients and parents. We report a case of a ten-year-old girl who presented with pyrexia associated with headache, photophobia and abdominal pain. The family had recently acquired two pet rats six weeks ago. She appeared flushed with peri-oral pallor, coated the strawberry tongue, inflamed tonsils and bilateral cervical lymphadenopathy. Her liver and splenic edges were palpable. Investigations showed that she was thrombocytopenic with deranged renal and liver functions. An ultrasound abdomen demonstrated a mildly enlarged spleen, peripancreatic lymph node and an acalculous cholecystitis. In view of her clinical presentation, a diagnosis of leptospirosis was considered and she was commenced on intravenous benzylpenicillin. The following day she became oliguric, developed significant proteinuria and her renal function deteriorated. Following conservative management, her urine output gradually improved along with her renal function, proteinuria and thrombocytopaenia. Serology for leptospirosis and various other viruses were negative. Following discussion with the Rare and Imported Pathogens Laboratory at Porton hanta virus serology was requested and found to be strongly positive for Seoul hanta virus. Following discharge she developed palpitations, fatigue, severe headache and cognitive difficulties including memory loss and difficulties in spelling, reading and mathematics. Extensive investigations including ECG, MRI brain and CSF studies were performed and revealed no significant abnormalities. Since 2012, there have been six cases of acute kidney injury due to Hantavirus infection in the UK. Two cases were from the Humber region and were exposure to wild rats and the other four were exposed to specially bred pet fancy rats. Hanta virus infections can cause mild flu like symptoms but two clinical syndromes are associated with severe disease including haemorrhagic fever with renal syndrome, which may be associated with thrombocytopenia and Hantavirus cardiopulmonary syndrome. Neuropsychological impairments reported following hantavirus pulmonary syndrome and following Puumala virus infection have been reported. Minor white matter lesions were found in about half of the patients investigated with MRI brain. Seoul virus has a global distribution owing to the dispersal of its carrier host rats, through global trade. Several ports in the region could explain the possible establishment of Seoul virus in local populations of rats in the Yorkshire and Humber region. The risk of infection for occupationally exposed groups is 1-3% compared to 32.9% for specialist pet rat owners. The report highlight’s the importance of routinely asking about pets in the family. We hope to raise awareness of the emergence of hantavirus infection in the UK, particularly in the Yorkshire and Humber region. Clinicians should consider hantavirus infection as a potential cause of febrile illness causing renal impairment in children. Awareness of the possible neuro-cognitive sequele would help the clinicians offer appropriate information and support to children and their families. Contacting Rare and Imported Pathogens Laboratory at Porton is a useful resource for clinicians in UK when they consider unusual infections.Keywords: Seoul hantavirus in child Porton, UK Acute kidney injury
Procedia PDF Downloads 2933 Enhancing Scalability in Ethereum Network Analysis: Methods and Techniques
Authors: Stefan K. Behfar
Abstract:
The rapid growth of the Ethereum network has brought forth the urgent need for scalable analysis methods to handle the increasing volume of blockchain data. In this research, we propose efficient methodologies for making Ethereum network analysis scalable. Our approach leverages a combination of graph-based data representation, probabilistic sampling, and parallel processing techniques to achieve unprecedented scalability while preserving critical network insights. Data Representation: We develop a graph-based data representation that captures the underlying structure of the Ethereum network. Each block transaction is represented as a node in the graph, while the edges signify temporal relationships. This representation ensures efficient querying and traversal of the blockchain data. Probabilistic Sampling: To cope with the vastness of the Ethereum blockchain, we introduce a probabilistic sampling technique. This method strategically selects a representative subset of transactions and blocks, allowing for concise yet statistically significant analysis. The sampling approach maintains the integrity of the network properties while significantly reducing the computational burden. Graph Convolutional Networks (GCNs): We incorporate GCNs to process the graph-based data representation efficiently. The GCN architecture enables the extraction of complex spatial and temporal patterns from the sampled data. This combination of graph representation and GCNs facilitates parallel processing and scalable analysis. Distributed Computing: To further enhance scalability, we adopt distributed computing frameworks such as Apache Hadoop and Apache Spark. By distributing computation across multiple nodes, we achieve a significant reduction in processing time and enhanced memory utilization. Our methodology harnesses the power of parallelism, making it well-suited for large-scale Ethereum network analysis. Evaluation and Results: We extensively evaluate our methodology on real-world Ethereum datasets covering diverse time periods and transaction volumes. The results demonstrate its superior scalability, outperforming traditional analysis methods. Our approach successfully handles the ever-growing Ethereum data, empowering researchers and developers with actionable insights from the blockchain. Case Studies: We apply our methodology to real-world Ethereum use cases, including detecting transaction patterns, analyzing smart contract interactions, and predicting network congestion. The results showcase the accuracy and efficiency of our approach, emphasizing its practical applicability in real-world scenarios. Security and Robustness: To ensure the reliability of our methodology, we conduct thorough security and robustness evaluations. Our approach demonstrates high resilience against adversarial attacks and perturbations, reaffirming its suitability for security-critical blockchain applications. Conclusion: By integrating graph-based data representation, GCNs, probabilistic sampling, and distributed computing, we achieve network scalability without compromising analytical precision. This approach addresses the pressing challenges posed by the expanding Ethereum network, opening new avenues for research and enabling real-time insights into decentralized ecosystems. Our work contributes to the development of scalable blockchain analytics, laying the foundation for sustainable growth and advancement in the domain of blockchain research and application.Keywords: Ethereum, scalable network, GCN, probabilistic sampling, distributed computing
Procedia PDF Downloads 762 Development of a Core Set of Clinical Indicators to Measure Quality of Care for Thyroid Cancer: A Modified-Delphi Approach
Authors: Liane J. Ioannou, Jonathan Serpell, Cino Bendinelli, David Walters, Jenny Gough, Dean Lisewski, Win Meyer-Rochow, Julie Miller, Duncan Topliss, Bill Fleming, Stephen Farrell, Andrew Kiu, James Kollias, Mark Sywak, Adam Aniss, Linda Fenton, Danielle Ghusn, Simon Harper, Aleksandra Popadich, Kate Stringer, David Watters, Susannah Ahern
Abstract:
BACKGROUND: There are significant variations in the management, treatment and outcomes of thyroid cancer, particularly in the role of: diagnostic investigation and pre-treatment scanning; optimal extent of surgery (total or hemi-thyroidectomy); use of active surveillance for small low-risk cancers; central lymph node dissections (therapeutic or prophylactic); outcomes following surgery (e.g. recurrent laryngeal nerve palsy, hypocalcaemia, hypoparathyroidism); post-surgical hormone, calcium and vitamin D therapy; and provision and dosage of radioactive iodine treatment. A proven strategy to reduce variations in the outcome and to improve survival is to measure and compare it using high-quality clinical registry data. Clinical registries provide the most effective means of collecting high-quality data and are a tool for quality improvement. Where they have been introduced at a state or national level, registries have become one of the most clinically valued tools for quality improvement. To benchmark clinical care, clinical quality registries require systematic measurement at predefined intervals and the capacity to report back information to participating clinical units. OBJECTIVE: The aim of this study was to develop a core set clinical indicators that enable measurement and reporting of quality of care for patients with thyroid cancer. We hypothesise that measuring clinical quality indicators, developed to identify differences in quality of care across sites, will reduce variation and improve patient outcomes and survival, thereby lessening costs and healthcare burden to the Australian community. METHOD: Preparatory work and scoping was conducted to identify existing high quality, clinical guidelines and best practice for thyroid cancer both nationally and internationally, as well as relevant literature. A bi-national panel was invited to participate in a modified Delphi process. Panelists were asked to rate each proposed indicator on a Likert scale of 1–9 in a three-round iterative process. RESULTS: A total of 236 potential quality indicators were identified. One hundred and ninety-two indicators were removed to reflect the data capture by the Australian and New Zealand Thyroid Cancer Registry (ANZTCR) (from diagnosis to 90-days post-surgery). The remaining 44 indicators were presented to the panelists for voting. A further 21 indicators were later added by the panelists bringing the total potential quality indicators to 65. Of these, 21 were considered the most important and feasible indicators to measure quality of care in thyroid cancer, of which 12 were recommended for inclusion in the final set. The consensus indicator set spans the spectrum of care, including: preoperative; surgery; surgical complications; staging and post-surgical treatment planning; and post-surgical treatment. CONCLUSIONS: This study provides a core set of quality indicators to measure quality of care in thyroid cancer. This indicator set can be applied as a tool for internal quality improvement, comparative quality reporting, public reporting and research. Inclusion of these quality indicators into monitoring databases such as clinical quality registries will enable opportunities for benchmarking and feedback on best practice care to clinicians involved in the management of thyroid cancer.Keywords: clinical registry, Delphi survey, quality indicators, quality of care
Procedia PDF Downloads 1791 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 71