Search results for: compressive load
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3334

Search results for: compressive load

2614 A Prospective Study on Alkali Activated Bottom Ash-GGBS Blend in Paver Blocks

Authors: V. Revathi, J. Thaarrini, M. Venkob Rao

Abstract:

This paper presents a study on use of alkali activated bottom ash (BA) and ground granulated blast furnace slag (GGBS) blend in paver blocks. A preliminary effort on alkali-activated bottom ash, blast furnace slag based geopolymer (BA-GGBS-GP) mortar with river sand was carried out to identify the suitable mix for paver block. Several mixes were proposed based on the combination of BA-GGBS. The percentage ratio of BA:GGBS was selected as 100:0, 75:25, 50:50, 25:75 and 0:100 for the source material. Sodium based alkaline activators were used for activation. The molarity of NaOH was considered as 8M. The molar ratio of SiO2 to Na2O was varied from 1 to 4. Two curing mode such as ambient and steam curing 60°C for 24 hours were selected. The properties of paver block such as compressive strength split tensile strength, flexural strength and water absorption were evaluated as per IS15658:2006. Based on the preliminary study on BA-GGBS-GP mortar, the combinations of 25% BA with 75% GGBS mix for M30 and 75% BA with 25% GGBS mix for M35 grade were identified for paver block. Test results shows that the combination of BA-GGBS geopolymer paver blocks attained remarkable compressive strength under steam curing as well as in ambient mode at 3 days. It is noteworthy to know BA-GGBS-GP has promising future in the construction industry.

Keywords: bottom ash, GGBS, alkali activation, paver block

Procedia PDF Downloads 347
2613 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins

Authors: Amal Balila, Maria Vahdati

Abstract:

Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.

Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.

Procedia PDF Downloads 39
2612 Study on Bending Characteristics of Square Tube Using Energy Absorption Part

Authors: Shigeyuki Haruyama, Zefry Darmawan, Ken Kaminishi

Abstract:

In the square tube subjected to the bending load, the rigidity of the entire square tube is reduced when a collapse occurs due to local stress concentration. Therefore, in this research, the influence of bending load on the square tube with attached energy absorbing part was examined and reported. The analysis was conducted by using Finite Element Method (FEM) to produced bending deflection and buckling points. Energy absorption was compared from rigidity of attached part and square tube body. Buckling point was influenced by the rigidity of attached part and the thickness rate of square tube.

Keywords: energy absorber, square tube, bending, rigidity

Procedia PDF Downloads 233
2611 Experimental Study on Single Bay RC Frame Designed Using EC8 under In-Plane Cyclic Loading

Authors: N. H. Hamid, M. S. Syaref, M. I. Adiyanto, M. Mohamed

Abstract:

A one-half scale of single-bay two-storey RC frame together with foundation beam and mass concrete block is investigated. Moment resisting RC frame was designed using EC8 by including the provision for seismic loading and detailing of its connection. The objective of the experimental work is to determine seismic behaviour RC frame under in-plane lateral cyclic loading using displacement control method. A double actuator is placed at centre of the mass concrete block at top of frame to represent the seismic load. The percentage drifts are starting from ±0.01% until ±2.25% with increment of ±0.25% drift. The ultimate lateral load of 158.48 kN was recorded at +2.25% drift in pushing and -126.09 kN in pulling direction. From the experimental hysteresis loops, the parameters such as lateral strength capacity, stiffness, ductility and equivalent viscous damping can be obtained. RC frame behaves in the elastic manner followed by inelastic behaviour after reaches the yield limit. The ductility value for this type frame is 4 which lies between the limit 3 and 6. Therefore, it is recommended to build this RC frame for moderate seismic regions under Ductility Class Medium (DCM) such as in Sabah, East Malaysia.

Keywords: single bay, moment resisting RC frame, ductility class medium, inelastic behavior, seismic load

Procedia PDF Downloads 374
2610 Use of Fruit Beetles, Waxworms Larvae and Tiger Worms in Waste Conditioning for Composting

Authors: Waleed S. Alwaneen

Abstract:

In many countries, cow dung is used as farm manure and for biogas production. Several bacterial strains associated with cow dung such as Campylobacter, Salmonella sp. and Escherichia coli cause serious human diseases. The objective of the present study was to investigate the use of insect larvae including fruit beetle, waxworms and tiger worms to improve the breakdown of agricultural wastes and reduce their pathogen loads. Fresh cow faeces were collected from a cattle farm and distributed into plastic boxes (100 g/box). Each box was provided with 10 larvae of fruit beetle, Waxworms and Tiger worms, respectively. There were 3 replicates in each treatment including the control. Bacteria were isolated weekly from both control and cow faeces to which larvae were added to determine the bacterial populations. Results revealed that the bacterial load was higher in the cow faeces treated with fruit beetles than in the control, while the bacterial load was lower in the cow faeces treated with waxworms and tiger worms than in the control. The activities of the fruit beetle larvae led to the cow faeces being liquefied which provided a more conducive growing media for bacteria. Therefore, higher bacterial load in the cow faeces treated with fruit beetle might be attributed to the liquefaction of cow faeces.

Keywords: fruit beetle, waxworms, tiger worms, waste conditioning, composting

Procedia PDF Downloads 243
2609 Design and Thermal Simulation Analysis of the Chinese Accelerator Driven Sub-Critical System Injector-I Cryomodule

Authors: Rui-Xiong Han, Rui Ge, Shao-Peng Li, Lin Bian, Liang-Rui Sun, Min-Jing Sang, Rui Ye, Ya-Ping Liu, Xiang-Zhen Zhang, Jie-Hao Zhang, Zhuo Zhang, Jian-Qing Zhang, Miao-Fu Xu

Abstract:

The Chinese Accelerator Driven Sub-critical system (C-ADS) uses a high-energy proton beam to bombard the metal target and generate neutrons to deal with the nuclear waste. The Chinese ADS proton linear has two 0~10 MeV injectors and one 10~1500 MeV superconducting linac. Injector-I is studied by the Institute of High Energy Physics (IHEP) under construction in the Beijing, China. The linear accelerator consists of two accelerating cryomodules operating at the temperature of 2 Kelvin. This paper describes the structure and thermal performances analysis of the cryomodule. The analysis takes into account all the main contributors (support posts, multilayer insulation, current leads, power couplers, and cavities) to the static and dynamic heat load at various cryogenic temperature levels. The thermal simulation analysis of the cryomodule is important theory foundation of optimization and commissioning.

Keywords: C-ADS, cryomodule, structure, thermal simulation, static heat load, dynamic heat load

Procedia PDF Downloads 384
2608 Development of Cost Effective Ultra High Performance Concrete by Using Locally Available Materials

Authors: Mohamed Sifan, Brabha Nagaratnam, Julian Thamboo, Keerthan Poologanathan

Abstract:

Ultra high performance concrete (UHPC) is a type of cementitious material known for its exceptional strength, ductility, and durability. However, its production is often associated with high costs due to the significant amount of cementitious materials required and the use of fine powders to achieve the desired strength. The aim of this research is to explore the feasibility of developing cost-effective UHPC mixes using locally available materials. Specifically, the study aims to investigate the use of coarse limestone sand along with other sand types, namely, basalt sand, dolomite sand, and river sand for developing UHPC mixes and evaluating its performances. The study utilises the particle packing model to develop various UHPC mixes. The particle packing model involves optimising the combination of coarse limestone sand, basalt sand, dolomite sand, and river sand to achieve the desired properties of UHPC. The developed UHPC mixes are then evaluated based on their workability (measured through slump flow and mini slump value), compressive strength (at 7, 28, and 90 days), splitting tensile strength, and microstructural characteristics analysed through scanning electron microscope (SEM) analysis. The results of this study demonstrate that cost-effective UHPC mixes can be developed using locally available materials without the need for silica fume or fly ash. The UHPC mixes achieved impressive compressive strengths of up to 149 MPa at 28 days with a cement content of approximately 750 kg/m³. The mixes also exhibited varying levels of workability, with slump flow values ranging from 550 to 850 mm. Additionally, the inclusion of coarse limestone sand in the mixes effectively reduced the demand for superplasticizer and served as a filler material. By exploring the use of coarse limestone sand and other sand types, this study provides valuable insights into optimising the particle packing model for UHPC production. The findings highlight the potential to reduce costs associated with UHPC production without compromising its strength and durability. The study collected data on the workability, compressive strength, splitting tensile strength, and microstructural characteristics of the developed UHPC mixes. Workability was measured using slump flow and mini slump tests, while compressive strength and splitting tensile strength were assessed at different curing periods. Microstructural characteristics were analysed through SEM and energy dispersive X-ray spectroscopy (EDS) analysis. The collected data were then analysed and interpreted to evaluate the performance and properties of the UHPC mixes. The research successfully demonstrates the feasibility of developing cost-effective UHPC mixes using locally available materials. The inclusion of coarse limestone sand, in combination with other sand types, shows promising results in achieving high compressive strengths and satisfactory workability. The findings suggest that the use of the particle packing model can optimise the combination of materials and reduce the reliance on expensive additives such as silica fume and fly ash. This research provides valuable insights for researchers and construction practitioners aiming to develop cost-effective UHPC mixes using readily available materials and an optimised particle packing approach.

Keywords: cost-effective, limestone powder, particle packing model, ultra high performance concrete

Procedia PDF Downloads 85
2607 Measurement of Asphalt Pavement Temperature to Find out the Proper Asphalt Binder Performance Grade to the Asphalt Mixtures in Southern Desert of Libya

Authors: Khlifa El Atrash, Gabriel Assaf

Abstract:

Most developing countries use volumetric analysis in designing asphalt mixtures, which can also be upgraded in hot arid weather. However, in order to be effective, it should include many important aspects which are materials, environment, and method of construction. The overall intent of the work reported in this study is to test different asphalt mixtures while taking into consideration the environment, type and source of material, tools, equipment, and the construction method. In this study, several tests were conducted on many samples that were carefully prepared under the expected traffic loads and temperatures in a dry hot climate. Several asphalt concrete mixtures were designed using two different binders. These mixtures were analyzed under two types of tests - Complex Modulus and Rutting test - to evaluate the hot mix asphalt properties under the represented temperatures and traffic load in Libya. These factors play an important role to improve the pavement performances in a hot climate weather based on the properties of the asphalt mixture, climate, and traffic load. This research summarized some recommendations for making asphalt mixtures used in hot dry areas. Such asphalt mixtures should use asphalt binder which is less affected by pavement temperature change and traffic load. The properties of the mixture, such as durability, deformation, air voids and performance, largely depend on the type of materials, environment, and mixing method. These properties, in turn, affect the pavement performance. Therefore, this study is aimed to develop a method for designing an asphalt mixture that takes into account field loading, various stresses, and temperature spectrums.

Keywords: volumetric analysis, pavement performances, hot climate, asphalt mixture, traffic load

Procedia PDF Downloads 297
2606 Wind Diesel Hybrid System without Battery Energy Storage Using Imperialist Competitive Algorithm

Authors: H. Rezvani, H. Monsef, A. Hekmati

Abstract:

Nowadays, the use of renewable energy sources has been increasingly great because of the cost increase and public demand for clean energy sources. One of the fastest growing sources is wind energy. In this paper, Wind Diesel Hybrid System (WDHS) comprising a Diesel Generator (DG), a Wind Turbine Generator (WTG), the Consumer Load, a Battery-based Energy Storage System (BESS), and a Dump Load (DL) is used. Voltage is controlled by Diesel Generator; the frequency is controlled by BESS and DL. The BESS elimination is an efficient way to reduce maintenance cost and increase the dynamic response. Simulation results with graphs for the frequency of Power System, active power, and the battery power are presented for load changes. The controlling parameters are optimized by using Imperialist Competitive Algorithm (ICA). The simulation results for the BESS/no BESS cases are compared. Results show that in no BESS case, the frequency control is more optimal than the BESS case by using ICA.

Keywords: renewable energy, wind diesel system, induction generator, energy storage, imperialist competitive algorithm

Procedia PDF Downloads 545
2605 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 87
2604 Seasonal Variability of the Price and Quality of Fresh Red Porgy Fish Sold in the Local Market of Igoumenitsa, NW Greece

Authors: C. Nathanailides, P. Logothetis, G. Kanlis S. Anastasiou, L. Kokokiris, P. Mpeza

Abstract:

Farmed Red porgy (Pagrus pagrus) is one of the “new candidate fish species” for the diversification of Mediterranean aquaculture which is predomintly based on the cultivation of the European sea bass, (Dicenfrarchus labrax), and the gilthead sea bream, (Sparus aurata). The quality of farmed red porgy (Pagrus pagrus) was investigated with samples obtained from the local fish market in the region of Igoumenitsa, NW Greece. Sample of the fish (ungutted and with scales) were purchased from three local fish mongers and transported to the laboratory within few minutes in foamed polystyrene boxes in ice. The average weight of whole fish ranged between 271-289g. A sample of the fish flesh taken from the upper epaxial region was transferred aseptically to a stomacher bag containing sterile Buffered Peptone Water solution (0.1%) and homogenized. After serial dilutions in 0.1% peptone water, the homogenates were spread on the surface of agar plates. Total viable counts (TVC) were determined using plate count agar after incubation at 30 oC for 3 days. The quality attributes monitored during the present work included bacterial load (total mesophilic) and the pH of the flesh. There was a marginal increase in the price of fresh red porgy sold during the summer time, with prices ranging, over a period of four seasons, from 5.85 to 7.5 per kilo. The results of the microbiological analysis indicate that with the exception of summer samples (which exhibited 5.23 (±0.13) log cfu/g), the bacterial load remained well below the legal limits and was around 3.1 log cfu/g. The pH values varied between 6.54 and 6.69. The results indicate a possible influence of season on the bacterial load of fish sold in the market. Nevertheless, the parameters investigated in the present work indicate that the bacteria load was well below the legal limit and that fish were sold within few days after harvesting. The peak of bacterial load in the summer samples may be a result of a post-harvesting contamination of the farmed fish and temperature fluctuations during handling and transportation.

Keywords: fish quality, marketing, aquaculture, Pagrus pagrus

Procedia PDF Downloads 671
2603 Influence of Alkali Aggregate Reaction Induced Expansion Level on Confinement Efficiency of Carbon Fiber Reinforcement Polymer Wrapping Applied to Damaged Concrete Columns

Authors: Thamer Kubat, Riadh Al-Mahaidi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fibre-reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: carbon fiber reinforced polymer (CFRP), finite element (FE), ATENA, confinement efficiency

Procedia PDF Downloads 67
2602 Comparative Analysis of Hybrid Dynamic Stabilization and Fusion for Degenerative Disease of the Lumbosacral Spine: Finite Element Analysis

Authors: Mohamed Bendoukha, Mustapha Mosbah

Abstract:

The Radiographic apparent assumed that the asymptomatic adjacent segment disease ASD is common after lumbar fusion, but this does not correlate with the functional outcomes while compensatory increased motion and stresses at the adjacent level of fusion is well-known to be associated to ASD. Newly developed, the hybrid stabilization are allocated to substituted for mostly the superior level of the fusion in an attempt to reduce the number of fusion levels and likelihood of degeneration process at the adjacent levels during the fusion with pedicle screws. Nevertheless, its biomechanical efficiencies still remain unknown and complications associated with failure of constructs such screw loosening and toggling should be elucidated In the current study, a finite element (FE) study was performed using a validated L2/S1 model subjected to a moment of 7.5 Nm and follower load of 400 N to assess the biomedical behavior of hybrid constructs based on dynamic topping off, semi rigid fusion. The residual range of motion (ROM), stress distribution at the fused and adjacent levels, stress distribution at the disc and the cage-endplate interface with respect to changes of bone quality were investigated. The hybrid instrumentation was associated with a reduction in compressive stresses compared to the fusion construct in the adjacent-level disc and showed high substantial axial force in the implant while fusion instrumentation increased the motion for both flexion and extension.

Keywords: intervertebral disc, lumbar spine, degenerative nuclesion, L4-L5, range of motion finite element model, hyperelasticy

Procedia PDF Downloads 173
2601 Evaluating the Seismic Stress Distribution in the High-Rise Structures Connections with Optimal Bracing System

Authors: H. R. Vosoughifar, Seyedeh Zeinab. Hosseininejad, Nahid Shabazi, Seyed Mohialdin Hosseininejad

Abstract:

In recent years, structure designers advocate further application of energy absorption devices for lateral loads damping. The Un-bonded Braced Frame (UBF) system is one of the efficient damping systems, which is made of a smart combination of steel and concrete or mortar. In this system, steel bears the earthquake-induced axial force as compressive or tension forces without loss of strength. Concrete or mortar around the steel core acts as a constraint for brace and prevents brace buckling during seismic axial load. In this study, the optimal bracing system in the high-rise structures has been evaluated considering the seismic stress distribution in the connections. An actual 18-story structure was modeled using the proper Finite Element (FE) software where braced with UBF, Eccentrically Braced Frames (EBF) and Concentrically Braced Frame (CBF) systems. Nonlinear static pushover and time-history analyses are then performed so that the acquired results demonstrate that the UBF system reduces drift values in the high-rise buildings. Further statistical analyses show that there is a significant difference between the drift values of UBF system compared with those resulted from the EBF and CBF systems. Hence, the seismic stress distribution in the connections of the proposed structure which braced with UBF system was investigated.

Keywords: optimal bracing system, high-rise structure, finite element analysis (FEA), seismic stress

Procedia PDF Downloads 421
2600 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 98
2599 Cooperative Cross Layer Topology for Concurrent Transmission Scheduling Scheme in Broadband Wireless Networks

Authors: Gunasekaran Raja, Ramkumar Jayaraman

Abstract:

In this paper, we consider CCL-N (Cooperative Cross Layer Network) topology based on the cross layer (both centralized and distributed) environment to form network communities. Various performance metrics related to the IEEE 802.16 networks are discussed to design CCL-N Topology. In CCL-N topology, nodes are classified as master nodes (Master Base Station [MBS]) and serving nodes (Relay Station [RS]). Nodes communities are organized based on the networking terminologies. Based on CCL-N Topology, various simulation analyses for both transparent and non-transparent relays are tabulated and throughput efficiency is calculated. Weighted load balancing problem plays a challenging role in IEEE 802.16 network. CoTS (Concurrent Transmission Scheduling) Scheme is formulated in terms of three aspects – transmission mechanism based on identical communities, different communities and identical node communities. CoTS scheme helps in identifying the weighted load balancing problem. Based on the analytical results, modularity value is inversely proportional to that of the error value. The modularity value plays a key role in solving the CoTS problem based on hop count. The transmission mechanism for identical node community has no impact since modularity value is same for all the network groups. In this paper three aspects of communities based on the modularity value which helps in solving the problem of weighted load balancing and CoTS are discussed.

Keywords: cross layer network topology, concurrent scheduling, modularity value, network communities and weighted load balancing

Procedia PDF Downloads 250
2598 Design and Development of Tandem Dynamometer for Testing and Validation of Motor Performance Parameters

Authors: Vedansh More, Lalatendu Bal, Ronak Panchal, Atharva Kulkarni

Abstract:

The project aims at developing a cost-effective test bench capable of testing and validating the complete powertrain package of an electric vehicle. Emrax 228 high voltage synchronous motor was selected as the prime mover for study. A tandem type dynamometer comprising of two loading methods; inertial, using standard inertia rollers and absorptive, using a separately excited DC generator with resistive coils was developed. The absorptive loading of the prime mover was achieved by implementing a converter circuit through which duty of the input field voltage level was controlled. This control was efficacious in changing the magnetic flux and hence the generated voltage which was ultimately dropped across resistive coils assembled in a load bank with all parallel configuration. The prime mover and loading elements were connected via a chain drive with a 2:1 reduction ratio which allows flexibility in placement of components and a relaxed rating of the DC generator. The development will aid in determination of essential characteristics like torque-RPM, power-RPM, torque factor, RPM factor, heat loads of devices and battery pack state of charge efficiency but also provides a significant financial advantage over existing versions of dynamometers with its cost-effective solution.

Keywords: absorptive load, chain drive, chordal action, DC generator, dynamometer, electric vehicle, inertia rollers, load bank, powertrain, pulse width modulation, reduction ratio, road load, testbench

Procedia PDF Downloads 214
2597 Cover Spalling in Reinforced Concrete Columns

Authors: Bambang Piscesa, Mario M. Attard, Dwi Presetya, Ali K. Samani

Abstract:

A numerical strategy formulated using a plasticity approach is presented to model spalling of the concrete cover in reinforced concrete columns. The stage at which the concrete cover within reinforced concrete column spalls has a direct bearing on the load capacity. The concrete cover can prematurely spall before the full cross-section can be utilized if the concrete is very brittle under compression such as for very high strength concretes. If the confinement to the core is high enough, the column can achieve a higher peak load by utilizing the core. A numerical strategy is presented to model spalling of the concrete cover. Various numerical strategies are employed to model the behavior of reinforced concrete columns which include: (1) adjusting the material properties to incorporate restrained shrinkage; (2) modifying the plastic dilation rate in the presence of the tensile pressure; (3) adding a tension cut-off failure surface and (4) giving the concrete cover region and the column core different material properties. Numerical comparisons against experimental results are carried out that shown excellent agreement with the experimental results and justify the use of the proposed strategies to predict the axial load capacity of reinforce concrete columns.

Keywords: spalling, concrete, plastic dilation, reinforced concrete columns

Procedia PDF Downloads 148
2596 Assessment of ATC with Shunt FACTS Devices

Authors: Ashwani Kumar, Jitender Kumar

Abstract:

In this paper, an optimal power flow based approach has been applied for multi-transactions deregulated environment for ATC determination with SVC and STATCOM. The main contribution of the paper is (i) OPF based approach for evaluation of ATC with multi-transactions, (ii) ATC enhancement with FACTS devices viz. SVC and STATCOM for intact and line contingency cases, (iii) impact of ZIP load on ATC determination and comparison of ATC obtained with SVC and STATCOM. The results have been determined for intact and line contingency cases taking simultaneous as well as single transaction cases for IEEE 24 bus RTS.

Keywords: available transfer capability, FACTS devices, line contingency, multi-transactions, ZIP load model

Procedia PDF Downloads 580
2595 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 245
2594 Buildings Founded on Thermal Insulation Layer Subjected to Earthquake Load

Authors: David Koren, Vojko Kilar

Abstract:

The modern energy-efficient houses are often founded on a thermal insulation (TI) layer placed under the building’s RC foundation slab. The purpose of the paper is to identify the potential problems of the buildings founded on TI layer from the seismic point of view. The two main goals of the study were to assess the seismic behavior of such buildings, and to search for the critical structural parameters affecting the response of the superstructure as well as of the extruded polystyrene (XPS) layer. As a test building a multi-storeyed RC frame structure with and without the XPS layer under the foundation slab has been investigated utilizing nonlinear dynamic (time-history) and static (pushover) analyses. The structural response has been investigated with reference to the following performance parameters: i) Building’s lateral roof displacements, ii) Edge compressive and shear strains of the XPS, iii) Horizontal accelerations of the superstructure, iv) Plastic hinge patterns of the superstructure, v) Part of the foundation in compression, and vi) Deformations of the underlying soil and vertical displacements of the foundation slab (i.e. identifying the potential uplift). The results have shown that in the case of higher and stiff structures lying on firm soil the use of XPS under the foundation slab might induce amplified structural peak responses compared to the building models without XPS under the foundation slab. The analysis has revealed that the superstructure as well as the XPS response is substantially affected by the stiffness of the foundation slab.

Keywords: extruded polystyrene (XPS), foundation on thermal insulation, energy-efficient buildings, nonlinear seismic analysis, seismic response, soil–structure interaction

Procedia PDF Downloads 286
2593 A Review on Design and Analysis of Structure Against Blast Forces

Authors: Akshay Satishrao Kawtikwar

Abstract:

The effect of blast masses on structures is an essential aspect that need to be considered. This type of assault could be very horrifying, who where we take it into consideration in the course of the design system. While designing a building, now not only the wind and seismic masses however also the consequences of the blast have to be take into consideration. Blast load is the burden implemented to a structure form a blast wave that comes straight away after an explosion. A blast in or close to a constructing can reason catastrophic harm to the interior and exterior of the building, inner structural framework, wall collapsing, and so on. The most important feature of blast resistant construction is the ability to absorb blast energy without causing catastrophic failure of the structure as a whole. Construction materials in blastprotective structures must have ductility as well as strength.

Keywords: blast resistant design, blast load, explosion, ETABS

Procedia PDF Downloads 86
2592 Application Problems of Anchor Dowels in Reinforced Concrete Shear Wall and Frame Connections

Authors: Musa H. Arslan

Abstract:

Strengthening of the existing seismically deficient reinforced concrete (RC) buildings is an important issue in earthquake prone regions. Addition of RC shear wall as infill or external walls into the structural system has been a commonly preferred strengthening technique since the Big Erzincan Earthquake occurred in Turkey, 1992. The newly added rigid infill walls act primarily as shear walls and relieve the non-ductile existing frames from being subjected to large shear demands providing that new RC inner or external walls are adequately anchored to the existing weak RC frame. The performance of the RC shear walls-RC weak frame connections by steel anchor dowels depends on some parameters such as compressive strength of the existing RC frame concrete, diameter and embedment length of anchored rebar, type of rebar, yielding stress of bar, properties of used chemicals, position of the anchor bars in RC. In this study, application problems of the steel anchor dowels have been checked with some field studies such as tensile test. Two different RC buildings which will be strengthened were selected, and before strengthening, some tests have been performed in the existing RC buildings. According to the field observation and experimental studies, if the concrete compressive strength is lower than 10 MPa, the performance of the anchors is reduced by 70%.

Keywords: anchor dowel, concrete, damage, reinforced concrete, shear wall, frame

Procedia PDF Downloads 357
2591 Length Dimension Correlates of Longitudinal Physical Conditioning on Indian Male Youth

Authors: Seema Sharma Kaushik, Dhananjoy Shaw

Abstract:

Various length dimensions of the body have been a variable of interest in the research areas of kinanthropometry. However the inclusion of length measurements in various studies remains restricted to reflect characteristics of a particular game/sport at a particular time. Hence, the present investigation was conducted to study various length dimensions correlates of a longitudinal physical conditioning program on Indian male youth. The study was conducted on 90 Indian male youth. The sample was equally divided into three groups namely, progressive load training (PLT), constant load training (CLT) and no load training (NL). The variables included sitting height, leg length, arm length and foot length. The study was conducted by adopting the multi group repeated measure design. Three different groups were measured four times after completion of each of the three meso-cycles of six-weeks duration each. The measurements were taken using the standard landmarks and procedures. Mean, standard deviation and analysis of co-variance were computed to analyze the data statistically. The post-hoc analysis was conducted for the significant F-ratios at 0.05 level. The study concluded that the followed longitudinal physical conditioning program had significant effect on various length dimensions of Indian male youth.

Keywords: Indian male youth, longitudinal, length dimensions, physical conditioning

Procedia PDF Downloads 142
2590 Prime Mover Sizing for Base-Loaded Combined Heating and Power Systems

Authors: Djalal Boualili

Abstract:

This article considers the problem of sizing prime movers for combined heating and power (CHP) systems operating at full load to satisfy a fraction of a facility's electric load, i.e. a base load. Prime mover sizing is examined using three criteria: operational cost, carbon dioxide emissions (CDE), and primary energy consumption (PEC). The sizing process leads to consider ratios of conversion factors applied to imported electricity to conversion factors applied to fuel consumed. These ratios are labelled RCost, R CDE, R PEC depending on whether the conversion factors are associated with operational cost, CDE, or PEC, respectively. Analytical results show that in order to achieve savings in operational cost, CDE, or PEC, the ratios must be larger than a unique constant R Min that only depends on the CHP components efficiencies. Savings in operational cost, CDE, or PEC due to CHP operation are explicitly formulated using simple equations. This facilitates the process of comparing the tradeoffs of optimizing the savings of one criterion over the other two – a task that has traditionally been accomplished through computer simulations. A hospital building, located in Chlef, Algeria, was used as an example to apply the methodology presented in this article.

Keywords: sizing, heating and power, ratios, energy consumption, carbon dioxide emissions

Procedia PDF Downloads 218
2589 Wear Behavior of Commercial Aluminium Engine Block and Piston under Dry Sliding Condition

Authors: Md. Salim Kaiser

Abstract:

In the present work, the effect of load and sliding distance on the performance tribology of commercially used aluminium-silicon engine block and piston was evaluated at ambient conditions with humidity of 80% under dry sliding conditions using a pin-on-disc with two different loads of 5N and 20N yielding applied pressure of 0.30MPa and 1.4MPa, respectively, at sliding velocity of 0.29ms-1 and with varying sliding distance ranging from 260m-4200m. Factors and conditions that had significant effect were identified. The results showed that the load and the sliding distance affect the wear rate of the alloys and the wear rate increased with increasing load for both the alloys. Wear rate also increases almost linearly at low loads and increase to a maximum then attain a plateau with increasing sliding distance. For both applied loads, the piston alloy showed the better performance due to higher Ni and Mg content. The worn surface and wear debris was characterized by optical microscope, SEM and EDX analyzer. The worn surface was characterized by surface with shallow grooves at loads while the groove width and depth increased as the loads increases. Oxidative wear was found to be the predominant mechanisms in the dry sliding of Al-Si alloys at low loads

Keywords: wear, friction, gravimetric analysis, aluminium-silicon alloys, SEM, EDX

Procedia PDF Downloads 243
2588 Analysis of Operation System Reorganization for Load Balancing of Parcel Sorting

Authors: J. H. Lee

Abstract:

As the internet and smartphone use increases, the E-Commerce is constantly growing. Therefore, the parcel is increasing continuously every year. If the larger amount than the processing capacity of the current facilities is received, they do not process, and the delivery quality becomes low. In this paper, therefore, we analyze comparatively at the cost perspective between the case of building a new facility for the increasing parcel volumes and the case of reorganizing the current operating system. We propose the optimal discount policy per parcel by calculating the construction cost of new automated facility and manual facilities until the construction of the new automated facility, and discount price.

Keywords: system reorganization, load balancing, parcel sorting, discount policy

Procedia PDF Downloads 258
2587 Use of Geosynthetics as Reinforcement Elements in Unpaved Tertiary Roads

Authors: Vivian A. Galindo, Maria C. Galvis, Jaime R. Obando, Alvaro Guarin

Abstract:

In Colombia, most of the roads of the national tertiary road network are unpaved roads with granular rolling surface. These are very important ways of guaranteeing the mobility of people, products, and inputs from the agricultural sector from the most remote areas to urban centers; however, it has not paid much attention to the search for alternatives to avoid the occurrence of deteriorations that occur shortly after its commissioning. In recent years, geosynthetics have been used satisfactorily to reinforce unpaved roads on soft soils, with geotextiles and geogrids being the most widely used. The interaction of the geogrid and the aggregate minimizes the lateral movement of the aggregate particles and increases the load capacity of the material, which leads to a better distribution of the vertical stresses, consequently reducing the vertical deformations in the subgrade. Taking into account the above, the research aimed at the mechanical behavior of the granular material, used in unpaved roads with and without the presence of geogrids, from the development of laboratory tests through the loaded wheel tester (LWT). For comparison purposes, the reinforced conditions and traffic conditions to which this type of material can be accessed in practice were simulated. In total four types of geogrids, were tested with granular material; this means that five test sets, the reinforced material and the non-reinforced control sample were evaluated. The results of the numbers of load cycles and depth rutting supported by each test body showed the influence of the properties of the reinforcement on the mechanical behavior of the assembly and the significant increases in the number of load cycles of the reinforced specimens in relation to those without reinforcement.

Keywords: geosynthetics, load wheel tester LWT, tertiary roads, unpaved road, vertical deformation

Procedia PDF Downloads 239
2586 An Energy-Balanced Clustering Method on Wireless Sensor Networks

Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu

Abstract:

In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.

Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network

Procedia PDF Downloads 267
2585 Speed Control of Hybrid Stepper Motor by Using Adaptive Neuro-Fuzzy Controller

Authors: Talha Ali Khan

Abstract:

This paper presents an adaptive neuro-fuzzy interference system (ANFIS), which is applied to a hybrid stepper motor (HSM) to regulate its speed. The dynamic response of the HSM with the ANFIS controller is studied during the starting process and under different load disturbance. The effectiveness of the proposed controller is compared with that of the conventional PI controller. The proposed method solves the problem of nonlinearities and load changes of the HSM drives. The proposed controller ensures fast and precise dynamic response with an excellent steady state performance. Matlab/Simulink program is used for this dynamic simulation study.

Keywords: stepper motor, hybrid, ANFIS, speed control

Procedia PDF Downloads 537