Search results for: general surgery department
8 XAI Implemented Prognostic Framework: Condition Monitoring and Alert System Based on RUL and Sensory Data
Authors: Faruk Ozdemir, Roy Kalawsky, Peter Hubbard
Abstract:
Accurate estimation of RUL provides a basis for effective predictive maintenance, reducing unexpected downtime for industrial equipment. However, while models such as the Random Forest have effective predictive capabilities, they are the so-called ‘black box’ models, where interpretability is at a threshold to make critical diagnostic decisions involved in industries related to aviation. The purpose of this work is to present a prognostic framework that embeds Explainable Artificial Intelligence (XAI) techniques in order to provide essential transparency in Machine Learning methods' decision-making mechanisms based on sensor data, with the objective of procuring actionable insights for the aviation industry. Sensor readings have been gathered from critical equipment such as turbofan jet engine and landing gear, and the prediction of the RUL is done by a Random Forest model. It involves steps such as data gathering, feature engineering, model training, and evaluation. These critical components’ datasets are independently trained and evaluated by the models. While suitable predictions are served, their performance metrics are reasonably good; such complex models, however obscure reasoning for the predictions made by them and may even undermine the confidence of the decision-maker or the maintenance teams. This is followed by global explanations using SHAP and local explanations using LIME in the second phase to bridge the gap in reliability within industrial contexts. These tools analyze model decisions, highlighting feature importance and explaining how each input variable affects the output. This dual approach offers a general comprehension of the overall model behavior and detailed insight into specific predictions. The proposed framework, in its third component, incorporates the techniques of causal analysis in the form of Granger causality tests in order to move beyond correlation toward causation. This will not only allow the model to predict failures but also present reasons, from the key sensor features linked to possible failure mechanisms to relevant personnel. The causality between sensor behaviors and equipment failures creates much value for maintenance teams due to better root cause identification and effective preventive measures. This step contributes to the system being more explainable. Surrogate Several simple models, including Decision Trees and Linear Models, can be used in yet another stage to approximately represent the complex Random Forest model. These simpler models act as backups, replicating important jobs of the original model's behavior. If the feature explanations obtained from the surrogate model are cross-validated with the primary model, the insights derived would be more reliable and provide an intuitive sense of how the input variables affect the predictions. We then create an iterative explainable feedback loop, where the knowledge learned from the explainability methods feeds back into the training of the models. This feeds into a cycle of continuous improvement both in model accuracy and interpretability over time. By systematically integrating new findings, the model is expected to adapt to changed conditions and further develop its prognosis capability. These components are then presented to the decision-makers through the development of a fully transparent condition monitoring and alert system. The system provides a holistic tool for maintenance operations by leveraging RUL predictions, feature importance scores, persistent sensor threshold values, and autonomous alert mechanisms. Since the system will provide explanations for the predictions given, along with active alerts, the maintenance personnel can make informed decisions on their end regarding correct interventions to extend the life of the critical machinery.Keywords: predictive maintenance, explainable artificial intelligence, prognostic, RUL, machine learning, turbofan engines, C-MAPSS dataset
Procedia PDF Downloads 27 Surface Acoustic Wave (SAW)-Induced Mixing Enhances Biomolecules Kinetics in a Novel Phase-Interrogation Surface Plasmon Resonance (SPR) Microfluidic Biosensor
Authors: M. Agostini, A. Sonato, G. Greco, M. Travagliati, G. Ruffato, E. Gazzola, D. Liuni, F. Romanato, M. Cecchini
Abstract:
Since their first demonstration in the early 1980s, surface plasmon resonance (SPR) sensors have been widely recognized as useful tools for detecting chemical and biological species, and the interest of the scientific community toward this technology has known a rapid growth in the past two decades owing to their high sensitivity, label-free operation and possibility of real-time detection. Recent works have suggested that a turning point in SPR sensor research would be the combination of SPR strategies with other technologies in order to reduce human handling of samples, improve integration and plasmonic sensitivity. In this light, microfluidics has been attracting growing interest. By properly designing microfluidic biochips it is possible to miniaturize the analyte-sensitive areas with an overall reduction of the chip dimension, reduce the liquid reagents and sample volume, improve automation, and increase the number of experiments in a single biochip by multiplexing approaches. However, as the fluidic channel dimensions approach the micron scale, laminar flows become dominant owing to the low Reynolds numbers that typically characterize microfluidics. In these environments mixing times are usually dominated by diffusion, which can be prohibitively long and lead to long-lasting biochemistry experiments. An elegant method to overcome these issues is to actively perturb the liquid laminar flow by exploiting surface acoustic waves (SAWs). With this work, we demonstrate a new approach for SPR biosensing based on the combination of microfluidics, SAW-induced mixing and the real-time phase-interrogation grating-coupling SPR technology. On a single lithium niobate (LN) substrate the nanostructured SPR sensing areas, interdigital transducer (IDT) for SAW generation and polydimethylsiloxane (PDMS) microfluidic chambers were fabricated. SAWs, impinging on the microfluidic chamber, generate acoustic streaming inside the fluid, leading to chaotic advection and thus improved fluid mixing, whilst analytes binding detection is made via SPR method based on SPP excitation via gold metallic grating upon azimuthal orientation and phase interrogation. Our device has been fully characterized in order to separate for the very first time the unwanted SAW heating effect with respect to the fluid stirring inside the microchamber that affect the molecules binding dynamics. Avidin/biotin assay and thiol-polyethylene glycol (bPEG-SH) were exploited as model biological interaction and non-fouling layer respectively. Biosensing kinetics time reduction with SAW-enhanced mixing resulted in a ≈ 82% improvement for bPEG-SH adsorption onto gold and ≈ 24% for avidin/biotin binding—≈ 50% and 18% respectively compared to the heating only condition. These results demonstrate that our biochip can significantly reduce the duration of bioreactions that usually require long times (e.g., PEG-based sensing layer, low concentration analyte detection). The sensing architecture here proposed represents a new promising technology satisfying the major biosensing requirements: scalability and high throughput capabilities. The detection system size and biochip dimension could be further reduced and integrated; in addition, the possibility of reducing biological experiment duration via SAW-driven active mixing and developing multiplexing platforms for parallel real-time sensing could be easily combined. In general, the technology reported in this study can be straightforwardly adapted to a great number of biological system and sensing geometry.Keywords: biosensor, microfluidics, surface acoustic wave, surface plasmon resonance
Procedia PDF Downloads 2766 Femicide: The Political and Social Blind Spot in the Legal and Welfare State of Germany
Authors: Kristina F. Wolff
Abstract:
Background: In the Federal Republic of Germany, violence against women is deeply embedded in society. Germany is, as of March 2020, the most populous member state of the European Union with 83.2 million inhabitants and, although more than half of its inhabitants are women, gender equality was not certified in the Basic Law until 1957. Women have only been allowed to enter paid employment without their husband's consent since 1977 and have marital rape prosecuted only since 1997. While the lack of equality between men and women is named in the preamble of the Istanbul Convention as the cause of gender-specific, structural, traditional violence against women, Germany continues to sink on the latest Gender Equality Index. According to Police Crime Statistics (PCS), women are significantly more often victims of lethal violence, emanating from men than vice versa. The PCS, which, since 2015, also collects gender-specific data on violent crimes, is kept by the Federal Criminal Police Office, but without taking into account the relevant criteria for targeted prevention, such as the history of violence of the perpetrator/killer, weapon, motivation, etc.. Institutions such as EIGE or the World Health Organization have been asking Germany for years in vain for comparable data on violence against women in order to gain an overview or to develop cross-border synergies. The PCS are the only official data collection on violence against women. All players involved are depend on this data set, which is published only in November of the following year and is thus already completely outdated at the time of publication. In order to combat German femicides causally, purposefully and efficiently, evidence-based data was urgently needed. Methodology: Beginning in January 2019, a database was set up that now tracks more than 600 German femicides, broken down by more than 100 crime-related individual criteria, which in turn go far beyond the official PCS. These data are evaluated on the one hand by daily media research, and on the other hand by case-specific inquiries at the respective public prosecutor's offices and courts nationwide. This quantitative long-term study covers domestic violence as well as a variety of different types of gender-specific, lethal violence, including, for example, femicides committed by German citizens abroad. Additionallyalcohol/ narcotic and/or drug abuse, infanticides and the gender aspect in the judiciary are also considered. Results: Since November 2020, evidence-based data from a scientific survey have been available for the first time in Germany, supplementing the rudimentary picture of reality provided by PCS with a number of relevant parameters. The most important goal of the study is to identify "red flags" that enable general preventive awareness, that serve increasingly precise hazard assessment in acute hazard situations, and from which concrete instructions for action can be identified. Already at a very early stage of the study it could be proven that in more than half of all femicides with a sexual perpetrator/victim constellation there was an age difference of five years or more. Summary: Without reliable data and an understanding of the nature and extent, cause and effect, it is impossible to sustainably curb violence against girls and women, which increasingly often culminates in femicide. In Germany, valid data from a scientific survey has been available for the first time since November 2020, supplementing the rudimentary reality picture of the official and, to date, sole crime statistics with several relevant parameters. The basic research provides insights into geo-concentration, monthly peaks and the modus operandi of male violent excesses. A significant increase of child homicides in the course of femicides and/or child homicides as an instrument of violence against the mother could be proven as well as a danger of affected persons due to an age difference of five years and more. In view of the steadily increasing wave of violence against women, these study results are an eminent contribution to the preventive containment of German femicides.Keywords: femicide, violence against women, gender specific data, rule Of law, Istanbul convention, gender equality, gender based violence
Procedia PDF Downloads 895 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model
Authors: Ziyad S. Haidar
Abstract:
Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology
Procedia PDF Downloads 754 Numerical Simulation of Von Karman Swirling Bioconvection Nanofluid Flow from a Deformable Rotating Disk
Authors: Ali Kadir, S. R. Mishra, M. Shamshuddin, O. Anwar Beg
Abstract:
Motivation- Rotating disk bio-reactors are fundamental to numerous medical/biochemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has embraced new phenomena including bioconvection of micro-organisms (photo-tactic, oxy-tactic, gyrotactic etc). The proven thermal performance superiority of nanofluids i.e. base fluids doped with engineered nanoparticles has also stimulated immense implementation in biomedical designs. Motivated by these emerging applications, we present a numerical thermofluid dynamic simulation of the transport phenomena in bioconvection nanofluid rotating disk bioreactor flow. Methodology- We study analytically and computationally the time-dependent three-dimensional viscous gyrotactic bioconvection in swirling nanofluid flow from a rotating disk configuration. The disk is also deformable i.e. able to extend (stretch) in the radial direction. Stefan blowing is included. The Buongiorno dilute nanofluid model is adopted wherein Brownian motion and thermophoresis are the dominant nanoscale effects. The primitive conservation equations for mass, radial, tangential and axial momentum, heat (energy), nanoparticle concentration and micro-organism density function are formulated in a cylindrical polar coordinate system with appropriate wall and free stream boundary conditions. A mass convective condition is also incorporated at the disk surface. Forced convection is considered i.e. buoyancy forces are neglected. This highly nonlinear, strongly coupled system of unsteady partial differential equations is normalized with the classical Von Karman and other transformations to render the boundary value problem (BVP) into an ordinary differential system which is solved with the efficient Adomian decomposition method (ADM). Validation with earlier Runge-Kutta shooting computations in the literature is also conducted. Extensive computations are presented (with the aid of MATLAB symbolic software) for radial and circumferential velocity components, temperature, nanoparticle concentration, micro-organism density number and gradients of these functions at the disk surface (radial local skin friction, local circumferential skin friction, Local Nusselt number, Local Sherwood number, motile microorganism mass transfer rate). Main Findings- Increasing radial stretching parameter decreases radial velocity and radial skin friction, reduces azimuthal velocity and skin friction, decreases local Nusselt number and motile micro-organism mass wall flux whereas it increases nano-particle local Sherwood number. Disk deceleration accelerates the radial flow, damps the azimuthal flow, decreases temperatures and thermal boundary layer thickness, depletes the nano-particle concentration magnitudes (and associated nano-particle species boundary layer thickness) and furthermore decreases the micro-organism density number and gyrotactic micro-organism species boundary layer thickness. Increasing Stefan blowing accelerates the radial flow and azimuthal (circumferential flow), elevates temperatures of the nanofluid, boosts nano-particle concentration (volume fraction) and gyrotactic micro-organism density number magnitudes whereas suction generates the reverse effects. Increasing suction effect reduces radial skin friction and azimuthal skin friction, local Nusselt number, and motile micro-organism wall mass flux whereas it enhances the nano-particle species local Sherwood number. Conclusions - Important transport characteristics are identified of relevance to real bioreactor nanotechnological systems not discussed in previous works. ADM is shown to achieve very rapid convergence and highly accurate solutions and shows excellent promise in simulating swirling multi-physical nano-bioconvection fluid dynamics problems. Furthermore, it provides an excellent complement to more general commercial computational fluid dynamics simulations.Keywords: bio-nanofluids, rotating disk bioreactors, Von Karman swirling flow, numerical solutions
Procedia PDF Downloads 1543 “MaxSALIVA”: A Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection and Repair in Head and Neck Cancer
Authors: Ziyad S. Haidar
Abstract:
Background: Saliva plays a major role in maintaining oral and dental health (consequently, general health and well-being). Where it normally bathes the oral cavity and acts as a clearing agent. This becomes more apparent when the amount and quality of salivare significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the fifth most common malignancy worldwide, during which the salivary glands are included within the radiation field or zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely because they become malnourished and experience a significant decrease in their quality of life. Accordingly, the development of an alternative treatment to restore or regenerate damaged salivary gland tissue is eagerly awaited. Likewise, the formulation of a radioprotection modality and early damage prevention strategy is also highly desirable. Objectives: To assess the pre-clinical radio-protective effect as well as the reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned in this experimental work for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs (in solution and powder formats), followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy (revised from our previous 15Gy model) was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.Keywords: saliva, head and neck cancer, nanotechnology, controlled drug delivery, xerostomia, mucositis, biopolymers, innovation
Procedia PDF Downloads 852 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance
Authors: Mina Naeini, Thomas A. Adams II
Abstract:
Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs
Procedia PDF Downloads 1281 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia
Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher
Abstract:
The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)
Procedia PDF Downloads 347