Search results for: internet optimization
4165 Improving the Penalty-free Multi-objective Evolutionary Design Optimization of Water Distribution Systems
Authors: Emily Kambalame
Abstract:
Water distribution networks necessitate many investments for construction, prompting researchers to seek cost reduction and efficient design solutions. Optimization techniques are employed in this regard to address these challenges. In this context, the penalty-free multi-objective evolutionary algorithm (PFMOEA) coupled with pressure-dependent analysis (PDA) was utilized to develop a multi-objective evolutionary search for the optimization of water distribution systems (WDSs). The aim of this research was to find out if the computational efficiency of the PFMOEA for WDS optimization could be enhanced. This was done by applying real coding representation and retaining different percentages of feasible and infeasible solutions close to the Pareto front in the elitism step of the optimization. Two benchmark network problems, namely the Two-looped and Hanoi networks, were utilized in the study. A comparative analysis was then conducted to assess the performance of the real-coded PFMOEA in relation to other approaches described in the literature. The algorithm demonstrated competitive performance for the two benchmark networks by implementing real coding. The real-coded PFMOEA achieved the novel best-known solutions ($419,000 and $6.081 million) and a zero-pressure deficit for the two networks, requiring fewer function evaluations than the binary-coded PFMOEA. In previous PFMOEA studies, elitism applied a default retention of 30% of the least cost-feasible solutions while excluding all infeasible solutions. It was found in this study that by replacing 10% and 15% of the feasible solutions with infeasible ones that are close to the Pareto front with minimal pressure deficit violations, the computational efficiency of the PFMOEA was significantly enhanced. The configuration of 15% feasible and 15% infeasible solutions outperformed other retention allocations by identifying the optimal solution with the fewest function evaluationKeywords: design optimization, multi-objective evolutionary, penalty-free, water distribution systems
Procedia PDF Downloads 624164 Efficient Computer-Aided Design-Based Multilevel Optimization of the LS89
Authors: A. Chatel, I. S. Torreguitart, T. Verstraete
Abstract:
The paper deals with a single point optimization of the LS89 turbine using an adjoint optimization and defining the design variables within a CAD system. The advantage of including the CAD model in the design system is that higher level constraints can be imposed on the shape, allowing the optimized model or component to be manufactured. However, CAD-based approaches restrict the design space compared to node-based approaches where every node is free to move. In order to preserve a rich design space, we develop a methodology to refine the CAD model during the optimization and to create the best parameterization to use at each time. This study presents a methodology to progressively refine the design space, which combines parametric effectiveness with a differential evolutionary algorithm in order to create an optimal parameterization. In this manuscript, we show that by doing the parameterization at the CAD level, we can impose higher level constraints on the shape, such as the axial chord length, the trailing edge radius and G2 geometric continuity between the suction side and pressure side at the leading edge. Additionally, the adjoint sensitivities are filtered out and only smooth shapes are produced during the optimization process. The use of algorithmic differentiation for the CAD kernel and grid generator allows computing the grid sensitivities to machine accuracy and avoid the limited arithmetic precision and the truncation error of finite differences. Then, the parametric effectiveness is computed to rate the ability of a set of CAD design parameters to produce the design shape change dictated by the adjoint sensitivities. During the optimization process, the design space is progressively enlarged using the knot insertion algorithm which allows introducing new control points whilst preserving the initial shape. The position of the inserted knots is generally assumed. However, this assumption can hinder the creation of better parameterizations that would allow producing more localized shape changes where the adjoint sensitivities dictate. To address this, we propose using a differential evolutionary algorithm to maximize the parametric effectiveness by optimizing the location of the inserted knots. This allows the optimizer to gradually explore larger design spaces and to use an optimal CAD-based parameterization during the course of the optimization. The method is tested on the LS89 turbine cascade and large aerodynamic improvements in the entropy generation are achieved whilst keeping the exit flow angle fixed. The trailing edge and axial chord length, which are kept fixed as manufacturing constraints. The optimization results show that the multilevel optimizations were more efficient than the single level optimization, even though they used the same number of design variables at the end of the multilevel optimizations. Furthermore, the multilevel optimization where the parameterization is created using the optimal knot positions results in a more efficient strategy to reach a better optimum than the multilevel optimization where the position of the knots is arbitrarily assumed.Keywords: adjoint, CAD, knots, multilevel, optimization, parametric effectiveness
Procedia PDF Downloads 1104163 A Review of Sustainable Energy-Saving Solutions in Active and Passive Solar Systems of Zero Energy Buildings Based on the Internet of Things
Authors: Hanieh Sadat Jannesari, Hoori Jannesar, Alireza Hajian HosseinAbadi
Abstract:
In general, buildings are responsible for a considerable share of consumed energy and carbon emissions worldwide and play a significant role in formulating sustainable development strategies. Therefore, a lot of effort is put into the design and construction of zero-energy buildings (ZEBs) to help eliminate the problems associated with the reduction of energy resources and environmental degradation. Two strategies are significant in designing ZEBs: minimizing the need for energy utilization in buildings (particularly for cooling and heating) through highly energy-efficient designs and using renewable energies and other technologies to meet the remaining energy needs. This paper reviews the works related to these two strategies concerning sustainable energy-saving solutions using renewable energy technologies and the Internet of Things in ZEBs. Drawing on the theories and recently implemented projects of energy engineers in ZEBs, we have reported the required technologies within the framework of this paper’s objectives. Overall, solutions based on renewable and sustainable technologies such as photovoltaic (PV) modules, thermal collectors, Phase Change Material (PCM) techniques, etc., are used in active and passive systems designed for various applications in such buildings as cooling, heating, lighting, cooking, etc. The results obtained from examining these projects show that it is possible to minimize the amount of energy required to be produced for and consumed by these buildings.Keywords: active and passive renewable energy systems, internet of things, storage, zero energy buildings
Procedia PDF Downloads 294162 Maintenance Performance Measurement Derived Optimization: A Case Study
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu
Abstract:
Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.Keywords: maintenance, vendor-managed, decision support, performance, optimization
Procedia PDF Downloads 1254161 Production Optimization under Geological Uncertainty Using Distance-Based Clustering
Authors: Byeongcheol Kang, Junyi Kim, Hyungsik Jung, Hyungjun Yang, Jaewoo An, Jonggeun Choe
Abstract:
It is important to figure out reservoir properties for better production management. Due to the limited information, there are geological uncertainties on very heterogeneous or channel reservoir. One of the solutions is to generate multiple equi-probable realizations using geostatistical methods. However, some models have wrong properties, which need to be excluded for simulation efficiency and reliability. We propose a novel method of model selection scheme, based on distance-based clustering for reliable application of production optimization algorithm. Distance is defined as a degree of dissimilarity between the data. We calculate Hausdorff distance to classify the models based on their similarity. Hausdorff distance is useful for shape matching of the reservoir models. We use multi-dimensional scaling (MDS) to describe the models on two dimensional space and group them by K-means clustering. Rather than simulating all models, we choose one representative model from each cluster and find out the best model, which has the similar production rates with the true values. From the process, we can select good reservoir models near the best model with high confidence. We make 100 channel reservoir models using single normal equation simulation (SNESIM). Since oil and gas prefer to flow through the sand facies, it is critical to characterize pattern and connectivity of the channels in the reservoir. After calculating Hausdorff distances and projecting the models by MDS, we can see that the models assemble depending on their channel patterns. These channel distributions affect operation controls of each production well so that the model selection scheme improves management optimization process. We use one of useful global search algorithms, particle swarm optimization (PSO), for our production optimization. PSO is good to find global optimum of objective function, but it takes too much time due to its usage of many particles and iterations. In addition, if we use multiple reservoir models, the simulation time for PSO will be soared. By using the proposed method, we can select good and reliable models that already matches production data. Considering geological uncertainty of the reservoir, we can get well-optimized production controls for maximum net present value. The proposed method shows one of novel solutions to select good cases among the various probabilities. The model selection schemes can be applied to not only production optimization but also history matching or other ensemble-based methods for efficient simulations.Keywords: distance-based clustering, geological uncertainty, particle swarm optimization (PSO), production optimization
Procedia PDF Downloads 1434160 Keyword Advertising: Still Need Construction in European Union; Perspective on Interflora vs. Marks and Spencer
Authors: Mohammadbagher Asghariaghamashhadi
Abstract:
Internet users normally are automatically linked to an advertisement sponsored by a bidder when Internet users enter any trademarked keyword on a search engine. This advertisement appears beside the search results. Through the process of keyword advertising, advertisers can connect with many Internet users and let them know about their goods and services. This concept has generated heated disagreements among legal scholars, trademark proprietors, advertisers, search engine owners, and consumers. Therefore, use of trademarks in keyword advertising has been one of the most debatable issues in trademark law for several years. This entirely new way of using trademarks over the Internet has provoked a discussion concerning the core concepts of trademark law. In respect to legal issues, European Union (EU) trademark law is mostly governed by the Trademark Directive and the Community Trademark Regulation. Article 5 of the directive and Article 9 of the trademark regulation determine the circumstances in which a trademark owner holds the right to prohibit a third party’s use of his/her registered sign. Harmonized EU trademark law proved to be ambiguous on whether using of a trademark is amounted to trademark infringement or not. The case law of the European Court of Justice (ECJ), with reference to this legislation, is mostly unfavorable to trademark owners. This ambivalence was also exhibited by the case law of EU Member States. European keyword advertisers simply could not tell which use of a competitor‘s trademark was lawful. In recent years, ECJ has continuously expanded the scope and reach of trademark protection in the EU. It is notable that Inconsistencies in the Court’s system of infringement criteria clearly come to the fore and this approach has been criticized by analysts who believe that the Court should have adopted a more traditional approach to the analysis of trademark infringement, which was suggested by its Advocate General, in order to arrive at the same conclusion. Regarding case law of keyword advertising within Europe, one of the most disputable cases is Interflora vs. Marks and Spencer, which is still on-going. This study examines and critically analyzes the decisions of the ECJ, the high court of England, and the Court of Appeals of England and address critically keyword advertising issue within European trademark legislation.Keywords: ECJ, Google, Interflora, keyword advertising, Marks and Spencer, trademark infringement
Procedia PDF Downloads 3454159 Structural Design Optimization of Reinforced Thin-Walled Vessels under External Pressure Using Simulation and Machine Learning Classification Algorithm
Authors: Lydia Novozhilova, Vladimir Urazhdin
Abstract:
An optimization problem for reinforced thin-walled vessels under uniform external pressure is considered. The conventional approaches to optimization generally start with pre-defined geometric parameters of the vessels, and then employ analytic or numeric calculations and/or experimental testing to verify functionality, such as stability under the projected conditions. The proposed approach consists of two steps. First, the feasibility domain will be identified in the multidimensional parameter space. Every point in the feasibility domain defines a design satisfying both geometric and functional constraints. Second, an objective function defined in this domain is formulated and optimized. The broader applicability of the suggested methodology is maximized by implementing the Support Vector Machines (SVM) classification algorithm of machine learning for identification of the feasible design region. Training data for SVM classifier is obtained using the Simulation package of SOLIDWORKS®. Based on the data, the SVM algorithm produces a curvilinear boundary separating admissible and not admissible sets of design parameters with maximal margins. Then optimization of the vessel parameters in the feasibility domain is performed using the standard algorithms for the constrained optimization. As an example, optimization of a ring-stiffened closed cylindrical thin-walled vessel with semi-spherical caps under high external pressure is implemented. As a functional constraint, von Mises stress criterion is used but any other stability constraint admitting mathematical formulation can be incorporated into the proposed approach. Suggested methodology has a good potential for reducing design time for finding optimal parameters of thin-walled vessels under uniform external pressure.Keywords: design parameters, feasibility domain, von Mises stress criterion, Support Vector Machine (SVM) classifier
Procedia PDF Downloads 3274158 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid
Authors: Touil Djamal, Fergani Zineb
Abstract:
In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant
Procedia PDF Downloads 2804157 A Teaching Learning Based Optimization for Optimal Design of a Hybrid Energy System
Authors: Ahmad Rouhani, Masood Jabbari, Sima Honarmand
Abstract:
This paper introduces a method to optimal design of a hybrid Wind/Photovoltaic/Fuel cell generation system for a typical domestic load that is not located near the electricity grid. In this configuration the combination of a battery, an electrolyser, and a hydrogen storage tank are used as the energy storage system. The aim of this design is minimization of overall cost of generation scheme over 20 years of operation. The Matlab/Simulink is applied for choosing the appropriate structure and the optimization of system sizing. A teaching learning based optimization is used to optimize the cost function. An overall power management strategy is designed for the proposed system to manage power flows among the different energy sources and the storage unit in the system. The results have been analyzed in terms of technics and economics. The simulation results indicate that the proposed hybrid system would be a feasible solution for stand-alone applications at remote locations.Keywords: hybrid energy system, optimum sizing, power management, TLBO
Procedia PDF Downloads 5784156 Defining a Reference Architecture for Predictive Maintenance Systems: A Case Study Using the Microsoft Azure IoT-Cloud Components
Authors: Walter Bernhofer, Peter Haber, Tobias Mayer, Manfred Mayr, Markus Ziegler
Abstract:
Current preventive maintenance measures are cost intensive and not efficient. With the available sensor data of state of the art internet of things devices new possibilities of automated data processing emerge. Current advances in data science and in machine learning enable new, so called predictive maintenance technologies, which empower data scientists to forecast possible system failures. The goal of this approach is to cut expenses in preventive maintenance by automating the detection of possible failures and to improve efficiency and quality of maintenance measures. Additionally, a centralization of the sensor data monitoring can be achieved by using this approach. This paper describes the approach of three students to define a reference architecture for a predictive maintenance solution in the internet of things domain with a connected smartphone app for service technicians. The reference architecture is validated by a case study. The case study is implemented with current Microsoft Azure cloud technologies. The results of the case study show that the reference architecture is valid and can be used to achieve a system for predictive maintenance execution with the cloud components of Microsoft Azure. The used concepts are technology platform agnostic and can be reused in many different cloud platforms. The reference architecture is valid and can be used in many use cases, like gas station maintenance, elevator maintenance and many more.Keywords: case study, internet of things, predictive maintenance, reference architecture
Procedia PDF Downloads 2504155 Improving the Performance of Gas Turbine Power Plant by Modified Axial Turbine
Authors: Hakim T. Kadhim, Faris A. Jabbar, Aldo Rona, Audrius Bagdanaviciu
Abstract:
Computer-based optimization techniques can be employed to improve the efficiency of energy conversions processes, including reducing the aerodynamic loss in a thermal power plant turbomachine. In this paper, towards mitigating secondary flow losses, a design optimization workflow is implemented for the casing geometry of a 1.5 stage axial flow turbine that improves the turbine isentropic efficiency. The improved turbine is used in an open thermodynamic gas cycle with regeneration and cogeneration. Performance estimates are obtained by the commercial software Cycle – Tempo. Design and off design conditions are considered as well as variations in inlet air temperature. Reductions in both the natural gas specific fuel consumption and in CO2 emissions are predicted by using the gas turbine cycle fitted with the new casing design. These gains are attractive towards enhancing the competitiveness and reducing the environmental impact of thermal power plant.Keywords: axial flow turbine, computational fluid dynamics, gas turbine power plant, optimization
Procedia PDF Downloads 1614154 Notice and Block?
Authors: Althaf Marsoof
Abstract:
The blocking injunction, giving rise to a ‘notice and block’ regime, has become the new approach to curtail the infringement of Intellectual Property rights on the Internet. As such, the blocking injunction is an addition to the arsenal of copyright owners, and more recently has also benefited trademark owners, in their battle against piracy and counterfeiting. Yet, the blocking injunction, notwithstanding the usefulness of its ‘notice and block’ outcome, is not without limitations. In the circumstances, it is argued that ‘notice and takedown’, the approach that has been adopted by right-holders for some years, is still an important remedy against the proliferation of online content that infringe the rights of copyright and trademark owners, which is both viable and effective. Thus, it is suggested that the battle against online piracy and counterfeiting could be won only if both the blocking injunction and the practice of ‘notice and takedown’ are utilised by right-holders as complementary and simultaneous remedies.Keywords: blocking injunctions, internet intermediaries, notice and takedown, intellectual property
Procedia PDF Downloads 4164153 An Integrated Architecture of E-Learning System to Digitize the Learning Method
Authors: M. Touhidul Islam Sarker, Mohammod Abul Kashem
Abstract:
The purpose of this paper is to improve the e-learning system and digitize the learning method in the educational sector. The learner will login into e-learning platform and easily access the digital content, the content can be downloaded and take an assessment for evaluation. Learner can get access to these digital resources by using tablet, computer, and smart phone also. E-learning system can be defined as teaching and learning with the help of multimedia technologies and the internet by access to digital content. E-learning replacing the traditional education system through information and communication technology-based learning. This paper has designed and implemented integrated e-learning system architecture with University Management System. Moodle (Modular Object-Oriented Dynamic Learning Environment) is the best e-learning system, but the problem of Moodle has no school or university management system. In this research, we have not considered the school’s student because they are out of internet facilities. That’s why we considered the university students because they have the internet access and used technologies. The University Management System has different types of activities such as student registration, account management, teacher information, semester registration, staff information, etc. If we integrated these types of activity or module with Moodle, then we can overcome the problem of Moodle, and it will enhance the e-learning system architecture which makes effective use of technology. This architecture will give the learner to easily access the resources of e-learning platform anytime or anywhere which digitizes the learning method.Keywords: database, e-learning, LMS, Moodle
Procedia PDF Downloads 1884152 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition
Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon
Abstract:
This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery
Procedia PDF Downloads 3494151 Multi-Response Optimization of EDM for Ti-6Al-4V Using Taguchi-Grey Relational Analysis
Authors: Ritesh Joshi, Kishan Fuse, Gopal Zinzala, Nishit Nirmal
Abstract:
Ti-6Al-4V is a titanium alloy having high strength, low weight and corrosion resistant which is a required characteristic for a material to be used in aerospace industry. Titanium, being a hard alloy is difficult to the machine via conventional methods, so it is a call to use non-conventional processes. In present work, the effects on Ti-6Al-4V by drilling a hole of Ø 6 mm using copper (99%) electrode in Electric Discharge Machining (EDM) process is analyzed. Effect of various input parameters like peak current, pulse-on time and pulse-off time on output parameters viz material removal rate (MRR) and electrode wear rate (EWR) is studied. Multi-objective optimization technique Grey relational analysis is used for process optimization. Experiments are designed using an L9 orthogonal array. ANOVA is used for finding most contributing parameter followed by confirmation tests for validating the results. Improvement of 7.45% in gray relational grade is observed.Keywords: ANOVA, electric discharge machining, grey relational analysis, Ti-6Al-4V
Procedia PDF Downloads 3634150 A Multi-Population DE with Adaptive Mutation and Local Search for Global Optimization
Authors: Zhoucheng Bao, Haiyan Zhu, Tingting Pang, Zuling Wang
Abstract:
This paper proposes a multi-population DE with adaptive mutation and local search for global optimization, named AMMADE. In order to better coordinate the cooperation between the populations and the rational use of resources. In AMMADE, the population is divided based on the Euclidean distance sorting method at each generation to appropriately coordinate the cooperation between subpopulations and the usage of resources, such that the best-performed subpopulation will get more computing resources in the next generation. Further, an adaptive local search strategy is employed on the best-performed subpopulation to achieve a balanced search. The proposed algorithm has been tested by solving optimization problems taken from CEC2014 benchmark problems. Experimental results show that our algorithm can achieve a competitive or better than related methods. The results also confirm the significance of devised strategies in the proposed algorithm.Keywords: differential evolution, multi-mutation strategies, memetic algorithm, adaptive local search
Procedia PDF Downloads 1574149 Approaching the Spatial Multi-Objective Land Use Planning Problems at Mountain Areas by a Hybrid Meta-Heuristic Optimization Technique
Authors: Konstantinos Tolidis
Abstract:
The mountains are amongst the most fragile environments in the world. The world’s mountain areas cover 24% of the Earth’s land surface and are home to 12% of the global population. A further 14% of the global population is estimated to live in the vicinity of their surrounding areas. As urbanization continues to increase in the world, the mountains are also key centers for recreation and tourism; their attraction is often heightened by their remarkably high levels of biodiversity. Due to the fact that the features in mountain areas vary spatially (development degree, human geography, socio-economic reality, relations of dependency and interaction with other areas-regions), the spatial planning on these areas consists of a crucial process for preserving the natural, cultural and human environment and consists of one of the major processes of an integrated spatial policy. This research has been focused on the spatial decision problem of land use allocation optimization which is an ordinary planning problem on the mountain areas. It is a matter of fact that such decisions must be made not only on what to do, how much to do, but also on where to do, adding a whole extra class of decision variables to the problem when combined with the consideration of spatial optimization. The utility of optimization as a normative tool for spatial problem is widely recognized. However, it is very difficult for planners to quantify the weights of the objectives especially when these are related to mountain areas. Furthermore, the land use allocation optimization problems at mountain areas must be addressed not only by taking into account the general development objectives but also the spatial objectives (e.g. compactness, compatibility and accessibility, etc). Therefore, the main research’s objective was to approach the land use allocation problem by utilizing a hybrid meta-heuristic optimization technique tailored to the mountain areas’ spatial characteristics. The results indicates that the proposed methodological approach is very promising and useful for both generating land use alternatives for further consideration in land use allocation decision-making and supporting spatial management plans at mountain areas.Keywords: multiobjective land use allocation, mountain areas, spatial planning, spatial decision making, meta-heuristic methods
Procedia PDF Downloads 3474148 Intelligent Algorithm-Based Tool-Path Planning and Optimization for Additive Manufacturing
Authors: Efrain Rodriguez, Sergio Pertuz, Cristhian Riano
Abstract:
Tool-path generation is an essential step in the FFF (Fused Filament Fabrication)-based Additive Manufacturing (AM) process planning. In the manufacture of a mechanical part by using additive processes, high resource consumption and prolonged production times are inherent drawbacks of these processes mainly due to non-optimized tool-path generation. In this work, we propose a heuristic-search intelligent algorithm-based approach for optimized tool-path generation for FFF-based AM. The main benefit of this approach is a significant reduction of travels without material deposition when the AM machine performs moves without any extrusion. The optimization method used reduces the number of travels without extrusion in comparison with commercial software as Slic3r or Cura Engine, which means a reduction of production time.Keywords: additive manufacturing, tool-path optimization, fused filament fabrication, process planning
Procedia PDF Downloads 4434147 Comparative Study of Radiation Protection in a Hospital Environment
Authors: Lahoucine Zaama, Sanae Douama
Abstract:
In this work, we present the results of a dosimetry study in a Moroccan radiology department . The results are compared with those of a similar study in France. Furthermore, it determines the coefficient of transmission of the lead sheets of different thicknesses depending on the voltage (KV) in a direct exposure. The objective of this study is to choose the thickness of the radiation means to determine the leaf sample sealed with the smallest percentage value radiation transmission, and that in the context of optimization. Thus the comparison among the studies is essential to consider conduct studies and research in this framework to achieve the goal of optimization.Keywords: radiology, dosimetry, radiation, dose, transmission
Procedia PDF Downloads 4944146 Identification of Promising Infant Clusters to Obtain Improved Block Layout Designs
Authors: Mustahsan Mir, Ahmed Hassanin, Mohammed A. Al-Saleh
Abstract:
The layout optimization of building blocks of unequal areas has applications in many disciplines including VLSI floorplanning, macrocell placement, unequal-area facilities layout optimization, and plant or machine layout design. A number of heuristics and some analytical and hybrid techniques have been published to solve this problem. This paper presents an efficient high-quality building-block layout design technique especially suited for solving large-size problems. The higher efficiency and improved quality of optimized solutions are made possible by introducing the concept of Promising Infant Clusters in a constructive placement procedure. The results presented in the paper demonstrate the improved performance of the presented technique for benchmark problems in comparison with published heuristic, analytic, and hybrid techniques.Keywords: block layout problem, building-block layout design, CAD, optimization, search techniques
Procedia PDF Downloads 3864145 Optimization of E-motor Control Parameters for Electrically Propelled Vehicles by Integral Squared Method
Authors: Ibrahim Cicek, Melike Nikbay
Abstract:
Electrically propelled vehicles, either road or aerial vehicles are studied on contemporarily for their robust maneuvers and cost-efficient transport operations. The main power generating systems of such vehicles electrified by selecting proper components and assembled as e-powertrain. Generally, e-powertrain components selected considering the target performance requirements. Since the main component of propulsion is the drive unit, e-motor control system is subjected to achieve the performance targets. In this paper, the optimization of e-motor control parameters studied by Integral Squared Method (ISE). The overall aim is to minimize power consumption of such vehicles depending on mission profile and maintaining smooth maneuvers for passenger comfort. The sought-after values of control parameters are computed using the Optimal Control Theory. The system is modeled as a closed-loop linear control system with calibratable parameters.Keywords: optimization, e-powertrain, optimal control, electric vehicles
Procedia PDF Downloads 1324144 Low-Cost Fog Edge Computing for Smart Power Management and Home Automation
Authors: Belkacem Benadda, Adil Benabdellah, Boutheyna Souna
Abstract:
The Internet of Things (IoT) is an unprecedented creation. Electronics objects are now able to interact, share, respond and adapt to their environment on a much larger basis. Actual spread of these modern means of connectivity and solutions with high data volume exchange are affecting our ways of life. Accommodation is becoming an intelligent living space, not only suited to the people circumstances and desires, but also to systems constraints to make daily life simpler, cheaper, increase possibilities and achieve a higher level of services and luxury. In this paper we are as Internet access, teleworking, consumption monitoring, information search, etc.). This paper addresses the design and integration of a smart home, it also purposes an IoT solution that allows smart power consumption based on measurements from power-grid and deep learning analysis.Keywords: array sensors, IoT, power grid, FPGA, embedded
Procedia PDF Downloads 1164143 The Optimization Process of Aortic Heart Valve Stent Geometry
Authors: Arkadiusz Mezyk, Wojciech Klein, Mariusz Pawlak, Jacek Gnilka
Abstract:
The aortic heart valve stents should fulfill many criterions. These criteria have a strong impact on the geometrical shape of the stent. Usually, the final construction of stent is a result of many year experience and knowledge. Depending on patents claims, different stent shapes are produced by different companies. This causes difficulties for biomechanics engineers narrowing the domain of feasible solutions. The paper present optimization method for stent geometry defining by a specific analytical equation based on various mathematical functions. This formula was implemented as APDL script language in ANSYS finite element environment. For the purpose of simulation tests, a few parameters were separated from developed equation. The application of the genetic algorithms allows finding the best solution due to selected objective function. Obtained solution takes into account parameters such as radial force, compression ratio and coefficient of expansion on the transverse axial.Keywords: aortic stent, optimization process, geometry, finite element method
Procedia PDF Downloads 2804142 A Cognitive Approach to the Optimization of Power Distribution across an Educational Campus
Authors: Mrinmoy Majumder, Apu Kumar Saha
Abstract:
The ever-increasing human population and its demand for energy is placing stress upon conventional energy sources; and as demand for power continues to outstrip supply, the need to optimize energy distribution and utilization is emerging as an important focus for various stakeholders. The distribution of available energy must be achieved in such a way that the needs of the consumer are satisfied. However, if the availability of resources is not sufficient to satisfy consumer demand, it is necessary to find a method to select consumers based on factors such as their socio-economic or environmental impacts. Weighting consumer types in this way can help separate them based on their relative importance, and cognitive optimization of the allocation process can then be carried out so that, even on days of particularly scarce supply, the socio-economic impacts of not satisfying the needs of consumers can be minimized. In this context, the present study utilized fuzzy logic to assign weightage to different types of consumers based at an educational campus in India, and then established optimal allocation by applying the non-linear mapping capability of neuro-genetic algorithms. The outputs of the algorithms were compared with similar outputs from particle swarm optimization and differential evolution algorithms. The results of the study demonstrate an option for the optimal utilization of available energy based on the socio-economic importance of consumers.Keywords: power allocation, optimization problem, neural networks, environmental and ecological engineering
Procedia PDF Downloads 4784141 Optimization of Media for Enhanced Fermentative Production of Mycophenolic Acid by Penicillium brevicompactum
Authors: Shraddha Digole, Swarali Hingse, Uday Annapure
Abstract:
Mycophenolic acid (MPA) is an immunosuppressant; produced by Penicillium Sp. Box-Behnken statistical experimental design was employed to optimize the condition of Penicillium brevicompactum NRRL 2011 for mycophenolic acid (MPA) production. Initially optimization of various physicochemical parameters and media components was carried out using one factor at a time approach and significant factors were screened by Taguchi L-16 orthogonal array design. Taguchi design indicated that glucose, KH2PO4 and MgSO4 had significant effect on MPA production. These variables were selected for further optimization studies using Box-Behnken design. Optimised fermentation condition, glucose (60 g/L), glycine (28 g/L), L-leucine (1.5g/L), KH2PO4 (3g/L), MgSO4.7H2O (1.5g/L), increased the production of MPA from 170 mg/L to 1032.54 mg/L. Analysis of variance (ANOVA) showed a high value of coefficient of determination R2 (0.9965), indicating a good agreement between experimental and predicted values and proves validity of the statistical model.Keywords: Box-Behnken design, fermentation, mycophenolic acid, Penicillium brevicompactum
Procedia PDF Downloads 4514140 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.Keywords: design optimization, performance, DFIG, differential evolution
Procedia PDF Downloads 1494139 Policy Implications of Cashless Banking on Nigeria’s Economy
Authors: Oluwabiyi Adeola Ayodele
Abstract:
This study analysed the Policy and general issues that have arisen over time in Nigeria’ Cashless banking environment as a result of the lack of a Legal framework on Electronic banking in Nigeria. It undertook an in-depth study of the cashless banking system. It discussed the evolution, growth and development of cashless banking in Nigeria; It revealed the expected benefits of the cashless banking system; It appraised regulatory issues and other prevalent problems on cashless banking in Nigeria; and made appropriate recommendations where necessary. The study relied on primary and secondary sources of information. The primary sources included the Constitution of the Federal Republic of Nigeria, Statutes, Conventions and Judicial decisions, while the secondary sources included Books, Journals Articles, Newspapers and Internet Materials. The study revealed that cashless banking has been adopted in Nigeria but still at the developing stage. It revealed that there is no law for the regulation of cashless banking in Nigeria, what Nigeria relies on for regulation is the Central Bank of Nigeria’s Cashless Policy, 2014. The Banks and Other Financial Institutions Act Chapter B3, LFN, 2004 of Nigeria lack provision to accommodate issues on Internet banking. However, under the general principles of legality in criminal law, and by the provisions of the Nigerian Constitution, a person can only be punished for conducts that have been defined to be criminal by written laws with the penalties specifically stated in the law. Although Nigeria has potent laws for the regulation of paper banking, these laws cannot be substituted for paperless transactions. This is because the issues involved in both transactions vary. The study also revealed that the absence of law in the cashless banking environment in Nigeria will subject consumers to endless risks. This study revealed that the creation of banking markets via the Internet relies on both available technologies and appropriate laws and regulations. It revealed however that Law of some of the countries considered on cashless banking has taken care of most of the legal issues and other problems prevalent in the cashless banking environment. The study also revealed some other problems prevalent in the Nigerian cashless banking environment. The study concluded that for Nigeria to find solutions to the legal issues raised in its cashless banking environment and other problems of cashless banking, it should have a viable legal Frame work for internet banking. The study concluded that the Central Bank of Nigeria’s Policy on Cashless banking is not potent enough to tackle the challenges posed to cashless banking in Nigeria because policies only have a persuasive effect and not a binding effect. There is, therefore, a need for appropriate Laws for the regulation of cashless Banking in Nigeria. The study also concluded that there is a need to create more awareness of the system among Nigerians and solve infrastructural problems like prevalent power outage which often have been creating internet network problem.Keywords: cashless-banking, Nigeria, policies, laws
Procedia PDF Downloads 4894138 Economic Optimization of Shell and Tube Heat Exchanger Using Nanofluid
Authors: Hassan Hajabdollahi
Abstract:
Economic optimization of shell and tube heat exchanger (STHE) is presented in this paper. To increase the rate of heat transfer, copper oxide (CuO) nanoparticle is added into the tube side fluid and their optimum results are compared with the case of without additive nanoparticle. Total annual cost (TAC) is selected as fitness function and nine decision variables related to the heat exchanger parameters as well as concentration of nanoparticle are considered. Optimization results reveal the noticeable improvement in the TAC and in the case of heat exchanger working with nanofluid compared with the case of base fluid (8.9%). Comparison of the results between two studied cases also reveal that the lower tube diameter, tube number, and baffle spacing are needed in the case of heat exchanger working with nanofluid compared with the case of base fluid.Keywords: shell and tube heat exchanger, nanoparticles additive, total annual cost, particle volumetric concentration
Procedia PDF Downloads 4244137 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 314136 A Study of Relational Factors Associated with Online Celebrity Business and Consumer Purchase Intention
Authors: Sixing Chen, Shuai Yang
Abstract:
Online celebrity business, also known as Internet celebrity business (or Wanghong business in Chinese), is an emerging relational C2C business model, and an alternative to traditional C2C transactional business models. There are already millions of these consumers, and this number is growing. In this model, consumer purchase decisions are driven by recommendations and endorsements in videos posted online by celebrities. The purpose of this paper is to determine the relational constructs within consumer relationships in the Internet celebrity business model and to investigate relationships between the constructs and consumer purchase intention. A questionnaire-based study was conducted with consumers who had an awareness of, or prior purchase experience with online celebrities. The results of exploratory factor analysis (EFA) and multiple regression analysis revealed three valid relational constructs: product experience sharing, lifestyle association, and real-time interaction. This study indicated that these constructs had the direct effect on consumer preference and purchase intention. The findings of this study provide insight into a business model in which online shopping is driven by celebrities. They suggest that online celebrities should pay more attention to product experience sharing, life style association and real-time interaction for managing their product promotions. These are the most salient factors with respect to the relational constructs identified in this study.Keywords: customer relationship, customer to customer, Internet celebrity, online celebrity, online marketing, purchase intention
Procedia PDF Downloads 318