Search results for: response generation
7805 Rescue Emergency Drone for Fast Response to Medical Emergencies Due to Traffic Accidents
Authors: Anders S. Kristensen, Dewan Ahsan, Saqib Mehmood, Shakeel Ahmed
Abstract:
Traffic accidents are a result of the convergence of hazards, malfunctioning of vehicles and human negligence that have adverse economic and health impacts and effects. Unfortunately, avoiding them completely is very difficult, but with quick response to rescue and first aid, the mortality rate of inflicted persons can be reduced significantly. Smart and innovative technologies can play a pivotal role to respond faster to traffic crash emergencies comparing conventional means of transportation. For instance, Rescue Emergency Drone (RED) can provide faster and real-time crash site risk assessment to emergency medical services, thereby helping them to quickly and accurately assess a situation, dispatch the right equipment and assist bystanders to treat inflicted person properly. To conduct a research in this regard, the case of a traffic roundabout that is prone to frequent traffic accidents on the outskirts of Esbjerg, a town located on western coast of Denmark is hypothetically considered. Along with manual calculations, Emergency Disaster Management Simulation (EDMSIM) has been used to verify the response time of RED from a fire station of the town to the presumed crash site. The results of the study demonstrate the robustness of RED into emergency services to help save lives.Keywords: automated external defibrillator, medical emergency, response time, unmanned aerial system
Procedia PDF Downloads 2287804 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material
Authors: Snehal L. Kadam, Shriniwas B. Kulkarni
Abstract:
Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor
Procedia PDF Downloads 1907803 Effect of DG Installation in Distribution System for Voltage Monitoring Scheme
Authors: S. R. A. Rahim, I. Musirin, M. M. Othman, M. H. Hussain
Abstract:
Loss minimization is a long progressing issue mainly in distribution system. Nevertheless, its effect led to temperature rise due to significant voltage drop through the distribution line. Thus, compensation scheme should be proper scheduled in the attempt to alleviate the voltage drop phenomenon. Distributed generation has been profoundly known for voltage profile improvement provided that over-compensation or under-compensation phenomena are avoided. This paper addresses the issue of voltage improvement through different type DG installation. In ensuring optimal sizing and location of the DGs, predeveloped EMEFA technique was made to be used for this purpose. Incremental loading condition subjected to the system is the concern such that it is beneficial to the power system operator.Keywords: distributed generation, EMEFA, power loss, voltage profile
Procedia PDF Downloads 3677802 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 957801 Soil-Structure Interaction in Stiffness and Strength Degrading Systems
Authors: Enrique Bazan-Zurita, Sittipong Jarernprasert, Jacobo Bielak
Abstract:
We study the effects of soil-structure interaction (SSI) on the inelastic seismic response of a single-degree-of-freedom system whose hysteretic behaviour exhibits stiffness and/or strength degrading characteristics. Two sets of accelerograms are used as seismic input: the first comprising 87 record from stiff to medium stiff sites in California, and the second comprising 66 records from the soft lakebed of Mexico City. This study focuses in three seismic response parameters: ductility demand, inter-story drift, and total lateral displacement. The results allow quantitative estimates of changes in such parameters in an SSI system in comparison with those corresponding to the associated fixed-base system. We found that degrading features affect significantly both the response of fixed-base structures and the impact of soil-structure interaction. We propose a procedure to incorporate the results of this and similar studies in seismic design regulations for SSI system with anticipated nonlinear degrading behaviour.Keywords: inelastic, seismic, building, foundation, interaction
Procedia PDF Downloads 2867800 Blue Hydrogen Production Via Catalytic Aquathermolysis Coupled with Direct Carbon Dioxide Capture Via Adsorption
Authors: Sherif Fakher
Abstract:
Hydrogen has been gaining a lot of global attention as an uprising contributor in the energy sector. Labeled as an energy carrier, hydrogen is used in many industries and can be used to generate electricity via fuel cells. Blue hydrogen involves the production of hydrogen from hydrocarbons using different processes that emit CO₂. However, the CO₂ is captured and stored. Hence, very little environmental damage occurs during the hydrogen production process. This research investigates the ability to use different catalysts for the production of hydrogen from different hydrocarbon sources, including coal, oil, and gas, using a two-step Aquathermolysis reaction. The research presents the results of experiments conducted to evaluate different catalysts and also highlights the main advantages of this process over other blue hydrogen production methods, including methane steam reforming, autothermal reforming, and oxidation. Two methods of hydrogen generation were investigated including partial oxidation and aquathermolysis. For those two reactions, the reaction kinetics, thermodynamics, and medium were all investigated. Following this, experiments were conducted to test the hydrogen generation potential from both methods. The porous media tested were sandstone, ash, and prozzolanic material. The spent oils used were spent motor oil and spent vegetable oil from cooking. Experiments were conducted at temperatures up to 250 C and pressures up to 3000 psi. Based on the experimental results, mathematical models were developed to predict the hydrogen generation potential at higher thermodynamic conditions. Since both partial oxidation and aquathermolysis require relatively high temperatures to undergo, it was important to devise a method by which these high temperatures can be generated at a low cost. This was done by investigating two factors, including the porous media used and the reliance on the spent oil. Of all the porous media used, the ash had the highest thermal conductivity. The second step was the partial combustion of part of the spent oil to generate the heat needed to reach the high temperatures. This reduced the cost of the heat generation significantly. For the partial oxidation reaction, the spent oil was burned in the presence of a limited oxygen concentration to generate carbon monoxide. The main drawback of this process was the need for burning. This resulted in the generation of other harmful and environmentally damaging gases. Aquathermolysis does not rely on burning, which makes it the cleaner alternative. However, it needs much higher temperatures to run the reaction. When comparing the hydrogen generation potential for both using gas chromatography, aquathermolysis generated 23% more hydrogen using the same volume of spent oil compared to partial oxidation. This research introduces the concept of using spent oil for hydrogen production. This can be a very promising method to produce a clean source of energy using a waste product. This can also help reduce the reliance on freshwater for hydrogen generation which can divert the usage of freshwater to other more important applications.Keywords: blue hydrogen production, catalytic aquathermolysis, direct carbon dioxide capture, CCUS
Procedia PDF Downloads 317799 An Assesment of Unconventional Hydrocarbon Potential of the Silurian Dadaş Shales in Diyarbakır Basin, Türkiye
Authors: Ceren Sevimli, Sedat İnan
Abstract:
The Silurian Dadaş Formation within the Diyarbakir Basin in SE Türkiye, like other Silurian shales in North Africa and Middle East, represents a significant prospect for conventional and unconventional hydrocarbon exploration. The Diyarbakır Basin remains relatively underexplored, presenting untapped potential that warrants further investigation. This study focuses on the thermal maturity and hydrocarbon generation histories of the Silurian Dadaş shales, utilizing basin modeling approach. The Dadaş shales are organic-rich and contain mainly Type II kerogen, especially the basal layer contains up to 10 wt. %TOC and thus it is named as “hot shale”. The research integrates geological, geochemical, and basin modeling data to elucidate the unconventional hydrocarbon potential of this formation, which is crucial given the global demand for energy and the need for new resources. The data obtained from previous studies were used to calibrate basin model that has been established by using PetroMod software (Schlumberger). The calibrated model results suggest that Dadaş shales are in oil generation window and that the major episode for thermal maturation and hydrocarbon generation took place prior rot Alpine orogeny (uplift and erosion) The modeling results elucidate the burial history, maturity history, and hydrocarbon production history of the Silurian-aged Dadaş shales, as well as its hydrocarbon content in the area.Keywords: dadaş formation, diyarbakır basin, silurian hot shale, unconventional hydrocarbon
Procedia PDF Downloads 327798 Improving Power Quality in Wind Power Generation System
Authors: A. Omeiri, A. Djellad, P. O. Logerais, O. Riou, J. F. Durastanti
Abstract:
With the growing of electrical energy demand, wind power capacity has experienced tremendous growth in the past decade, thanks to wind power’s environmental benefits. Direct driven permanent magnet synchronous generator (PMSG) with a full size back-to-back converter set is one of the promising technologies employed with wind power generation. Wind grid integration brings the problems of voltage fluctuation and harmonic pollution. In the present study, the filter is placed between the wind system and the network to reduce the total harmonic distortion (THD) and enhance power quality during disturbances. The models of wind turbine, PMSG, power electronic converters and the filter are implemented in MATLAB/SIMULINK environment.Keywords: wind energy conversion system, PMSG, PWM, THD, power quality, passive filter
Procedia PDF Downloads 6487797 Revolutionizing Gaming Setup Design: Utilizing Generative and Iterative Methods to Prop and Environment Design, Transforming the Landscape of Game Development Through Automation and Innovation
Authors: Rashmi Malik, Videep Mishra
Abstract:
The practice of generative design has become a transformative approach for an efficient way of generating multiple iterations for any design project. The conventional way of modeling the game elements is very time-consuming and requires skilled artists to design. A 3D modeling tool like 3D S Max, Blender, etc., is used traditionally to create the game library, which will take its stipulated time to model. The study is focused on using the generative design tool to increase the efficiency in game development at the stage of prop and environment generation. This will involve procedural level and customized regulated or randomized assets generation. The paper will present the system design approach using generative tools like Grasshopper (visual scripting) and other scripting tools to automate the process of game library modeling. The script will enable the generation of multiple products from the single script, thus creating a system that lets designers /artists customize props and environments. The main goal is to measure the efficacy of the automated system generated to create a wide variety of game elements, further reducing the need for manual content creation and integrating it into the workflow of AAA and Indie Games.Keywords: iterative game design, generative design, gaming asset automation, generative game design
Procedia PDF Downloads 707796 Surface Modification of Co-Based Nanostructures to Develop Intrinsic Fluorescence and Catalytic Activity
Authors: Monalisa Pal, Kalyan Mandal
Abstract:
Herein we report the molecular functionalization of promising transition metal oxide nanostructures, such as Co3O4 nanocubes, using nontoxic and biocompati-ble organic ligand sodium tartrate. The electronic structural modification of the nanocubes imparted through functionalization and subsequent water solubilization reveals multiple absorption bands in the UV-vis region. Further surface modification of the solubilized nanocubes, leads to the emergence of intrinsic multi-color fluorescence (from blue, cyan, green to red region of the spectrum), upon excitation at proper wavelengths, where the respective excitation wavelengths have a direct correlation with the observed UV-vis absorption bands. Using a multitude of spectroscopic tools we have investigated the mechanistic insight behind the origin of different UV-vis absorption bands and emergence of multicolor photoluminescence from the functionalized nanocubes. Our detailed study shows that ligand to metal charge transfer (LMCT) from tartrate ligand to Co2+/Co3+ ions and d-d transitions involving Co2+/Co3+ ions are responsible for generation of this novel optical properties. Magnetic study reveals that, antiferromagnetic nature of Co3O4 nanocubes changes to ferromagnetic behavior upon functionalization, however, the overall magnetic response was very weak. To combine strong magnetism with this novel optical property, we followed the same surface modification strategy in case of CoFe2O4 nanoparticles, which reveals that irrespective of size and shape, all Co-based oxides can develop intrinsic multi-color fluorescence upon facile functionalization with sodium tartrate ligands and the magnetic response was significantly higher. Surface modified Co-based oxide nanostructures also show excellent catalytic activity in degradation of biologically and environmentally harmful dyes. We hope that, our developed facile functionalization strategy of Co-based oxides will open up new opportunities in the field of biomedical applications such as bio-imaging and targeted drug delivery.Keywords: co-based oxide nanostructures, functionalization, multi-color fluorescence, catalysis
Procedia PDF Downloads 3877795 Seismic Response and Sensitivity Analysis of Circular Shallow Tunnels
Authors: Siti Khadijah Che Osmi, Mohammed Ahmad Syed
Abstract:
Underground tunnels are one of the most popular public facilities for various applications such as transportation, water transfer, network utilities and etc. Experience from the past earthquake reveals that the underground tunnels also become vulnerable components and may damage at certain percentage depending on the level of ground shaking and induced phenomena. In this paper a numerical analysis is conducted in evaluating the sensitivity of two types of circular shallow tunnel lining models to wide ranging changes in the geotechnical design parameter. Critical analysis has been presented about the current methods of analysis, structural typology, ground motion characteristics, effect of soil conditions and associated uncertainties on the tunnel integrity. The response of the tunnel is evaluated through 2D non-linear finite element analysis, which critically assesses the impact of increasing levels of seismic loads. The finding from this study offer significant information on improving methods to assess the vulnerability of underground structures.Keywords: geotechnical design parameter, seismic response, sensitivity analysis, shallow tunnel
Procedia PDF Downloads 4417794 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach
Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal
Abstract:
In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.Keywords: EDM, electrode, MRR, RSM, ANOVA
Procedia PDF Downloads 3057793 Performance Analysis of IDMA Scheme Using Quasi-Cyclic Low Density Parity Check Codes
Authors: Anurag Saxena, Alkesh Agrawal, Dinesh Kumar
Abstract:
The next generation mobile communication systems i.e. fourth generation (4G) was developed to accommodate the quality of service and required data rate. This project focuses on multiple access technique proposed in 4G communication systems. It is attempted to demonstrate the IDMA (Interleave Division Multiple Access) technology. The basic principle of IDMA is that interleaver is different for each user whereas CDMA employs different signatures. IDMA inherits many advantages of CDMA such as robust against fading, easy cell planning; dynamic channel sharing and IDMA increase the spectral efficiency and reduce the receiver complexity. In this, performance of IDMA is analyzed using QC-LDPC coding scheme further it is compared with LDPC coding and at last BER is calculated and plotted in MATLAB.Keywords: 4G, QC-LDPC, CDMA, IDMA
Procedia PDF Downloads 3237792 Comparison of Equivalent Linear and Non-Linear Site Response Model Performance in Kathmandu Valley
Authors: Sajana Suwal, Ganesh R. Nhemafuki
Abstract:
Evaluation of ground response under earthquake shaking is crucial in geotechnical earthquake engineering. Damage due to seismic excitation is mainly correlated to local geological and geotechnical conditions. It is evident from the past earthquakes (e.g. 1906 San Francisco, USA, 1923 Kanto, Japan) that the local geology has strong influence on amplitude and duration of ground motions. Since then significant studies has been conducted on ground motion amplification revealing the importance of influence of local geology on ground. Observations from the damaging earthquakes (e.g. Nigata and San Francisco, 1964; Irpinia, 1980; Mexico, 1985; Kobe, 1995; L’Aquila, 2009) divulged that non-uniform damage pattern, particularly in soft fluvio-lacustrine deposit is due to the local amplification of seismic ground motion. Non-uniform damage patterns are also observed in Kathmandu Valley during 1934 Bihar Nepal earthquake and recent 2015 Gorkha earthquake seemingly due to the modification of earthquake ground motion parameters. In this study, site effects resulting from amplification of soft soil in Kathmandu are presented. A large amount of subsoil data was collected and used for defining the appropriate subsoil model for the Kathamandu valley. A comparative study of one-dimensional total-stress equivalent linear and non-linear site response is performed using four strong ground motions for six sites of Kathmandu valley. In general, one-dimensional (1D) site-response analysis involves the excitation of a soil profile using the horizontal component and calculating the response at individual soil layers. In the present study, both equivalent linear and non-linear site response analyses were conducted using the computer program DEEPSOIL. The results show that there is no significant deviation between equivalent linear and non-linear site response models until the maximum strain reaches to 0.06-0.1%. Overall, it is clearly observed from the results that non-linear site response model perform better as compared to equivalent linear model. However, the significant deviation between two models is resulted from other influencing factors such as assumptions made in 1D site response, lack of accurate values of shear wave velocity and nonlinear properties of the soil deposit. The results are also presented in terms of amplification factors which are predicted to be around four times more in case of non-linear analysis as compared to equivalent linear analysis. Hence, the nonlinear behavior of soil prevails the urgent need of study of dynamic characteristics of the soft soil deposit that can specifically represent the site-specific design spectra for the Kathmandu valley for building resilient structures from future damaging earthquakes.Keywords: deep soil, equivalent linear analysis, non-linear analysis, site response
Procedia PDF Downloads 2917791 Photo Electrical Response in Graphene Based Resistive Sensor
Authors: H. C. Woo, F. Bouanis, C. S. Cojocaur
Abstract:
Graphene, which consists of a single layer of carbon atoms in a honeycomb lattice, is an interesting potential optoelectronic material because of graphene’s high carrier mobility, zero bandgap, and electron–hole symmetry. Graphene can absorb light and convert it into a photocurrent over a wide range of the electromagnetic spectrum, from the ultraviolet to visible and infrared regimes. Over the last several years, a variety of graphene-based photodetectors have been reported, such as graphene transistors, graphene-semiconductor heterojunction photodetectors, graphene based bolometers. It is also reported that there are several physical mechanisms enabling photodetection: photovoltaic effect, photo-thermoelectric effect, bolometric effect, photogating effect, and so on. In this work, we report a simple approach for the realization of graphene based resistive photo-detection devices and the measurements of their photoelectrical response. The graphene were synthesized directly on the glass substrate by novel growth method patented in our lab. Then, the metal electrodes were deposited by thermal evaporation on it, with an electrode length and width of 1.5 mm and 300 μm respectively, using Co to fabricate simple graphene based resistive photosensor. The measurements show that the graphene resistive devices exhibit a photoresponse to the illumination of visible light. The observed re-sistance response was reproducible and similar after many cycles of on and off operations. This photoelectrical response may be attributed not only to the direct photocurrent process but also to the desorption of oxygen. Our work shows that the simple graphene resistive devices have potential in photodetection applications.Keywords: graphene, resistive sensor, optoelectronics, photoresponse
Procedia PDF Downloads 2867790 Effector and Memory Immune Responses Induced by Total Extracts of Naegleria fowleri Co-Administered with Cholera Toxin
Authors: Q. B. Maria de la Luz Ortega Juárez, Saúl Rojas Hernández, Itzel Berenice Rodríguez Mera, María Maricela Carrasco Yépez, Mara Gutierrez Sánchez
Abstract:
Naegleria fowleri is a free-living amoeba found mainly in temperate freshwater and is the etiologic agent of primary amebic meningoencephalitis (PAM), a fatal acute disease with a mortality rate greater than 95%. At present, there are no treatments available for MAP, and the development of effective vaccines that generate long-term immunological memory allowing protection against MAP would be of great importance. The objective of this work was to analyze the effector and memory immune response in BALB/c mice immunized with total extract of N. fowleri co-administered with cholera toxin. In this study, BALB/c mice were immunized four times intranasally with ET of N. fowleri adjuvanted with CT with or without booster at three months and were challenged or not with the lethal dose of N. fowleri, determining survival, the humoral, effector and memory response, by ELISA and flow cytometry techniques. The results obtained showed that the survival of mice immunized with booster had 60% protection compared to the group without booster, which obtained 20% protection. Evaluating the humoral response, it was found that both IgG and IgA levels were higher in sera than in nasal washes in both treatments. In the cellular response, the increase in the percentage of positive cells was found for effector T and B lymphocytes in the nasal passages (NP) in the group with boost and nasopharynx-associated lymphoid tissue (NALT) in the group without boost and lymphocytes only. B in both treatments, as well as in memory cells treatment with boost T lymphocytes in PN and NALT and without boost in cervical lymph nodes (CG) with respect to B lymphocytes, in PN, GC and NALT in treatment with boost and NALT in treatment without booster. Therefore, the involvement of the effector immune response and memory play a fundamental role for protection against N. fowleri and for the development of vaccine candidates.Keywords: immune response, immunological memory, naegleria fowleri, primary amebic meningoencephalitis
Procedia PDF Downloads 787789 Towards a Biologically Relevant Tumor-on-a-Chip: Multiplex Microfluidic Platform to Study Breast Cancer Drug Response
Authors: Soroosh Torabi, Brad Berron, Ren Xu, Christine Trinkle
Abstract:
Microfluidics integrated with 3D cell culture is a powerful technology to mimic cellular environment, and can be used to study cell activities such as proliferation, migration and response to drugs. This technology has gained more attention in cancer studies over the past years, and many organ-on-a-chip systems have been developed to study cancer cell behaviors in an ex-vivo tumor microenvironment. However, there are still some barriers to adoption which include low throughput, complexity in 3D cell culture integration and limitations on non-optical analysis of cells. In this study, a user-friendly microfluidic multi-well plate was developed to mimic the in vivo tumor microenvironment. The microfluidic platform feeds multiple 3D cell culture sites at the same time which enhances the throughput of the system. The platform uses hydrophobic Cassie-Baxter surfaces created by microchannels to enable convenient loading of hydrogel/cell suspensions into the device, while providing barrier free placement of the hydrogel and cells adjacent to the fluidic path. The microchannels support convective flow and diffusion of nutrients to the cells and a removable lid is used to enable further chemical and physiological analysis on the cells. Different breast cancer cell lines were cultured in the device and then monitored to characterize nutrient delivery to the cells as well as cell invasion and proliferation. In addition, the drug response of breast cancer cell lines cultured in the device was compared to the response in xenograft models to the same drugs to analyze relevance of this platform for use in future drug-response studies.Keywords: microfluidics, multi-well 3d cell culture, tumor microenvironment, tumor-on-a-chip
Procedia PDF Downloads 2647788 Investigation of the Space in Response to the Conditions Caused by the Pandemics and Presenting Five-Scale Design Guidelines to Adapt and Prepare to Face the Pandemics
Authors: Sara Ramezanzadeh, Nashid Nabian
Abstract:
Historically, pandemics in different periods have caused compulsory changes in human life. In the case of Covid-19, according to the limitations and established care instructions, spatial alignment with the conditions is important. Following the outbreak of Covid-19, the question raised in this study is how to do spatial design in five scales, namely object, space, architecture, city, and infrastructure, in response to the consequences created in the realms under study. From the beginning of the pandemic until now, some changes in the spatial realm have been created spontaneously or by space users. These transformations have been mostly applied in modifiable parts such as furniture arrangement, especially in work-related spaces. To implement other comprehensive requirements, flexibility and adaptation of space design to the conditions resulting from the pandemics are needed during and after the outbreak. Studying the effects of pandemics from the past to the present, this research covers eight major realms, including three categories of ramifications, solutions, and paradigm shifts, and analytical conclusions about the solutions that have been created in response to them. Finally, by the consideration of epidemiology as a modern discipline influencing the design, spatial solutions in the five scales mentioned (in response to the effects of the eight realms for spatial adaptation in the face of pandemics and their following conditions) are presented as a series of guidelines. Due to the unpredictability of possible pandemics in the future, the possibility of changing and updating the provided guidelines is considered.Keywords: pandemics, Covid 19, spatial design, ramifications, solutions, paradigm shifts, guidelines
Procedia PDF Downloads 827787 A Micro-Scale of Electromechanical System Micro-Sensor Resonator Based on UNO-Microcontroller for Low Magnetic Field Detection
Authors: Waddah Abdelbagi Talha, Mohammed Abdullah Elmaleeh, John Ojur Dennis
Abstract:
This paper focuses on the simulation and implementation of a resonator micro-sensor for low magnetic field sensing based on a U-shaped cantilever and piezoresistive configuration, which works based on Lorentz force physical phenomena. The resonance frequency is an important parameter that depends upon the highest response and sensitivity through the frequency domain (frequency response) of any vibrated micro-scale of an electromechanical system (MEMS) device. And it is important to determine the direction of the detected magnetic field. The deflection of the cantilever is considered for vibrated mode with different frequencies in the range of (0 Hz to 7000 Hz); for the purpose of observing the frequency response. A simple electronic circuit-based polysilicon piezoresistors in Wheatstone's bridge configuration are used to transduce the response of the cantilever to electrical measurements at various voltages. Microcontroller-based Arduino program and PROTEUS electronic software are used to analyze the output signals from the sensor. The highest output voltage amplitude of about 4.7 mV is spotted at about 3 kHz of the frequency domain, indicating the highest sensitivity, which can be called resonant sensitivity. Based on the resonant frequency value, the mode of vibration is determined (up-down vibration), and based on that, the vector of the magnetic field is also determined.Keywords: resonant frequency, sensitivity, Wheatstone bridge, UNO-microcontroller
Procedia PDF Downloads 1277786 Viability of Slab Sliding System for Single Story Structure
Authors: C. Iihoshi, G. A. MacRae, G. W. Rodgers, J. G. Chase
Abstract:
Slab Sliding System (SSS) with Coulomb friction interface between slab and supporting frame is a passive structural vibration control technology. The system can significantly reduce the slab acceleration and accompanied lateral force of the frame. At the same time it is expected to cause the slab displacement magnification by sliding movement. To obtain the general comprehensive seismic response of a single story structure, inelastic response spectra were computed for a large ensemble of ground motions and a practical range of structural periods and friction coefficient values. It was shown that long period structures have no trade-off relation between force reduction and displacement magnification with respect to elastic response, unlike short period structures. For structures with the majority of mass in the slab, the displacement magnification value can be predicted according to simple inelastic displacement relation for in elastically responding SDOF structures because the system behaves elastically to a SDOF structure.Keywords: earthquake, isolation, slab, sliding
Procedia PDF Downloads 2497785 Creating Renewable Energy Investment Portfolio in Turkey between 2018-2023: An Approach on Multi-Objective Linear Programming Method
Authors: Berker Bayazit, Gulgun Kayakutlu
Abstract:
The World Energy Outlook shows that energy markets will substantially change within a few forthcoming decades. First, determined action plans according to COP21 and aim of CO₂ emission reduction have already impact on policies of countries. Secondly, swiftly changed technological developments in the field of renewable energy will be influential upon medium and long-term energy generation and consumption behaviors of countries. Furthermore, share of electricity on global energy consumption is to be expected as high as 40 percent in 2040. Electrical vehicles, heat pumps, new electronical devices and digital improvements will be outstanding technologies and innovations will be the testimony of the market modifications. In order to meet highly increasing electricity demand caused by technologies, countries have to make new investments in the field of electricity production, transmission and distribution. Specifically, electricity generation mix becomes vital for both prevention of CO₂ emission and reduction of power prices. Majority of the research and development investments are made in the field of electricity generation. Hence, the prime source diversity and source planning of electricity generation are crucial for improving the wealth of citizen life. Approaches considering the CO₂ emission and total cost of generation, are necessary but not sufficient to evaluate and construct the product mix. On the other hand, employment and positive contribution to macroeconomic values are important factors that have to be taken into consideration. This study aims to constitute new investments in renewable energies (solar, wind, geothermal, biogas and hydropower) between 2018-2023 under 4 different goals. Therefore, a multi-objective programming model is proposed to optimize the goals of minimizing the CO₂ emission, investment amount and electricity sales price while maximizing the total employment and positive contribution to current deficit. In order to avoid the user preference among the goals, Dinkelbach’s algorithm and Guzel’s approach have been combined. The achievements are discussed with comparison to the current policies. Our study shows that new policies like huge capacity allotment might be discussible although obligation for local production is positive. The improvements in grid infrastructure and re-design support for the biogas and geothermal can be recommended.Keywords: energy generation policies, multi-objective linear programming, portfolio planning, renewable energy
Procedia PDF Downloads 2447784 Integration of Technology for Enhanced Learning among Generation Y and Z Nursing Students
Authors: Tarandeep Kaur
Abstract:
Generation Y and Z nursing students have a much higher need for technology-based stimulation than previous generations, as they may find traditional methods of education boring and disinterested. These generations prefer experiential learning and the use of advanced technology for enhanced learning. Therefore, nursing educators must acquire knowledge to make better use of technology and technological tools for instruction. Millennials and generation are digital natives, optimistic, assertive, want engagement, instant feedback, and collaborative approach. The integration of technology and the efficacy of its use can be challenging for nursing educators. The SAMR (substitution, augmentation, modification, and redefinition) model designed and developed by Dr. Ruben Puentedura can help nursing educators to engage their students in different levels of technology integration for effective learning. Nursing educators should understand that technology use in the classroom must be purposeful. The influx of technology in nursing education is ever-changing; therefore, nursing educators have to constantly enhance and develop technical skills to keep up with the emerging technology in the schools as well as hospitals. In the Saskatchewan Collaborative Bachelor of Nursing (SCBSCN) program at Saskatchewan polytechnic, we use technology at various levels using the SAMR model in our program, including low and high-fidelity simulation labs. We are also exploring futuristic options of using virtual reality and gaming in our classrooms as an innovative way to motivate, increase critical thinking, create active learning, provide immediate feedback, improve student retention and create collaboration.Keywords: generations, nursing, SAMR, technology
Procedia PDF Downloads 1107783 The Analysis of a Reactive Hydromagnetic Internal Heat Generating Poiseuille Fluid Flow through a Channel
Authors: Anthony R. Hassan, Jacob A. Gbadeyan
Abstract:
In this paper, the analysis of a reactive hydromagnetic Poiseuille fluid flow under each of sensitized, Arrhenius and bimolecular chemical kinetics through a channel in the presence of heat source is carried out. An exothermic reaction is assumed while the concentration of the material is neglected. Adomian Decomposition Method (ADM) together with Pade Approximation is used to obtain the solutions of the governing nonlinear non – dimensional differential equations. Effects of various physical parameters on the velocity and temperature fields of the fluid flow are investigated. The entropy generation analysis and the conditions for thermal criticality are also presented.Keywords: chemical kinetics, entropy generation, thermal criticality, adomian decomposition method (ADM) and pade approximation
Procedia PDF Downloads 4647782 Evidences for Better Recall with Compatible Items in Episodic Memory
Authors: X. Laurent, M. A. Estevez, P. Mari-Beffa
Abstract:
A focus of recent research is to understand the role of our own response goals in the selection of information that will be encoded in episodic memory. For example, if we respond to a target in the presence of distractors, an important aspect under study is whether the distractor and the target share a common response (compatible) or not (incompatible). Some studies have found that compatible objects tend to be groups together and stored in episodic memory, whereas others found that targets in the presence of incompatible distractors are remembered better. Our current research seems to support both views. We used a Tulving-based definition of episodic memory to differentiate memory from episodic and non-episodic traces. In this task, participants first had to classify a blue object as human or animal (target) which appeared in the presence of a green one (distractor) that could belong to the same category of the target (compatible), to the opposite (incompatible) or to an irrelevant one (neutral). Later they had to report the identity (What), location (Where) and time (When) of both target objects (which had been previously responded to) and distractors (which had been ignored). Episodic memory was inferred when the three scene properties (identity, location and time) were correct. The measure of non-episodic memory consisted of those trials in which the identity was correctly remembered, but not the location or time. Our results showed that episodic memory for compatible stimuli is significantly superior to incompatible ones. In sharp contrast, non-episodic measures found superior memory for targets in the presence of incompatible distractors. Our results demonstrate that response compatibility affects the encoding of episodic and non-episodic memory traces in different ways.Keywords: episodic memory, action systems, compatible response, what-where-when task
Procedia PDF Downloads 1767781 Study the effect of bulk traps on Solar Blind Photodetector Based on an IZTO/β Ga2O3/ITO Schottky Diode
Authors: Laboratory of Semiconducting, Metallic Materials (LMSM) Biskra Algeria
Abstract:
InZnSnO2 (IZTO)/β-Ga2O3 Schottky solar barrier photodetector (PhD) exposed to 255 nm was simulated and compared to the measurement. Numerical simulations successfully reproduced the photocurrent at reverse bias and response by taking into account several factors, such as conduction mechanisms and material parameters. By adopting reducing the density of the trap as an improvement. The effect of reducing the bulk trap densities on the photocurrent, response, and time-dependent (continuous conductivity) was studied. As the trap density decreased, the photocurrent increased. The response was 0.04 A/W for the low Ga2O3 trap density. The estimated decay time for the lowest intensity ET (0.74, 1.04 eV) is 0.05 s and is shorter at ∼0.015 s for ET (0.55 eV). This indicates that the shallow traps had the dominant effect (ET = 0.55 eV) on the continuous photoconductivity phenomenon. Furthermore, with decreasing trap densities, this PhD can be considered as a self-powered solar-blind photodiode (SBPhD).Keywords: IZTO/β-Ga2O3, self-powered solar-blind photodetector, numerical simulation, bulk traps
Procedia PDF Downloads 867780 Coordinated Voltage Control in a Radial Distribution System
Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat
Abstract:
Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.Keywords: distributed generators, distributed system, reactive power, voltage control
Procedia PDF Downloads 5007779 Customized Design of Amorphous Solids by Generative Deep Learning
Authors: Yinghui Shang, Ziqing Zhou, Rong Han, Hang Wang, Xiaodi Liu, Yong Yang
Abstract:
The design of advanced amorphous solids, such as metallic glasses, with targeted properties through artificial intelligence signifies a paradigmatic shift in physical metallurgy and materials technology. Here, we developed a machine-learning architecture that facilitates the generation of metallic glasses with targeted multifunctional properties. Our architecture integrates the state-of-the-art unsupervised generative adversarial network model with supervised models, allowing the incorporation of general prior knowledge derived from thousands of data points across a vast range of alloy compositions, into the creation of data points for a specific type of composition, which overcame the common issue of data scarcity typically encountered in the design of a given type of metallic glasses. Using our generative model, we have successfully designed copper-based metallic glasses, which display exceptionally high hardness or a remarkably low modulus. Notably, our architecture can not only explore uncharted regions in the targeted compositional space but also permits self-improvement after experimentally validated data points are added to the initial dataset for subsequent cycles of data generation, hence paving the way for the customized design of amorphous solids without human intervention.Keywords: metallic glass, artificial intelligence, mechanical property, automated generation
Procedia PDF Downloads 567778 Studies on the Feasibility of Cow’s Urine as Non-Conventional Energy Sources
Authors: Raj Kumar Rajak, Bharat Mishra
Abstract:
Bio-batteries represent an entirely new long-term, reasonable, reachable, and eco-friendly approach to generation of sustainable energy. In the present experimental work, we have studied the effect of the generation of power by bio-battery using different electrode pairs. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. C-Mg electrode pair shows maximum Voltage and Short Circuit Current (SCC), while C-Zn electrode pair shows less Open Circuit Voltage (OCV) and SCC. By the studies of cow urine and different electrodes, it is found that C-Zn electrode battery is more economical. The cow urine battery with C-Zn electrode provides maximum power (707.4 mW) and durability (up to 145 h). This result shows that the bio-batteries have the potency to full fill the need of electricity demand for lower energy equipment.Keywords: bio-batteries, cow's urine, electrodes, non-conventional
Procedia PDF Downloads 2027777 Act East Policy and the Politics of the Non-Recognized Thai-Indian Diasporic Community in Thailand
Authors: Ruchi Agarwal
Abstract:
The Indian diaspora in Thailand is as ethnically diverse as any other country. Although a relatively small community, the Indian diaspora has long established its roots, some with their fifth generation now living in Thailand. The community has a solid social and economic standing recognized by the host country but lacks connections with its ethnic roots in the home country. The biggest dilemma faced by the younger generation of the Indian diasporic community is the identity crisis. Regardless of being born and brought up in Thailand and possessing Thai citizenship, they do not get recognition as Thais by their Thai counterparts. However, with the Act Asia Policy of the Indian government, there has been an increase in social and political activities organized by old and new Indian associations, bringing new hopes of recognizing the Thai-Indian diasporic community.Keywords: Indian, Thailand, diaspora, Act East Policy, Thai
Procedia PDF Downloads 1527776 Research on Fuzzy Test Framework Based on Concolic Execution
Authors: Xiong Xie, Yuhang Chen
Abstract:
Vulnerability discovery technology is a significant field of the current. In this paper, a fuzzy framework based on concolic execution has been proposed. Fuzzy test and symbolic execution are widely used in the field of vulnerability discovery technology. But each of them has its own advantages and disadvantages. During the path generation stage, path traversal algorithm based on generation is used to get more accurate path. During the constraint solving stage, dynamic concolic execution is used to avoid the path explosion. If there is external call, the concolic based on function summary is used. Experiments show that the framework can effectively improve the ability of triggering vulnerabilities and code coverage.Keywords: concolic execution, constraint solving, fuzzy test, vulnerability discovery
Procedia PDF Downloads 228