Search results for: online and adaptive learning
3908 Adoption of Proactive and Reactive Supply Chain Resilience Strategies: A Comparison between Apparel and Construction Industries in Sri Lanka
Authors: Anuradha Ranawakage, Chathurani Silva
Abstract:
With the growing expansion of global businesses, supply chains are increasingly exposed to numerous disruptions. Organizations adopt various strategies to mitigate the impact of these disruptions. Depending on the variations in the conditions and characteristics of supply chains, the adoption of resilience strategies may vary across industries. However, these differences are largely unexplored in the existing literature. Hence, this study aims to evaluate the adoption of three proactive strategies: proactive collaboration, digital connectivity, integrated SC risk management, and three reactive strategies: reactive collaboration, inventory and reserve capacity, and lifeline maintenance in the apparel and construction industries in Sri Lanka. An online questionnaire was used to collect data on the implementation of resilience strategies from a sample of 162 apparel and 185 construction companies operating in Sri Lanka. This research makes a significant contribution to the field of supply chain management by assessing the extent to which different resilience strategies are functioned within the apparel and construction industries in Sri Lanka, particularly in an era after a global pandemic that significantly disrupted supply chains all around the world.Keywords: apparel, construction, proactive strategies, reactive strategies, supply chain resilience
Procedia PDF Downloads 523907 The Effect of Manual Acupuncture-induced Injury as a Mechanism Contributing to Muscle Regeneration
Authors: Kamal Ameis
Abstract:
This study aims to further improve our understanding of the underlying mechanism of local injury that occurs after manual acupuncture needle manipulation, and that initiates the muscle regeneration process, which is essential for muscle maintenance and adaptation. Skeletal muscle is maintained by resident stem cells called muscle satellite cells. These cells are normally in quiescent state, but following muscle injury, they re-enter the cell cycle and execute a myogenic program resulting in muscle fiber regeneration. Our previous work in young rats demonstrated that acupuncture treatment induced injury that activated resident satellite (stem) cells, which leads to muscle regeneration. Skeletal muscle regeneration is an adaptive response to injury that requires a tightly orchestrated event between signaling pathways activated by growth factor and intrinsic regulatory program controlled by myogenic transcription factor. We identified several gene expressions uniquely important for muscle regeneration in response to acupuncture treatment at different time course using different biological techniques, including Immunocytochemistry, western blotting, and Real Time PCR. This study uses a novel but non-invasive model of injury induced by manual acupuncture to further our current understanding of regenerative mechanism of muscle stem cells. From a clinical perspective, this model of injury induced by manual acupuncture may be easily translatable into a clinical tool that can be used as an alternative to physical exercise for patients challenged by bed rest or forced inactivity. Finally, the knowledge gained from this research could be useful for studies of the local effects of various modalities of induced injury, such as the traditional method of healing by cupping (hijamah), which may enhanced muscle stem cells and muscle fiber regeneration.Keywords: acupuncture, injury, regeneration, muscle stem cells
Procedia PDF Downloads 1473906 Role of QR Codes in Environmental Consciousness of Apparel Consumption
Authors: Eleanor L. Kutschera
Abstract:
This study explores the possible impact that QR codes play in helping individuals make more sustainable choices regarding apparel consumption. Data was collected via an online survey to ascertain individuals’ knowledge, attitudes, and behaviors with regard to QR codes and how this impacts their decisions to purchase apparel. Results from 250 participants provide both qualitative and quantitative data that provide valuable information regarding consumers’ use of QR codes and more sustainable purchases. Specifically, results indicate that QR codes are currently under-utilized in the apparel industry but have the potential to generate more environmentally conscious purchases. Also, results posit that while the cost of the item is the most influential factor in purchasing sustainable garments, other factors such as how, where, and what it is made of are in the middle, along with the company’s story/inspiration for creation have an impact. Moreover, participants posit the use of QR codes could make them more informed and empowered consumers, and they would be more likely to make purchases that are better for the environment. Participants’ qualitative responses provide useful incentives that could increase their future sustainable purchases. Finally, this study touches on the study’s limitations, implications, and future direction of research.Keywords: digital ID, QR codes, environmental consciousness, sustainability, fashion industry, apparel consumption
Procedia PDF Downloads 1013905 Implementation of Research Papers and Industry Related Experiments by Undergraduate Students in the Field of Automation
Authors: Veena N. Hegde, S. R. Desai
Abstract:
Motivating a heterogeneous group of students towards engagement in research related activities is a challenging task in engineering education. An effort is being made at the Department of Electronics and Instrumentation Engineering, where two courses are taken up on a pilot basis to kindle research interests in students at the undergraduate level. The courses, namely algorithm and system design (ASD) and automation in process control (APC), are selected for experimentation purposes. The task is being accomplished by providing scope for implementation of research papers and proposing solutions for the current industrial problems by the student teams. The course instructors have proposed an alternative assessment tool to evaluate the undergraduate students that involve activities beyond the curriculum. The method was tested for the aforementioned two courses in a particular academic year, and as per the observations, there is a considerable improvement in the number of student engagement towards research in the subsequent years of their undergraduate course. The student groups from the third-year engineering were made to read, implement the research papers, and they were also instructed to develop simulation modules for certain processes aiming towards automation. The target audience being students, were common for both the courses and the students' strength was 30. Around 50% of successful students were given the continued tasks in the subsequent two semesters, and out of 15 students who continued from sixth semesters were able to follow the research methodology well in the seventh and eighth semesters. Further, around 30% of the students out of 15 ended up carrying out project work with a research component involved and were successful in producing four conference papers. The methodology adopted is justified using a sample data set, and the outcomes are highlighted. The quantitative and qualitative results obtained through this study prove that such practices will enhance learning experiences substantially at the undergraduate level.Keywords: industrial problems, learning experiences, research related activities, student engagement
Procedia PDF Downloads 1633904 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 883903 Reflective Portfolio to Bridge the Gap in Clinical Training
Authors: Keenoo Bibi Sumera, Alsheikh Mona, Mubarak Jan Beebee Zeba Mahetaab
Abstract:
Background: Due to the busy schedule of the practicing clinicians at the hospitals, students may not always be attended to, which is to their detriment. The clinicians at the hospitals are also not always acquainted with teaching and/or supervising students on their placements. Additionally, there is a high student-patient ratio. Since they are the prospective clinical doctors under training, they need to reach the competence levels in clinical decision-making skills to be able to serve the healthcare system of the country and to be safe doctors. Aims and Objectives: A reflective portfolio was used to provide a means for students to learn by reflecting on their experiences and obtaining continuous feedback. This practice is an attempt to compensate for the scarcity of lack of resources, that is, clinical placement supervisors and patients. It is also anticipated that it will provide learners with a continuous monitoring and learning gap analysis tool for their clinical skills. Methodology: A hardcopy reflective portfolio was designed and validated. The portfolio incorporated a mini clinical evaluation exercise (mini-CEX), direct observation of procedural skills and reflection sections. Workshops were organized for the stakeholders, that is the management, faculty and students, separately. The rationale of reflection was emphasized. Students were given samples of reflective writing. The portfolio was then implemented amongst the undergraduate medical students of years four, five and six during clinical clerkship. After 16 weeks of implementation of the portfolio, a survey questionnaire was introduced to explore how undergraduate students perceive the educational value of the reflective portfolio and its impact on their deep information processing. Results: The majority of the respondents are in MD Year 5. Out of 52 respondents, 57.7% were doing the internal medicine clinical placement rotation, and 42.3% were in Otorhinolaryngology clinical placement rotation. The respondents believe that the implementation of a reflective portfolio helped them identify their weaknesses, gain professional development in terms of helping them to identify areas where the knowledge is good, increase the learning value if it is used as a formative assessment, try to relate to different courses and in improving their professional skills. However, it is not necessary that the portfolio will improve the self-esteem of respondents or help in developing their critical thinking, The portfolio takes time to complete, and the supervisors are not useful. They had to chase supervisors for feedback. 53.8% of the respondents followed the Gibbs reflective model to write the reflection, whilst the others did not follow any guidelines to write the reflection 48.1% said that the feedback was helpful, 17.3% preferred the use of written feedback, whilst 11.5% preferred oral feedback. Most of them suggested more frequent feedback. 59.6% of respondents found the current portfolio user-friendly, and 28.8% thought it was too bulky. 27.5% have mentioned that for a mobile application. Conclusion: The reflective portfolio, through the reflection of their work and regular feedback from supervisors, has an overall positive impact on the learning process of undergraduate medical students during their clinical clerkship.Keywords: Portfolio, Reflection, Feedback, Clinical Placement, Undergraduate Medical Education
Procedia PDF Downloads 843902 Curriculum Transformation: Multidisciplinary Perspectives on ‘Decolonisation’ and ‘Africanisation’ of the Curriculum in South Africa’s Higher Education
Authors: Andre Bechuke
Abstract:
The years of 2015-2017 witnessed a huge campaign, and in some instances, violent protests in South Africa by students and some groups of academics advocating the decolonisation of the curriculum of universities. These protests have forced through high expectations for universities to teach a curriculum relevant to the country, and the continent as well as enabled South Africa to participate in the globalised world. To realise this purpose, most universities are currently undertaking steps to transform and decolonise their curriculum. However, the transformation process is challenged and delayed by lack of a collective understanding of the concepts ‘decolonisation’ and ‘africanisation’ that should guide its application. Even more challenging is lack of a contextual understanding of these concepts across different university disciplines. Against this background, and underpinned in a qualitative research paradigm, the perspectives of these concepts as applied by different university disciplines were examined in order to understand and establish their implementation in the curriculum transformation agenda. Data were collected by reviewing the teaching and learning plans of 8 faculties of an institution of higher learning in South Africa and analysed through content and textual analysis. The findings revealed varied understanding and use of these concepts in the transformation of the curriculum across faculties. Decolonisation, according to the faculties of Law and Humanities, is perceived as the eradication of the Eurocentric positioning in curriculum content and the constitutive rules and norms that control thinking. This is not done by ignoring other knowledge traditions but does call for an affirmation and validation of African views of the world and systems of thought, mixing it with current knowledge. For the Faculty of Natural and Agricultural Sciences, decolonisation is seen as making the content of the curriculum relevant to students, fulfilling the needs of industry and equipping students for job opportunities. This means the use of teaching strategies and methods that are inclusive of students from diverse cultures, and to structure the learning experience in ways that are not alien to the cultures of the students. For the Health Sciences, decolonisation of the curriculum refers to the need for a shift in Western thinking towards being more sensitive to all cultural beliefs and thoughts. Collectively, decolonisation of education thus entails that a nation must become independent with regard to the acquisition of knowledge, skills, values, beliefs, and habits. Based on the findings, for universities to successfully transform their curriculum and integrate the concepts of decolonisation and Africanisation, there is a need to contextually determine the meaning of the concepts generally and narrow them down to what they should mean to specific disciplines. Universities should refrain from considering an umbrella approach to these concepts. Decolonisation should be seen as a means and not an end. A decolonised curriculum should equally be developed based on the finest knowledge skills, values, beliefs and habits around the world and not limited to one country or continent.Keywords: Africanisation, curriculum, transformation, decolonisation, multidisciplinary perspectives, South Africa’s higher education
Procedia PDF Downloads 1603901 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model
Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira
Abstract:
This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.Keywords: neurology, intracranial pressure, medical education, simulation
Procedia PDF Downloads 1703900 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 3873899 Translating Creativity to an Educational Context: A Method to Augment the Professional Training of Newly Qualified Secondary School Teachers
Authors: Julianne Mullen-Williams
Abstract:
This paper will provide an overview of a three year mixed methods research project that explores if methods from the supervision of dramatherapy can augment the occupational psychology of newly qualified secondary school teachers. It will consider how creativity and the use of metaphor, as applied in the supervision of dramatherapists, can be translated to an educational context in order to explore the explicit / implicit dynamics between the teacher trainee/ newly qualified teacher and the organisation in order to support the super objective in training for teaching; how to ‘be a teacher.’ There is growing evidence that attrition rates among teachers are rising after only five years of service owing to too many national initiatives, an unmanageable curriculum and deteriorating student discipline. The fieldwork conducted entailed facilitating a reflective space for Newly Qualified Teachers from all subject areas, using methods from the supervision of dramatherapy, to explore the social and emotional aspects of teaching and learning with the ultimate aim of improving the occupational psychology of teachers. Clinical supervision is a formal process of professional support and learning which permits individual practitioners in frontline service jobs; counsellors, psychologists, dramatherapists, social workers and nurses to expand their knowledge and proficiency, take responsibility for their own practice, and improve client protection and safety of care in complex clinical situations. It is deemed integral to continued professional practice to safeguard vulnerable people and to reduce practitioner burnout. Dramatherapy supervision incorporates all of the above but utilises creative methods as a tool to gain insight and a deeper understanding of the situation. Creativity and the use of metaphor enable the supervisee to gain an aerial view of the situation they are exploring. The word metaphor in Greek means to ‘carry across’ indicating a transfer of meaning form one frame of reference to another. The supervision support was incorporated into each group’s induction training programme. The first year group attended fortnightly one hour sessions, the second group received two one hour sessions every term. The existing literature on the supervision and mentoring of secondary school teacher trainees calls for changes in pre-service teacher education and in the induction period. There is a particular emphasis on the need to include reflective and experiential learning, within training programmes and within the induction period, in order to help teachers manage the interpersonal dynamics and emotional impact within a high pressurised environmentKeywords: dramatherapy supervision, newly qualified secondary school teachers, professional development, teacher education
Procedia PDF Downloads 3873898 Acoustic Partial Discharge Propagation and Perfectly Matched Layer in Acoustic Detection-Transformer
Authors: Nirav J. Patel, Kalpesh K. Dudani
Abstract:
Partial discharge (PD) is the dissipation of energy caused by localized breakdown of insulation. Power transformers are one of the most important components in the electrical energy network. Insulation degradation of transformer is frequently linked to PD. This is why PD detection is used in power system to monitor the health of high voltage transformer. If such problem are not detected and repaired, the strength and frequency of PD may increase and eventually lead to the catastrophic failure of the transformer. This can further cause external equipment damage, fires and loss of revenue due to an unscheduled outage. Hence, reliable online PD detection is a critical need for power companies to improve personnel safety and decrease the probability of loss of service. The PD phenomenon is manifested in a variety of physically observable signals including Ultra High Frequency (UHF) radiation and Acoustic Disturbances, Electrical pulses. Acoustic method is based on sensing the radiated acoustic emission from discharge sites in the insulation. Propagated wave from the PD fault site are captured sensor are consequently pre-amplified, filtered, recorded and analyze.Keywords: acoustic, partial discharge, perfectly matched layer, sensor
Procedia PDF Downloads 5253897 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 723896 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3153895 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK
Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina
Abstract:
Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.Keywords: attitude, expectations, industry needs, knowledge, skills
Procedia PDF Downloads 1233894 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1283893 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study
Authors: Kaaryn Cater
Abstract:
People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity
Procedia PDF Downloads 643892 Protecting the Privacy and Trust of VIP Users on Social Network Sites
Authors: Nidal F. Shilbayeh, Sameh T. Khuffash, Mohammad H. Allymoun, Reem Al-Saidi
Abstract:
There is a real threat on the VIPs personal pages on the Social Network Sites (SNS). The real threats to these pages is violation of privacy and theft of identity through creating fake pages that exploit their names and pictures to attract the victims and spread of lies. In this paper, we propose a new secure architecture that improves the trusting and finds an effective solution to reduce fake pages and possibility of recognizing VIP pages on SNS. The proposed architecture works as a third party that is added to Facebook to provide the trust service to personal pages for VIPs. Through this mechanism, it works to ensure the real identity of the applicant through the electronic authentication of personal information by storing this information within content of their website. As a result, the significance of the proposed architecture is that it secures and provides trust to the VIPs personal pages. Furthermore, it can help to discover fake page, protect the privacy, reduce crimes of personality-theft, and increase the sense of trust and satisfaction by friends and admirers in interacting with SNS.Keywords: social network sites, online social network, privacy, trust, security and authentication
Procedia PDF Downloads 3803891 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 853890 Bringing Feminist Critical Pedagogy to the ESP Higher Education Classes: Feasibility and Challenges
Authors: Samira Essabari
Abstract:
What, unfortunately, governs the Moroccan educational philosophy and policy today is a concerning neoliberal discourse with its obsession with market logics and individualism. Critical education has been advocated to resist the neoliberal hegemony since it holds the promise to reclaim the social function of education. Significantly, the mounting forms of sexism and discrimination against women combined with hegemonic educational practices are jeopardizing the social function of teaching and learning, hence the relevance of feminist critical pedagogy. A substantial body of research worldwide has explored the ways in which feminist pedagogy can develop feminist consciousness and examine power relations in different educational contexts. In Morocco, however, the feasibility of feminist pedagogy has not been researched despite the overwhelming interest in gender issues in different educational settings. The research on critical pedagogies in Morocco remains very promising. Yet, most studies were conducted in contexts which are already engaged with issues of theory, discourse, and discourse analysis. The field of ESP ( English for Specific Purposes) is pragmatic by nature, and priority in research has been given to questions that adhere to the mainstream concerns of need analysis and study skills and ignore issues of power, gender power relations, and intersectional forms of oppression. To address these gaps in the existing literature, this participatory action research seeks to investigate the feasibility of Feminist pedagogy in ESP higher education and how it can foster feminist critical consciousness among ESP students without compromising their language learning needs. The findings of this research will contribute to research on critical applied linguistics and critical ESP more specifically and add to the practice of critical pedagogies in Moroccan higher education by providing in-depth insights into the enablers and barriers to the implementation of feminist critical pedagogy, which is still feeling its way into the educational scene in Morocco.Keywords: feminist pedagogy, critical pedagogy, power relations, gender, ESP, intersectionality
Procedia PDF Downloads 1293889 TessPy – Spatial Tessellation Made Easy
Authors: Jonas Hamann, Siavash Saki, Tobias Hagen
Abstract:
Discretization of urban areas is a crucial aspect in many spatial analyses. The process of discretization of space into subspaces without overlaps and gaps is called tessellation. It helps understanding spatial space and provides a framework for analyzing geospatial data. Tessellation methods can be divided into two groups: regular tessellations and irregular tessellations. While regular tessellation methods, like squares-grids or hexagons-grids, are suitable for addressing pure geometry problems, they cannot take the unique characteristics of different subareas into account. However, irregular tessellation methods allow the border between the subareas to be defined more realistically based on urban features like a road network or Points of Interest (POI). Even though Python is one of the most used programming languages when it comes to spatial analysis, there is currently no library that combines different tessellation methods to enable users and researchers to compare different techniques. To close this gap, we are proposing TessPy, an open-source Python package, which combines all above-mentioned tessellation methods and makes them easily accessible to everyone. The core functions of TessPy represent the five different tessellation methods: squares, hexagons, adaptive squares, Voronoi polygons, and city blocks. By using regular methods, users can set the resolution of the tessellation which defines the finesse of the discretization and the desired number of tiles. Irregular tessellation methods allow users to define which spatial data to consider (e.g., amenity, building, office) and how fine the tessellation should be. The spatial data used is open-source and provided by OpenStreetMap. This data can be easily extracted and used for further analyses. Besides the methodology of the different techniques, the state-of-the-art, including examples and future work, will be discussed. All dependencies can be installed using conda or pip; however, the former is more recommended.Keywords: geospatial data science, geospatial data analysis, tessellations, urban studies
Procedia PDF Downloads 1263888 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1383887 Overcoming Reading Barriers in an Inclusive Mathematics Classroom with Linguistic and Visual Support
Authors: A. Noll, J. Roth, M. Scholz
Abstract:
The importance of written language in a democratic society is non-controversial. Students with physical, learning, cognitive or developmental disabilities often have difficulties in understanding information which is presented in written language only. These students suffer from obstacles in diverse domains. In order to reduce such barriers in educational as well as in out-of-school areas, access to written information must be facilitated. Readability can be enhanced by linguistic simplifications like the application of easy-to-read language. Easy-to-read language shall help people with disabilities to participate socially and politically in society. The authors state, for example, that only short simple words should be used, whereas the occurrence of complex sentences should be avoided. So far, these guidelines were not empirically proved. Another way to reduce reading barriers is the use of visual support, for example, symbols. A symbol conveys, in contrast to a photo, a single idea or concept. Little empirical data about the use of symbols to foster the readability of texts exist. Nevertheless, a positive influence can be assumed, e.g., because of the multimedia principle. It indicates that people learn better from words and pictures than from words alone. A qualitative Interview and Eye-Tracking-Study, which was conducted by the authors, gives cause for the assumption that besides the illustration of single words, the visualization of complete sentences may be helpful. Thus, the effect of photos, which illustrate the content of complete sentences, is also investigated in this study. This leads us to the main research question which was focused on: Does the use of easy-to-read language and/or enriching text with symbols or photos facilitate pupils’ comprehension of learning tasks? The sample consisted of students with learning difficulties (N = 144) and students without SEN (N = 159). The students worked on the tasks, which dealt with introducing fractions, individually. While experimental group 1 received a linguistically simplified version of the tasks, experimental group 2 worked with a variation which was linguistically simplified and furthermore, the keywords of the tasks were visualized by symbols. Experimental group 3 worked on exercises which were simplified by easy-to-read-language and the content of the whole sentences was illustrated by photos. Experimental group 4 received a not simplified version. The participants’ reading ability and their IQ was elevated beforehand to build four comparable groups. There is a significant effect of the different setting on the students’ results F(3,140) = 2,932; p = 0,036*. A post-hoc-analyses with multiple comparisons shows that this significance results from the difference between experimental group 3 and 4. The students in the group easy-to-read language plus photos worked on the exercises significantly more successfully than the students who worked in the group with no simplifications. Further results which refer, among others, to the influence of the students reading ability will be presented at the ICERI 2018.Keywords: inclusive education, mathematics education, easy-to-read language, photos, symbols, special educational needs
Procedia PDF Downloads 1513886 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5143885 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application
Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko
Abstract:
Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health
Procedia PDF Downloads 2393884 Methodology for Developing an Intelligent Tutoring System Based on Marzano’s Taxonomy
Authors: Joaquin Navarro Perales, Ana Lidia Franzoni Velázquez, Francisco Cervantes Pérez
Abstract:
The Mexican educational system faces diverse challenges related with the quality and coverage of education. The development of Intelligent Tutoring Systems (ITS) may help to solve some of them by helping teachers to customize their classes according to the performance of the students in online courses. In this work, we propose the adaptation of a functional ITS based on Bloom’s taxonomy called Sistema de Apoyo Generalizado para la Enseñanza Individualizada (SAGE), to measure student’s metacognition and their emotional response based on Marzano’s taxonomy. The students and the system will share the control over the advance in the course, so they can improve their metacognitive skills. The system will not allow students to get access to subjects not mastered yet. The interaction between the system and the student will be implemented through Natural Language Processing techniques, thus avoiding the use of sensors to evaluate student’s response. The teacher will evaluate student’s knowledge utilization, which is equivalent to the last cognitive level in Marzano’s taxonomy.Keywords: intelligent tutoring systems, student modelling, metacognition, affective computing, natural language processing
Procedia PDF Downloads 1953883 Presentation of a Mix Algorithm for Estimating the Battery State of Charge Using Kalman Filter and Neural Networks
Authors: Amin Sedighfar, M. R. Moniri
Abstract:
Determination of state of charge (SOC) in today’s world becomes an increasingly important issue in all the applications that include a battery. In fact, estimation of the SOC is a fundamental need for the battery, which is the most important energy storage in Hybrid Electric Vehicles (HEVs), smart grid systems, drones, UPS and so on. Regarding those applications, the SOC estimation algorithm is expected to be precise and easy to implement. This paper presents an online method for the estimation of the SOC of Valve-Regulated Lead Acid (VRLA) batteries. The proposed method uses the well-known Kalman Filter (KF), and Neural Networks (NNs) and all of the simulations have been done with MATLAB software. The NN is trained offline using the data collected from the battery discharging process. A generic cell model is used, and the underlying dynamic behavior of the model has used two capacitors (bulk and surface) and three resistors (terminal, surface, and end), where the SOC determined from the voltage represents the bulk capacitor. The aim of this work is to compare the performance of conventional integration-based SOC estimation methods with a mixed algorithm. Moreover, by containing the effect of temperature, the final result becomes more accurate.Keywords: Kalman filter, neural networks, state-of-charge, VRLA battery
Procedia PDF Downloads 1913882 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 923881 An Efficient Stud Krill Herd Framework for Solving Non-Convex Economic Dispatch Problem
Authors: Bachir Bentouati, Lakhdar Chaib, Saliha Chettih, Gai-Ge Wang
Abstract:
The problem of economic dispatch (ED) is the basic problem of power framework, its main goal is to find the most favorable generation dispatch to generate each unit, reduce the whole power generation cost, and meet all system limitations. A heuristic algorithm, recently developed called Stud Krill Herd (SKH), has been employed in this paper to treat non-convex ED problems. The proposed KH has been modified using Stud selection and crossover (SSC) operator, to enhance the solution quality and avoid local optima. We are demonstrated SKH effects in two case study systems composed of 13-unit and 40-unit test systems to verify its performance and applicability in solving the ED problems. In the above systems, SKH can successfully obtain the best fuel generator and distribute the load requirements for the online generators. The results showed that the use of the proposed SKH method could reduce the total cost of generation and optimize the fulfillment of the load requirements.Keywords: stud krill herd, economic dispatch, crossover, stud selection, valve-point effect
Procedia PDF Downloads 1973880 Protocol for Consumer Research in Academia for Community Marketing Campaigns
Authors: Agnes J. Otjen, Sarah Keller
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.Keywords: consumer, research, marketing, communications
Procedia PDF Downloads 1363879 A Reflection on the Professional Development Journey of Science Educators
Authors: M. Shaheed Hartley
Abstract:
Science and mathematics are regarded as gateway subjects in South Africa as they are the perceived route to careers in science, engineering, technology and mathematics (STEM). One of the biggest challenges that the country faces is the poor achievement of learners in these two learning areas in the external high school exit examination. To compound the problem many national and international benchmark tests paint a bleak picture of the state of science and mathematics in the country. In an attempt to address this challenge, the education department of the Eastern Cape Province invited the Science Learning Centre of the University of the Western Cape to provide training to their science teachers in the form of a structured course conducted on a part-time basis in 2010 and 2011. The course was directed at improving teachers’ content knowledge, pedagogical strategies and practical and experimental skills. A total of 41 of the original 50 science teachers completed the course and received their certificates in 2012. As part of their continuous professional development, 31 science teachers enrolled for BEd Hons in science education in 2013 and 28 of them completed the course in 2014. These students graduated in 2015. Of the 28 BEd Hons students who completed the course 23 registered in 2015 for Masters in Science Education and were joined by an additional 3 students. This paper provides a reflection by science educators on the training, supervision and mentorship provided to them as students of science education. The growth and development of students through their own reflection and understanding as well as through the eyes of the lecturers and supervisors that took part in the training provide the evaluation of the professional development process over the past few years. This study attempts to identify the merits, challenges and limitations of this project and the lessons to be learnt on such projects. It also documents some of the useful performance indicators with a view to developing a framework for good practice for such programmes.Keywords: reflection, science education, professional development, rural schools
Procedia PDF Downloads 194