Search results for: estimates
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 685

Search results for: estimates

655 Using Arellano-Bover/Blundell-Bond Estimator in Dynamic Panel Data Analysis – Case of Finnish Housing Price Dynamics

Authors: Janne Engblom, Elias Oikarinen

Abstract:

A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models are dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Arellano-Bover/Blundell-Bond Generalized method of moments (GMM) estimator which is an extension of the Arellano-Bond model where past values and different transformations of past values of the potentially problematic independent variable are used as instruments together with other instrumental variables. The Arellano–Bover/Blundell–Bond estimator augments Arellano–Bond by making an additional assumption that first differences of instrument variables are uncorrelated with the fixed effects. This allows the introduction of more instruments and can dramatically improve efficiency. It builds a system of two equations—the original equation and the transformed one—and is also known as system GMM. In this study, Finnish housing price dynamics were examined empirically by using the Arellano–Bover/Blundell–Bond estimation technique together with ordinary OLS. The aim of the analysis was to provide a comparison between conventional fixed-effects panel data models and dynamic panel data models. The Arellano–Bover/Blundell–Bond estimator is suitable for this analysis for a number of reasons: It is a general estimator designed for situations with 1) a linear functional relationship; 2) one left-hand-side variable that is dynamic, depending on its own past realizations; 3) independent variables that are not strictly exogenous, meaning they are correlated with past and possibly current realizations of the error; 4) fixed individual effects; and 5) heteroskedasticity and autocorrelation within individuals but not across them. Based on data of 14 Finnish cities over 1988-2012 differences of short-run housing price dynamics estimates were considerable when different models and instrumenting were used. Especially, the use of different instrumental variables caused variation of model estimates together with their statistical significance. This was particularly clear when comparing estimates of OLS with different dynamic panel data models. Estimates provided by dynamic panel data models were more in line with theory of housing price dynamics.

Keywords: dynamic model, fixed effects, panel data, price dynamics

Procedia PDF Downloads 1501
654 Consumption Insurance against the Chronic Illness: Evidence from Thailand

Authors: Yuthapoom Thanakijborisut

Abstract:

This paper studies consumption insurance against the chronic illness in Thailand. The study estimates the impact of household consumption in the chronic illness on consumption growth. Chronic illness is the health care costs of a person or a household’s decision in treatment for the long term; the causes and effects of the household’s ability for smooth consumption. The chronic illnesses are measured in health status when at least one member within the household faces the chronic illness. The data used is from the Household Social Economic Panel Survey conducted during 2007 and 2012. The survey collected data from approximately 6,000 households from every province, both inside and outside municipal areas in Thailand. The study estimates the change in household consumption by using an ordinary least squares (OLS) regression model. The result shows that the members within the household facing the chronic illness would reduce the consumption by around 4%. This case indicates that consumption insurance in Thailand is quite sufficient against chronic illness.

Keywords: consumption insurance, chronic illness, health care, Thailand

Procedia PDF Downloads 237
653 Derivation of Bathymetry from High-Resolution Satellite Images: Comparison of Empirical Methods through Geographical Error Analysis

Authors: Anusha P. Wijesundara, Dulap I. Rathnayake, Nihal D. Perera

Abstract:

Bathymetric information is fundamental importance to coastal and marine planning and management, nautical navigation, and scientific studies of marine environments. Satellite-derived bathymetry data provide detailed information in areas where conventional sounding data is lacking and conventional surveys are inaccessible. The two empirical approaches of log-linear bathymetric inversion model and non-linear bathymetric inversion model are applied for deriving bathymetry from high-resolution multispectral satellite imagery. This study compares these two approaches by means of geographical error analysis for the site Kankesanturai using WorldView-2 satellite imagery. Based on the Levenberg-Marquardt method calibrated the parameters of non-linear inversion model and the multiple-linear regression model was applied to calibrate the log-linear inversion model. In order to calibrate both models, Single Beam Echo Sounding (SBES) data in this study area were used as reference points. Residuals were calculated as the difference between the derived depth values and the validation echo sounder bathymetry data and the geographical distribution of model residuals was mapped. The spatial autocorrelation was calculated by comparing the performance of the bathymetric models and the results showing the geographic errors for both models. A spatial error model was constructed from the initial bathymetry estimates and the estimates of autocorrelation. This spatial error model is used to generate more reliable estimates of bathymetry by quantifying autocorrelation of model error and incorporating this into an improved regression model. Log-linear model (R²=0.846) performs better than the non- linear model (R²=0.692). Finally, the spatial error models improved bathymetric estimates derived from linear and non-linear models up to R²=0.854 and R²=0.704 respectively. The Root Mean Square Error (RMSE) was calculated for all reference points in various depth ranges. The magnitude of the prediction error increases with depth for both the log-linear and the non-linear inversion models. Overall RMSE for log-linear and the non-linear inversion models were ±1.532 m and ±2.089 m, respectively.

Keywords: log-linear model, multi spectral, residuals, spatial error model

Procedia PDF Downloads 295
652 There Is No Meaningful Opportunity in Meaningless Data: Why It Is Unconstitutional to Use Life Expectancy Tables in Post-Graham Sentences

Authors: Stacie Nelson Colling, Adele Cummings

Abstract:

The United States Supreme Court recently announced that it is unconstitutional to sentence a child to life without parole for non-homicide offenses, and that each child so situated must be afforded a meaningful opportunity for release from prison in his lifetime. The Court also declared that it is unconstitutional to impose a mandatory sentence of life without parole on a child for homicide offenses. Across the United States, attorneys and advocates continue to litigate issues surrounding the implementation of these legal principles. Some states have held that any sentence to a finite term of years, no matter how long, is not the same as ‘life’ and therefore does not violate the constitution. Other states have held that a sentence to a term of years that is less than the expected life of that particular child is not unconstitutional. In Colorado, the courts have routinely looked to life expectancy estimates from governmental organizations to determine how long a particular child is expected to live. They then compare that the date that the child is expected to be eligible for parole, and if the child is expected to still be living when he is eligible for parole, the sentence is deemed constitutional. This paper argues that it is inappropriate, reckless, unconstitutional and not scientifically sound to use such estimates in determining whether a child will have a meaningful opportunity for release from prison and life outside of prison before he dies. This paper argues that the opportunity for release must mean more than a probability that a child will be released before his death, and that it must include an opportunity for a meaningful life outside of prison (not just the opportunity to be released and then die on the outside). The paper further argues that life expectancy estimates cannot guide a court or a legislature in determining whether a sentence is or is not constitutional.

Keywords: life without parole, life expectancy, juvenile sentencing, meaningful opportunity for release from prison

Procedia PDF Downloads 392
651 Applications of Out-of-Sequence Thrust Movement for Earthquake Mitigation: A Review

Authors: Rajkumar Ghosh

Abstract:

The study presents an overview of the many uses and approaches for estimating out-of-sequence thrust movement in earthquake mitigation. The study investigates how knowing and forecasting thrust movement during seismic occurrences might assist to effective earthquake mitigation measures. The review begins by discussing out-of-sequence thrust movement and its importance in earthquake mitigation strategies. It explores how typical techniques of estimating thrust movement may not capture the full complexity of seismic occurrences and emphasizes the benefits of include out-of-sequence data in the analysis. A thorough review of existing research and studies on out-of-sequence thrust movement estimates for earthquake mitigation. The study demonstrates how to estimate out-of-sequence thrust movement using multiple data sources such as GPS measurements, satellite imagery, and seismic recordings. The study also examines the use of out-of-sequence thrust movement estimates in earthquake mitigation measures. It investigates how precise calculation of thrust movement may help improve structural design, analyse infrastructure risk, and develop early warning systems. The potential advantages of using out-of-sequence data in these applications to improve the efficiency of earthquake mitigation techniques. The difficulties and limits of estimating out-of-sequence thrust movement for earthquake mitigation. It addresses data quality difficulties, modelling uncertainties, and computational complications. To address these obstacles and increase the accuracy and reliability of out-of-sequence thrust movement estimates, the authors recommend topics for additional study and improvement. The study is a helpful resource for seismic monitoring and earthquake risk assessment researchers, engineers, and policymakers, supporting innovations in earthquake mitigation measures based on a better knowledge of thrust movement dynamics.

Keywords: earthquake mitigation, out-of-sequence thrust, satellite imagery, seismic recordings, GPS measurements

Procedia PDF Downloads 82
650 Parameter Estimation with Uncertainty and Sensitivity Analysis for the SARS Outbreak in Hong Kong

Authors: Afia Naheed, Manmohan Singh, David Lucy

Abstract:

This work is based on a mathematical as well as statistical study of an SEIJTR deterministic model for the interpretation of transmission of severe acute respiratory syndrome (SARS). Based on the SARS epidemic in 2003, the parameters are estimated using Runge-Kutta (Dormand-Prince pairs) and least squares methods. Possible graphical and numerical techniques are used to validate the estimates. Then effect of the model parameters on the dynamics of the disease is examined using sensitivity and uncertainty analysis. Sensitivity and uncertainty analytical techniques are used in order to analyze the affect of the uncertainty in the obtained parameter estimates and to determine which parameters have the largest impact on controlling the disease dynamics.

Keywords: infectious disease, severe acute respiratory syndrome (SARS), parameter estimation, sensitivity analysis, uncertainty analysis, Runge-Kutta methods, Levenberg-Marquardt method

Procedia PDF Downloads 358
649 Aerodynamic Modeling Using Flight Data at High Angle of Attack

Authors: Rakesh Kumar, A. K. Ghosh

Abstract:

The paper presents the modeling of linear and nonlinear longitudinal aerodynamics using real flight data of Hansa-3 aircraft gathered at low and high angles of attack. The Neural-Gauss-Newton (NGN) method has been applied to model the linear and nonlinear longitudinal dynamics and estimate parameters from flight data. Unsteady aerodynamics due to flow separation at high angles of attack near stall has been included in the aerodynamic model using Kirchhoff’s quasi-steady stall model. NGN method is an algorithm that utilizes Feed Forward Neural Network (FFNN) and Gauss-Newton optimization to estimate the parameters and it does not require any a priori postulation of mathematical model or solving of equations of motion. NGN method was validated on real flight data generated at moderate angles of attack before application to the data at high angles of attack. The estimates obtained from compatible flight data using NGN method were validated by comparing with wind tunnel values and the maximum likelihood estimates. Validation was also carried out by comparing the response of measured motion variables with the response generated by using estimates a different control input. Next, NGN method was applied to real flight data generated by executing a well-designed quasi-steady stall maneuver. The results obtained in terms of stall characteristics and aerodynamic parameters were encouraging and reasonably accurate to establish NGN as a method for modeling nonlinear aerodynamics from real flight data at high angles of attack.

Keywords: parameter estimation, NGN method, linear and nonlinear, aerodynamic modeling

Procedia PDF Downloads 443
648 Assisting Dating of Greek Papyri Images with Deep Learning

Authors: Asimina Paparrigopoulou, John Pavlopoulos, Maria Konstantinidou

Abstract:

Dating papyri accurately is crucial not only to editing their texts but also for our understanding of palaeography and the history of writing, ancient scholarship, material culture, networks in antiquity, etc. Most ancient manuscripts offer little evidence regarding the time of their production, forcing papyrologists to date them on palaeographical grounds, a method often criticized for its subjectivity. By experimenting with data obtained from the Collaborative Database of Dateable Greek Bookhands and the PapPal online collections of objectively dated Greek papyri, this study shows that deep learning dating models, pre-trained on generic images, can achieve accurate chronological estimates for a test subset (67,97% accuracy for book hands and 55,25% for documents). To compare the estimates of these models with those of humans, experts were asked to complete a questionnaire with samples of literary and documentary hands that had to be sorted chronologically by century. The same samples were dated by the models in question. The results are presented and analysed.

Keywords: image classification, papyri images, dating

Procedia PDF Downloads 77
647 Integration of Fuzzy Logic in the Representation of Knowledge: Application in the Building Domain

Authors: Hafida Bouarfa, Mohamed Abed

Abstract:

The main object of our work is the development and the validation of a system indicated Fuzzy Vulnerability. Fuzzy Vulnerability uses a fuzzy representation in order to tolerate the imprecision during the description of construction. At the the second phase, we evaluated the similarity between the vulnerability of a new construction and those of the whole of the historical cases. This similarity is evaluated on two levels: 1) individual similarity: bases on the fuzzy techniques of aggregation; 2) Global similarity: uses the increasing monotonous linguistic quantifiers (RIM) to combine the various individual similarities between two constructions. The third phase of the process of Fuzzy Vulnerability consists in using vulnerabilities of historical constructions narrowly similar to current construction to deduce its estimate vulnerability. We validated our system by using 50 cases. We evaluated the performances of Fuzzy Vulnerability on the basis of two basic criteria, the precision of the estimates and the tolerance of the imprecision along the process of estimation. The comparison was done with estimates made by tiresome and long models. The results are satisfactory.

Keywords: case based reasoning, fuzzy logic, fuzzy case based reasoning, seismic vulnerability

Procedia PDF Downloads 291
646 Optimal Pricing Based on Real Estate Demand Data

Authors: Vanessa Kummer, Maik Meusel

Abstract:

Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.

Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning

Procedia PDF Downloads 284
645 Cancer Burden and Policy Needs in the Democratic Republic of the Congo: A Descriptive Study

Authors: Jean Paul Muambangu Milambo, Peter Nyasulu, John Akudugu, Leonidas Ndayisaba, Joyce Tsoka-Gwegweni, Lebwaze Massamba Bienvenu, Mitshindo Mwambangu Chiro

Abstract:

In 2018, non-communicable diseases (NCDs) were responsible for 48% of deaths in the Democratic Republic of Congo (DRC), with cancer contributing to 5% of these deaths. There is a notable absence of cancer registries, capacity-building activities, budgets, and treatment roadmaps in the DRC. Current cancer estimates are primarily based on mathematical modeling with limited data from neighboring countries. This study aimed to assess cancer subtype prevalence in Kinshasa hospitals and compare these findings with WHO model estimates. Methods: A retrospective observational study was conducted from 2018 to 2020 at HJ Hospitals in Kinshasa. Data were collected using American Cancer Society (ACS) questionnaires and physician logs. Descriptive analysis was performed using STATA version 16 to estimate cancer burden and provide evidence-based recommendations. Results: The results from the chart review at HJ Hospitals in Kinshasa (2018-2020) indicate that out of 6,852 samples, approximately 11.16% were diagnosed with cancer. The distribution of cancer subtypes in this cohort was as follows: breast cancer (33.6%), prostate cancer (21.8%), colorectal cancer (9.6%), lymphoma (4.6%), and cervical cancer (4.4%). These figures are based on histopathological confirmation at the facility and may not fully represent the broader population due to potential selection biases related to geographic and financial accessibility to the hospital. In contrast, the World Health Organization (WHO) model estimates for cancer prevalence in the DRC show different proportions. According to WHO data, the distribution of cancer types is as follows: cervical cancer (15.9%), prostate cancer (15.3%), breast cancer (14.9%), liver cancer (6.8%), colorectal cancer (5.9%), and other cancers (41.2%) (WHO, 2020). Conclusion: The data indicate a rising cancer prevalence in DRC but highlight significant gaps in clinical, biomedical, and genetic cancer data. The establishment of a population-based cancer registry (PBCR) and a defined cancer management pathway is crucial. The current estimates are limited due to data scarcity and inconsistencies in clinical practices. There is an urgent need for multidisciplinary cancer management, integration of palliative care, and improvement in care quality based on evidence-based measures.

Keywords: cancer, risk factors, DRC, gene-environment interactions, survivors

Procedia PDF Downloads 18
644 Illegal Anthropogenic Activity Drives Large Mammal Population Declines in an African Protected Area

Authors: Oluseun A. Akinsorotan, Louise K. Gentle, Md. Mofakkarul Islam, Richard W. Yarnell

Abstract:

High levels of anthropogenic activity such as habitat destruction, poaching and encroachment into natural habitat have resulted in significant global wildlife declines. In order to protect wildlife, many protected areas such as national parks have been created. However, it is argued that many protected areas are only protected in name and are often exposed to continued, and often illegal, anthropogenic pressure. In West African protected areas, declines of large mammals have been documented between 1962 and 2008. This study aimed to produce occupancy estimates of the remaining large mammal fauna in the third largest National Park in Nigeria, Old Oyo, and to compare the estimates with historic estimates while also attempting to quantify levels of illegal anthropogenic activity using a multi-disciplinary approach. Large mammal populations and levels of illegal anthropogenic activity were assessed using empirical field data (camera trapping and transect surveys) in combination with data from questionnaires completed by local villagers and park rangers. Four of the historically recorded species in the park, lion (Panthera leo), hunting dog (Lycaon pictus), elephant (Loxodonta africana) and buffalo (Syncerus caffer) were not detected during field studies nor were they reported by respondents. In addition, occupancy estimates of hunters and illegal grazers were higher than the majority of large mammal species inside the park. This finding was reinforced by responses from the villagers and rangers who’s perception was that large mammal densities in the park were declining, and that a large proportion of the local people were entering the park to hunt wild animals and graze their domestic livestock. Our findings also suggest that widespread poverty and a lack of alternative livelihood opportunities, culture of consuming bushmeat, lack of education and awareness of the value of protected areas, and weak law enforcement are some of the reasons for the illegal activity. Law enforcement authorities were often constrained by insufficient on-site personnel and a lack of modern equipment and infrastructure to deter illegal activities. We conclude that there is a need to address the issue of illegal hunting and livestock grazing, via provision of alternative livelihoods, in combination with community outreach programmes that aim to improve conservation education and awareness and develop the capacity of the conservation authorities in order to achieve conservation goals. Our findings have implications for the conservation management of all protected areas that are available for exploitation by local communities.

Keywords: camera trapping, conservation, extirpation, illegal grazing, large mammals, national park, occupancy estimates, poaching

Procedia PDF Downloads 294
643 Estimating Occupancy in Residential Context Using Bayesian Networks for Energy Management

Authors: Manar Amayri, Hussain Kazimi, Quoc-Dung Ngo, Stephane Ploix

Abstract:

A general approach is proposed to determine occupant behavior (occupancy and activity) in residential buildings and to use these estimates for improved energy management. Occupant behaviour is modelled with a Bayesian Network in an unsupervised manner. This algorithm makes use of domain knowledge gathered via questionnaires and recorded sensor data for motion detection, power, and hot water consumption as well as indoor CO₂ concentration. Two case studies are presented which show the real world applicability of estimating occupant behaviour in this way. Furthermore, experiments integrating occupancy estimation and hot water production control show that energy efficiency can be increased by roughly 5% over known optimal control techniques and more than 25% over rule-based control while maintaining the same occupant comfort standards. The efficiency gains are strongly correlated with occupant behaviour and accuracy of the occupancy estimates.

Keywords: energy, management, control, optimization, Bayesian methods, learning theory, sensor networks, knowledge modelling and knowledge based systems, artificial intelligence, buildings

Procedia PDF Downloads 368
642 First Cracking Moments of Hybrid Fiber Reinforced Polymer-Steel Reinforced Concrete Beams

Authors: Saruhan Kartal, Ilker Kalkan

Abstract:

The present paper reports the cracking moment estimates of a set of steel-reinforced, Fiber Reinforced Polymer (FRP)-reinforced and hybrid steel-FRP reinforced concrete beams, calculated from different analytical formulations in the codes, together with the experimental cracking load values. A total of three steel-reinforced, four FRP-reinforced, 12 hybrid FRP-steel over-reinforced and five hybrid FRP-steel under-reinforced concrete beam tests were analyzed within the scope of the study. Glass FRP (GFRP) and Basalt FRP (BFRP) bars were used in the beams as FRP bars. In under-reinforced hybrid beams, rupture of the FRP bars preceded crushing of concrete, while concrete crushing preceded FRP rupture in over-reinforced beams. In both types, steel yielding took place long before the FRP rupture and concrete crushing. The cracking moment mainly depends on two quantities, namely the moment of inertia of the section at the initiation of cracking and the flexural tensile strength of concrete, i.e. the modulus of rupture. In the present study, two different definitions of uncracked moment of inertia, i.e. the gross and the uncracked transformed moments of inertia, were adopted. Two analytical equations for the modulus of rupture (ACI 318M and Eurocode 2) were utilized in the calculations as well as the experimental tensile strength of concrete from prismatic specimen tests. The ACI 318M modulus of rupture expression produced cracking moment estimates closer to the experimental cracking moments of FRP-reinforced and hybrid FRP-steel reinforced concrete beams when used in combination with the uncracked transformed moment of inertia, yet the Eurocode 2 modulus of rupture expression gave more accurate cracking moment estimates in steel-reinforced concrete beams. All of the analytical definitions produced analytical values considerably different from the experimental cracking load values of the solely FRP-reinforced concrete beam specimens.

Keywords: polymer reinforcement, four-point bending, hybrid use of reinforcement, cracking moment

Procedia PDF Downloads 138
641 A Sequential Approach for Random-Effects Meta-Analysis

Authors: Samson Henry Dogo, Allan Clark, Elena Kulinskaya

Abstract:

The objective in meta-analysis is to combine results from several independent studies in order to create generalization and provide evidence based for decision making. But recent studies show that the magnitude of effect size estimates reported in many areas of research finding changed with year publication and this can impair the results and conclusions of meta-analysis. A number of sequential methods have been proposed for monitoring the effect size estimates in meta-analysis. However they are based on statistical theory applicable to fixed effect model (FEM). For random-effects model (REM), the analysis incorporates the heterogeneity variance, tau-squared and its estimation create complications. In this paper proposed the use of Gombay and Serbian (2005) truncated CUSUM-type test with asymptotically valid critical values for sequential monitoring of REM. Simulation results show that the test does not control the Type I error well, and is not recommended. Further work required to derive an appropriate test in this important area of application.

Keywords: meta-analysis, random-effects model, sequential test, temporal changes in effect sizes

Procedia PDF Downloads 466
640 Understanding the Role of Gas Hydrate Morphology on the Producibility of a Hydrate-Bearing Reservoir

Authors: David Lall, Vikram Vishal, P. G. Ranjith

Abstract:

Numerical modeling of gas production from hydrate-bearing reservoirs requires the solution of various thermal, hydrological, chemical, and mechanical phenomena in a coupled manner. Among the various reservoir properties that influence gas production estimates, the distribution of permeability across the domain is one of the most crucial parameters since it determines both heat transfer and mass transfer. The aspect of permeability in hydrate-bearing reservoirs is particularly complex compared to conventional reservoirs since it depends on the saturation of gas hydrates and hence, is dynamic during production. The dependence of permeability on hydrate saturation is mathematically represented using permeability-reduction models, which are specific to the expected morphology of hydrate accumulations (such as grain-coating or pore-filling hydrates). In this study, we demonstrate the impact of various permeability-reduction models, and consequently, different morphologies of hydrate deposits on the estimates of gas production using depressurization at the reservoir scale. We observe significant differences in produced water volumes and cumulative mass of produced gas between the models, thereby highlighting the uncertainty in production behavior arising from the ambiguity in the prevalent gas hydrate morphology.

Keywords: gas hydrate morphology, multi-scale modeling, THMC, fluid flow in porous media

Procedia PDF Downloads 218
639 Nutrition Budgets in Uganda: Research to Inform Implementation

Authors: Alexis D'Agostino, Amanda Pomeroy

Abstract:

Background: Resource availability is essential to effective implementation of national nutrition policies. To this end, the SPRING Project has collected and analyzed budget data from government ministries in Uganda, international donors, and other nutrition implementers to provide data for the first time on what funding is actually allocated to implement nutrition activities named in the national nutrition plan. Methodology: USAID’s SPRING Project used the Uganda Nutrition Action Plan (UNAP) as the starting point for budget analysis. Thorough desk reviews of public budgets from government, donors, and NGOs were mapped to activities named in the UNAP and validated by key informants (KIs) across the stakeholder groups. By relying on nationally-recognized and locally-created documents, SPRING provided a familiar basis for discussions to increase credibility and local ownership of findings. Among other things, the KIs validated the amount, source, and type (specific or sensitive) of funding. When only high-level budget data were available, KIs provided rough estimates of the percentage of allocations that were actually nutrition-relevant, allowing creation of confidence intervals around some funding estimates. Results: After validating data and narrowing in on estimates of funding to nutrition-relevant programming, researchers applied a formula to estimate overall nutrition allocations. In line with guidance by the SUN Movement and its three-step process, nutrition-specific funding was counted at 100% of its allocation amount, while nutrition sensitive funding was counted at 25%. The vast majority of nutrition funding in Uganda is off-budget, with over 90 percent of all nutrition funding is provided outside of the government system. Overall allocations are split nearly evenly between nutrition-specific and –sensitive activities. In FY 2013/14, the two-year study’s baseline year, on- and off-budget funding for nutrition was estimated to be around 60 million USD. While the 60 million USD allocations compare favorably to the 66 million USD estimate of the cost of the UNAP, not all activities are sufficiently funded. Those activities with a focus on behavior change were the most underfunded. In addition, accompanying qualitative research suggested that donor funding for nutrition activities may shift government funding into other areas of work, making it difficult to estimate the sustainability of current nutrition investments.Conclusions: Beyond providing figures, these estimates can be used together with the qualitative results of the study to explain how and why these amounts were allocated for particular activities and not others, examine the negotiation process that occurred, and suggest options for improving the flow of finances to UNAP activities for the remainder of the policy tenure. By the end of the PBN study, several years of nutrition budget estimates will be available to compare changes in funding over time. Halfway through SPRING’s work, there is evidence that country stakeholders have begun to feel ownership over the ultimate findings and some ministries are requesting increased technical assistance in nutrition budgeting. Ultimately, these data can be used within organization to advocate for more and improved nutrition funding and to improve targeting of nutrition allocations.

Keywords: budget, nutrition, financing, scale-up

Procedia PDF Downloads 443
638 Wage Differentiation Patterns of Households Revisited for Turkey in Same Industry Employment: A Pseudo-Panel Approach

Authors: Yasin Kutuk, Bengi Yanik Ilhan

Abstract:

Previous studies investigate the wage differentiations among regions in Turkey between couples who work in the same industry and those who work in different industries by using the models that is appropriate for cross sectional data. However, since there is no available panel data for this investigation in Turkey, pseudo panels using repeated cross-section data sets of the Household Labor Force Surveys 2004-2014 are employed in order to open a new way to examine wage differentiation patterns. For this purpose, household heads are separated into groups with respect to their household composition. These groups’ membership is assumed to be fixed over time such as age groups, education, gender, and NUTS1 (12 regions) Level. The average behavior of them can be tracked overtime same as in the panel data. Estimates using the pseudo panel data would be consistent with the estimates using genuine panel data on individuals if samples are representative of the population which has fixed composition, characteristics. With controlling the socioeconomic factors, wage differentiation of household income is affected by social, cultural and economic changes after global economic crisis emerged in US. It is also revealed whether wage differentiation is changing among the birth cohorts.

Keywords: wage income, same industry, pseudo panel, panel data econometrics

Procedia PDF Downloads 396
637 Measurement and Modelling of HIV Epidemic among High Risk Groups and Migrants in Two Districts of Maharashtra, India: An Application of Forecasting Software-Spectrum

Authors: Sukhvinder Kaur, Ashok Agarwal

Abstract:

Background: For the first time in 2009, India was able to generate estimates of HIV incidence (the number of new HIV infections per year). Analysis of epidemic projections helped in revealing that the number of new annual HIV infections in India had declined by more than 50% during the last decade (GOI Ministry of Health and Family Welfare, 2010). Then, National AIDS Control Organisation (NACO) planned to scale up its efforts in generating projections through epidemiological analysis and modelling by taking recent available sources of evidence such as HIV Sentinel Surveillance (HSS), India Census data and other critical data sets. Recently, NACO generated current round of HIV estimates-2012 through globally recommended tool “Spectrum Software” and came out with the estimates for adult HIV prevalence, annual new infections, number of people living with HIV, AIDS-related deaths and treatment needs. State level prevalence and incidence projections produced were used to project consequences of the epidemic in spectrum. In presence of HIV estimates generated at state level in India by NACO, USIAD funded PIPPSE project under the leadership of NACO undertook the estimations and projections to district level using same Spectrum software. In 2011, adult HIV prevalence in one of the high prevalent States, Maharashtra was 0.42% ahead of the national average of 0.27%. Considering the heterogeneity of HIV epidemic between districts, two districts of Maharashtra – Thane and Mumbai were selected to estimate and project the number of People-Living-with-HIV/AIDS (PLHIV), HIV-prevalence among adults and annual new HIV infections till 2017. Methodology: Inputs in spectrum included demographic data from Census of India since 1980 and sample registration system, programmatic data on ‘Alive and on ART (adult and children)’,‘Mother-Baby pairs under PPTCT’ and ‘High Risk Group (HRG)-size mapping estimates’, surveillance data from various rounds of HSS, National Family Health Survey–III, Integrated Biological and Behavioural Assessment and Behavioural Sentinel Surveillance. Major Findings: Assuming current programmatic interventions in these districts, an estimated decrease of 12% points in Thane and 31% points in Mumbai among new infections in HRGs and migrants is observed from 2011 by 2017. Conclusions: Project also validated decrease in HIV new infection among one of the high risk groups-FSWs using program cohort data since 2012 to 2016. Though there is a decrease in HIV prevalence and new infections in Thane and Mumbai, further decrease is possible if appropriate programme response, strategies and interventions are envisaged for specific target groups based on this evidence. Moreover, evidence need to be validated by other estimation/modelling techniques; and evidence can be generated for other districts of the state, where HIV prevalence is high and reliable data sources are available, to understand the epidemic within the local context.

Keywords: HIV sentinel surveillance, high risk groups, projections, new infections

Procedia PDF Downloads 210
636 Frailty Models for Modeling Heterogeneity: Simulation Study and Application to Quebec Pension Plan

Authors: Souad Romdhane, Lotfi Belkacem

Abstract:

When referring to actuarial analysis of lifetime, only models accounting for observable risk factors have been developed. Within this context, Cox proportional hazards model (CPH model) is commonly used to assess the effects of observable covariates as gender, age, smoking habits, on the hazard rates. These covariates may fail to fully account for the true lifetime interval. This may be due to the existence of another random variable (frailty) that is still being ignored. The aim of this paper is to examine the shared frailty issue in the Cox proportional hazard model by including two different parametric forms of frailty into the hazard function. Four estimated methods are used to fit them. The performance of the parameter estimates is assessed and compared between the classical Cox model and these frailty models through a real-life data set from the Quebec Pension Plan and then using a more general simulation study. This performance is investigated in terms of the bias of point estimates and their empirical standard errors in both fixed and random effect parts. Both the simulation and the real dataset studies showed differences between classical Cox model and shared frailty model.

Keywords: life insurance-pension plan, survival analysis, risk factors, cox proportional hazards model, multivariate failure-time data, shared frailty, simulations study

Procedia PDF Downloads 358
635 Experiences of Timing Analysis of Parallel Embedded Software

Authors: Muhammad Waqar Aziz, Syed Abdul Baqi Shah

Abstract:

The execution time analysis is fundamental to the successful design and execution of real-time embedded software. In such analysis, the Worst-Case Execution Time (WCET) of a program is a key measure, on the basis of which system tasks are scheduled. The WCET analysis of embedded software is also needed for system understanding and to guarantee its behavior. WCET analysis can be performed statically (without executing the program) or dynamically (through measurement). Traditionally, research on the WCET analysis assumes sequential code running on single-core platforms. However, as computation is steadily moving towards using a combination of parallel programs and multi-core hardware, new challenges in WCET analysis need to be addressed. In this article, we report our experiences of performing the WCET analysis of Parallel Embedded Software (PES) running on multi-core platform. The primary purpose was to investigate how WCET estimates of PES can be computed statically, and how they can be derived dynamically. Our experiences, as reported in this article, include the challenges we faced, possible suggestions to these challenges and the workarounds that were developed. This article also provides observations on the benefits and drawbacks of deriving the WCET estimates using the said methods and provides useful recommendations for further research in this area.

Keywords: embedded software, worst-case execution-time analysis, static flow analysis, measurement-based analysis, parallel computing

Procedia PDF Downloads 322
634 Institutional Quality and Tax Compliance: A Cross-Country Regression Evidence

Authors: Debi Konukcu Onal, Tarkan Cavusoglu

Abstract:

In modern societies, the costs of public goods and services are shared through taxes paid by citizens. However, taxation has always been a frictional issue, as tax obligations are perceived to be a financial burden for taxpayers rather than being merit that fulfills the redistribution, regulation and stabilization functions of the welfare state. The tax compliance literature evolves into discussing why people still pay taxes in systems with low costs of legal enforcement. Related empirical and theoretical works show that a wide range of socially oriented behavioral factors can stimulate voluntary compliance and subversive effects as well. These behavioral motivations are argued to be driven by self-enforcing rules of informal institutions, either independently or through interactions with legal orders set by formal institutions. The main focus of this study is to investigate empirically whether institutional particularities have a significant role in explaining the cross-country differences in the tax noncompliance levels. A part of the controversy about the driving forces behind tax noncompliance may be attributed to the lack of empirical evidence. Thus, this study aims to fill this gap through regression estimates, which help to trace the link between institutional quality and noncompliance on a cross-country basis. Tax evasion estimates of Buehn and Schneider is used as the proxy measure for the tax noncompliance levels. Institutional quality is quantified by three different indicators (percentile ranks of Worldwide Governance Indicators, ratings of the International Country Risk Guide, and the country ratings of the Freedom in the World). Robust Least Squares and Threshold Regression estimates based on the sample of the Organization for Economic Co-operation and Development (OECD) countries imply that tax compliance increases with institutional quality. Moreover, a threshold-based asymmetry is detected in the effect of institutional quality on tax noncompliance. That is, the negative effects of tax burdens on compliance are found to be more pronounced in countries with institutional quality below a certain threshold. These findings are robust to all alternative indicators of institutional quality, supporting the significant interaction of societal values with the individual taxpayer decisions.

Keywords: institutional quality, OECD economies, tax compliance, tax evasion

Procedia PDF Downloads 130
633 Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models

Authors: Yina F. Muñoz, Alexander Paz, Hanns De La Fuente-Mella, Joaquin V. Fariña, Guilherme M. Sales

Abstract:

The primary approach for estimating bridge deterioration uses Markov-chain models and regression analysis. Traditional Markov models have problems in estimating the required transition probabilities when a small sample size is used. Often, reliable bridge data have not been taken over large periods, thus large data sets may not be available. This study presents an important change to the traditional approach by using the Small Data Method to estimate transition probabilities. The results illustrate that the Small Data Method and traditional approach both provide similar estimates; however, the former method provides results that are more conservative. That is, Small Data Method provided slightly lower than expected bridge condition ratings compared with the traditional approach. Considering that bridges are critical infrastructures, the Small Data Method, which uses more information and provides more conservative estimates, may be more appropriate when the available sample size is small. In addition, regression analysis was used to calculate bridge deterioration. Condition ratings were determined for bridge groups, and the best regression model was selected for each group. The results obtained were very similar to those obtained when using Markov chains; however, it is desirable to use more data for better results.

Keywords: concrete bridges, deterioration, Markov chains, probability matrix

Procedia PDF Downloads 335
632 Parametric Modeling for Survival Data with Competing Risks Using the Generalized Gompertz Distribution

Authors: Noora Al-Shanfari, M. Mazharul Islam

Abstract:

The cumulative incidence function (CIF) is a fundamental approach for analyzing survival data in the presence of competing risks, which estimates the marginal probability for each competing event. Parametric modeling of CIF has the advantage of fitting various shapes of CIF and estimates the impact of covariates with maximum efficiency. To calculate the total CIF's covariate influence using a parametric model., it is essential to parametrize the baseline of the CIF. As the CIF is an improper function by nature, it is necessary to utilize an improper distribution when applying parametric models. The Gompertz distribution, which is an improper distribution, is limited in its applicability as it only accounts for monotone hazard shapes. The generalized Gompertz distribution, however, can adapt to a wider range of hazard shapes, including unimodal, bathtub, and monotonic increasing or decreasing hazard shapes. In this paper, the generalized Gompertz distribution is used to parametrize the baseline of the CIF, and the parameters of the proposed model are estimated using the maximum likelihood approach. The proposed model is compared with the existing Gompertz model using the Akaike information criterion. Appropriate statistical test procedures and model-fitting criteria will be used to test the adequacy of the model. Both models are applied to the ‘colon’ dataset, which is available in the “biostat3” package in R.

Keywords: competing risks, cumulative incidence function, improper distribution, parametric modeling, survival analysis

Procedia PDF Downloads 98
631 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment

Authors: Sittipong Jarernprasert, Enrique Bazan-Zurita, Paul C. Rizzo

Abstract:

Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.

Keywords: seismic, directionality, in-structure response spectra, probabilistic risk assessment

Procedia PDF Downloads 409
630 On Flexible Preferences for Standard Taxis, Electric Taxis, and Peer-to-Peer Ridesharing

Authors: Ricardo Daziano

Abstract:

In the analysis and planning of the mobility ecosystem, preferences for ride-hailing over incumbent street-hailing services need better understanding. In this paper, a seminonparametric discrete choice model that allows for flexible preference heterogeneity is fitted with data from a discrete choice experiment among adult commuters in Montreal, Canada (N=760). Participants chose among Uber, Teo (a local electric ride-hailing service that was in operation when data was collected in 2018), and a standard taxi when presented with information about cost, time (on-trip, waiting, walking), powertrain of the car (gasoline/hybrid) for Uber and taxi, and whether the available electric Teo was a Tesla (which was one of the actual features of the Teo fleet). The fitted flexible model offers several behavioral insights. Waiting time for ride-hailing services is associated with a statistically significant but low marginal disutility. For other time components, including on-ride, and street-hailing waiting and walking the estimates of the value of time show an interesting pattern: whereas in a conditional logit on-ride time reductions are valued higher, in the flexible LML specification means of the value of time follow the expected pattern of waiting and walking creating a higher disutility. At the same time, the LML estimates show the presence of important, multimodal unobserved preference heterogeneity.

Keywords: discrete choice, electric taxis, ridehailing, semiparametrics

Procedia PDF Downloads 161
629 Correlation Studies and Heritability Estimates among Onion (Allium Cepa L.) Cultivars of North Western Nigeria

Authors: L. Abubakar, B. M. Sokoto, I. U. Mohammed, M. S. Na’allah, A. Mohammad, A. N. Garba, T. S. Bubuche

Abstract:

Onion (Allium cepa var. cepa L.), is the most important species of the Allium group belonging to family Alliaceae and genus Allium. It can be regarded as the single important vegetable species in the world after tomatoes. Despite the similarities, which bring the species together, the genus is a strikingly diverse one, with more than five hundred species, which are perennial and mostly bulbous plants. Out of these, only seven species are in cultivation, and five are the most important species of the cultivated Allium. However, Allium cepa (onion) and Allium sativum (Garlic) are the two major cultivated species grown all over the world of which the onion crop is the most important. Heritability defined as the proportion of the observed total variability that is genetic, and its estimates from variance components give more useful information of genotypic variation from the total phenotypic differences and environmental effects on the individuals or families. It therefore guide the breeder with respect to the ease with which selection of traits can be carried out. Heritability estimates guide the breeder with respect to ease of selection of traits while correlations suggest how selection among characters can be practiced. Correlations explain relationship between characters and suggest how selection among characters can be practiced in breeding programmes. Highly significant correlations have been reported, between yield, maturity, rings/bulb and storage loss in onions. Similarly significant positive correlation exists between total bulb yield and plant height, leaf number/plant, bulb diameter and bulb yield/plant. Moderate positive correlations have been observed between maturity date and yield, dry matter content was highly correlated with soluble solids, and higher correlations were also observed between storage loss and soluble solids. The objective of the study is to determine heritability estimates and correlations for characters among onion cultivars of North Western Nigeria. This is envisaged will assist in the breeding of superior onion cultivars within the zone. Thirteen onion cultivars were collected during an expedition covering north western Nigeria and Southern part of Niger Republic during 2013, which are areas noted for onion production. The cultivars were evaluated at two locations; Sokoto, in Sokoto State and Jega in Kebbi State all in Nigeria during the 2013/14 onion season (dry season) under irrigation. Combined analysis of the results revealed fresh bulb yield is highly significantly positively correlated with bulb height and cured bulb yield, and significant positive correlation with plant height and bulb diameter. It also recorded significant negative correlation with mean No. of leaves/plant and non significant negative correlation with bolting %. Cured bulb yield (marketable yield) had highly significant positive correlation with mean bulb weight and fresh bulb yield/ha, with significant positive correlation with bulb height. It also recorded highly significant negative correlation with No. of leaves/plant and significant negative correlation with bolting % and non significant positive correlation with plant height and non significant negative correlation with bulb diameter. High broad sense heritability estimates were recorded for plant height, fresh bulb yield, number of leaves/plant, bolting % and cured bulb yield. Medium to low broad sense heritabilities were also observed for mean bulb weight, plant height and bulb diameter.

Keywords: correlation, heritability, onions, North Western Nigeria

Procedia PDF Downloads 401
628 Valuation of Cultural Heritage: A Hedonic Pricing Analysis of Housing via GIS-based Data

Authors: Dai-Ling Li, Jung-Fa Cheng, Min-Lang Huang, Yun-Yao Chi

Abstract:

The hedonic pricing model has been popularly applied to describe the economic value of environmental amenities in urban housing, but the results for cultural heritage variables remain relatively ambiguous. In this paper, integrated variables extending by GIS-based data and an existing typology of communities used to examine how cultural heritage and environmental amenities and disamenities affect housing prices across urban communities in Tainan, Taiwan. The developed models suggest that, although a sophisticated variable for central services is selected, the centrality of location is not fully controlled in the price models and thus picked up by correlated peripheral and central amenities such as cultural heritage, open space or parks. Analysis of these correlations permits us to qualify results and present a revised set of relatively reliable estimates. Positive effects on housing prices are identified for views, various types of recreational infrastructure and vicinity of nationally cultural sites and significant landscapes. Negative effects are found for several disamenities including wasteyards, refuse incinerators, petrol stations and industries. The results suggest that systematic hypothesis testing and reporting of correlations may contribute to consistent explanatory patterns in hedonic pricing estimates for cultural heritage and landscape amenities in urban.

Keywords: hedonic pricing model, cultural heritage, landscape amenities, housing

Procedia PDF Downloads 337
627 Long Run Estimates of Population, Consumption and Economic Development of India: An ARDL Bounds Testing Approach of Cointegration

Authors: Sanjay Kumar, Arumugam Sankaran, Arjun K., Mousumi Das

Abstract:

The amount of domestic consumption and population growth is having a positive impact on economic growth and development as observed by the Harrod-Domar and endogenous growth models. The paper negates the Solow growth model which argues the population growth has a detrimental impact on per capita and steady-state growth. Unlike the Solow model, the paper observes, the per capita income growth never falls zero, and it sustains as positive. Hence, our goal here is to investigate the relationship among population, domestic consumption and economic growth of India. For this estimation, annual data from 1980-2016 has been collected from World Development Indicator and Reserve Bank of India. To know the long run as well as short-run dynamics among the variables, we have employed the ARDL bounds testing approach of cointegration followed by modified Wald causality test to know the direction of causality. The conclusion from cointegration and ARDL estimates reveal that there is a long run positive and statistically significant relationship among the variables under study. At the same time, the causality test shows that there is a causal relationship that exists among the variables. Hence, this calls for policies which have a long run perspective in strengthening the capabilities and entitlements of people and stabilizing domestic demand so as to serve long run and short run growth and stability of the economy.

Keywords: cointegration, consumption, economic development, population growth

Procedia PDF Downloads 155
626 Estimation of Normalized Glandular Doses Using a Three-Layer Mammographic Phantom

Authors: Kuan-Jen Lai, Fang-Yi Lin, Shang-Rong Huang, Yun-Zheng Zeng, Po-Chieh Hsu, Jay Wu

Abstract:

The normalized glandular dose (DgN) estimates the energy deposition of mammography in clinical practice. The Monte Carlo simulations frequently use uniformly mixed phantom for calculating the conversion factor. However, breast tissues are not uniformly distributed, leading to errors of conversion factor estimation. This study constructed a three-layer phantom to estimated more accurate of normalized glandular dose. In this study, MCNP code (Monte Carlo N-Particles code) was used to create the geometric structure. We simulated three types of target/filter combinations (Mo/Mo, Mo/Rh, Rh/Rh), six voltages (25 ~ 35 kVp), six HVL parameters and nine breast phantom thicknesses (2 ~ 10 cm) for the three-layer mammographic phantom. The conversion factor for 25%, 50% and 75% glandularity was calculated. The error of conversion factors compared with the results of the American College of Radiology (ACR) was within 6%. For Rh/Rh, the difference was within 9%. The difference between the 50% average glandularity and the uniform phantom was 7.1% ~ -6.7% for the Mo/Mo combination, voltage of 27 kVp, half value layer of 0.34 mmAl, and breast thickness of 4 cm. According to the simulation results, the regression analysis found that the three-layer mammographic phantom at 0% ~ 100% glandularity can be used to accurately calculate the conversion factors. The difference in glandular tissue distribution leads to errors of conversion factor calculation. The three-layer mammographic phantom can provide accurate estimates of glandular dose in clinical practice.

Keywords: Monte Carlo simulation, mammography, normalized glandular dose, glandularity

Procedia PDF Downloads 188