Search results for: data fitting
25245 Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting
Authors: Yoshie Asahara, Hidekuni Takao
Abstract:
Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient’s face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face.Keywords: balance of the mask strap, fine adjustment, film sensor, mask fitting technique, mask strap tension
Procedia PDF Downloads 23825244 A Posteriori Trading-Inspired Model-Free Time Series Segmentation
Authors: Plessen Mogens Graf
Abstract:
Within the context of multivariate time series segmentation, this paper proposes a method inspired by a posteriori optimal trading. After a normalization step, time series are treated channelwise as surrogate stock prices that can be traded optimally a posteriori in a virtual portfolio holding either stock or cash. Linear transaction costs are interpreted as hyperparameters for noise filtering. Trading signals, as well as trading signals obtained on the reversed time series, are used for unsupervised channelwise labeling before a consensus over all channels is reached that determines the final segmentation time instants. The method is model-free such that no model prescriptions for segments are made. Benefits of proposed approach include simplicity, computational efficiency, and adaptability to a wide range of different shapes of time series. Performance is demonstrated on synthetic and real-world data, including a large-scale dataset comprising a multivariate time series of dimension 1000 and length 2709. Proposed method is compared to a popular model-based bottom-up approach fitting piecewise affine models and to a recent model-based top-down approach fitting Gaussian models and found to be consistently faster while producing more intuitive results in the sense of segmenting time series at peaks and valleys.Keywords: time series segmentation, model-free, trading-inspired, multivariate data
Procedia PDF Downloads 13625243 Validation of Escherichia coli O157:H7 Inactivation on Apple-Carrot Juice Treated with Manothermosonication by Kinetic Models
Authors: Ozan Kahraman, Hao Feng
Abstract:
Several models such as Weibull, Modified Gompertz, Biphasic linear, and Log-logistic models have been proposed in order to describe non-linear inactivation kinetics and used to fit non-linear inactivation data of several microorganisms for inactivation by heat, high pressure processing or pulsed electric field. First-order kinetic parameters (D-values and z-values) have often been used in order to identify microbial inactivation by non-thermal processing methods such as ultrasound. Most ultrasonic inactivation studies employed first-order kinetic parameters (D-values and z-values) in order to describe the reduction on microbial survival count. This study was conducted to analyze the E. coli O157:H7 inactivation data by using five microbial survival models (First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic). First-order, Weibull, Modified Gompertz, Biphasic linear and Log-logistic kinetic models were used for fitting inactivation curves of Escherichia coli O157:H7. The residual sum of squares and the total sum of squares criteria were used to evaluate the models. The statistical indices of the kinetic models were used to fit inactivation data for E. coli O157:H7 by MTS at three temperatures (40, 50, and 60 0C) and three pressures (100, 200, and 300 kPa). Based on the statistical indices and visual observations, the Weibull and Biphasic models were best fitting of the data for MTS treatment as shown by high R2 values. The non-linear kinetic models, including the Modified Gompertz, First-order, and Log-logistic models did not provide any better fit to data from MTS compared the Weibull and Biphasic models. It was observed that the data found in this study did not follow the first-order kinetics. It is possibly because of the cells which are sensitive to ultrasound treatment were inactivated first, resulting in a fast inactivation period, while those resistant to ultrasound were killed slowly. The Weibull and biphasic models were found as more flexible in order to determine the survival curves of E. coli O157:H7 treated by MTS on apple-carrot juice.Keywords: Weibull, Biphasic, MTS, kinetic models, E.coli O157:H7
Procedia PDF Downloads 36625242 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 14425241 Colonization of Candida Albicans on 3D Printed CAD/CAM Complete Denture Versus Conventional Complete Denture: Randomized Controlled Clinical Study
Authors: Eman Helal, Ahmed M. Esmat
Abstract:
Statement of problem: The development of computer-aided design/computer-aided manufacturing (CAD/CAM) resin dentures has simplified complete denture production. Most of the studies evaluated the mechanical properties of the material, but the hygienic performance of the CAD /CAM denture and their ability to maintain clean surfaces and minimize bacterial accumulation is still lacking. Purpose evaluation of the antibacterial characteristics of the 3D printed CAD/CAM denture and to compare it with the conventional heat polymerized acrylic denture base material. Methodology a total of thirty completely edentulous patients grouped randomly into two groups (Group I: Control group) received conventional heat polymerized acrylic resin complete dentures, (Group II: Test group) received 3D printed (CAD/CAM) dentures (stereolithographic PMMA), Samples of Candida albicans culture swabs were taken after 1 month and 3 months of dentures` insertion. A culture swab was obtained by scrubbing the fitting surface of the upper denture. At each time interval, three swab samples were collected from each patient and were inoculated in three individual culture media. Results: there was a significant difference in the colonization of Candida albicans to the fitting surface of the dentures between both groups (Group I: Conventional denture cases) exhibited more adhesion of Candida Albicans to the fitting surface than did (Group II: CAD/CAM cases) (P<0.05). Conclusion: 3D printed CAD/CAM complete denture showed minimal Candida adherence upon upper denture fitting compared to conventional heat-polymerized acrylic resin, which contributes to decreasing the incidence of denture stomatitis which is considered one of the most common problems among complete denture wearers.Keywords: CAD/CAM denture, completely edentulous, elderly patients, 3D printing, antimicrobial efficiency, conventional denture, PMMA, Candida Albicans, denture stomatitis
Procedia PDF Downloads 13925240 Fabric Drapemeter Development towards the Analysis of Its Behavior in 3-D Design
Authors: Aida Sheeta, M. Nashat Fors, Sherwet El Gholmy, Marwa Issa
Abstract:
Globalization has raised the customer preferences not only towards the high-quality garments but also the right fitting, comfort and aesthetic apparels. This only can be accomplished by the good interaction between fabric mechanical and physical properties as well as the required style. Consequently, this paper provides an integrated review of the fabric drape terminology because it is considered as an essential feature in which the fabric can form folds with the help of the gravity. Moreover, an instrument has been fabricated in order to analyze the static and dynamic drape behaviors using different fabric types. In addition, the obtained results find out the parameters affecting the drape coefficient using digital image processing for various kind of commercial fabrics. This was found to be an essential first step in order to analyze the behavior of this fabric when it is fabricated in a certain 3-D garment design.Keywords: cloth fitting, fabric drape nodes, garment silhouette, image processing
Procedia PDF Downloads 18725239 Data-Driven Dynamic Overbooking Model for Tour Operators
Authors: Kannapha Amaruchkul
Abstract:
We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator
Procedia PDF Downloads 13425238 Using T-Splines to Model Point Clouds from Terrestrial Laser Scanner
Authors: G. Kermarrec, J. Hartmann
Abstract:
Spline surfaces are a major representation of freeform surfaces in the computer-aided graphic industry and were recently introduced in the field of geodesy for processing point clouds from terrestrial laser scanner (TLS). The surface fitting consists of approximating a trustworthy mathematical surface to a large numbered 3D point cloud. The standard B-spline surfaces lack of local refinement due to the tensor-product construction. The consequences are oscillating geometry, particularly in the transition from low-to-high curvature parts for scattered point clouds with missing data. More economic alternatives in terms of parameters on how to handle point clouds with a huge amount of observations are the recently introduced T-splines. As long as the partition of unity is guaranteed, their computational complexity is low, and they are flexible. T-splines are implemented in a commercial package called Rhino, a 3D modeler which is widely used in computer aided design to create and animate NURBS objects. We have applied T-splines surface fitting to terrestrial laser scanner point clouds from a bridge under load and a sheet pile wall with noisy observations. We will highlight their potential for modelling details with high trustworthiness, paving the way for further applications in terms of deformation analysis.Keywords: deformation analysis, surface modelling, terrestrial laser scanner, T-splines
Procedia PDF Downloads 14025237 Temperature Coefficients of the Refractive Index for Ge Film
Authors: Lingmao Xu, Hui Zhou
Abstract:
Ge film is widely used in infrared optical systems. Because of the special requirements of space application, it is usually used in low temperature. The refractive index of Ge film is always changed with the temperature which has a great effect on the manufacture of high precision infrared optical film. Specimens of Ge single film were deposited at ZnSe substrates by EB-PVD method. During temperature range 80K ~ 300K, the transmittance of Ge single film within 2 ~ 15 μm were measured every 20K by PerkinElmer FTIR cryogenic testing system. By the full spectrum inversion method fitting, the relationship between refractive index and wavelength within 2 ~ 12μm at different temperatures was received. It can be seen the relationship consistent with the formula Cauchy, which can be fitted. Then the relationship between refractive index of the Ge film and temperature/wavelength was obtained by fitting method based on formula Cauchy. Finally, the designed value obtained by the formula and the measured spectrum were compared to verify the accuracy of the formula.Keywords: infrared optical film, low temperature, thermal refractive coefficient, Ge film
Procedia PDF Downloads 29825236 X-Corner Detection for Camera Calibration Using Saddle Points
Authors: Abdulrahman S. Alturki, John S. Loomis
Abstract:
This paper discusses a corner detection algorithm for camera calibration. Calibration is a necessary step in many computer vision and image processing applications. Robust corner detection for an image of a checkerboard is required to determine intrinsic and extrinsic parameters. In this paper, an algorithm for fully automatic and robust X-corner detection is presented. Checkerboard corner points are automatically found in each image without user interaction or any prior information regarding the number of rows or columns. The approach represents each X-corner with a quadratic fitting function. Using the fact that the X-corners are saddle points, the coefficients in the fitting function are used to identify each corner location. The automation of this process greatly simplifies calibration. Our method is robust against noise and different camera orientations. Experimental analysis shows the accuracy of our method using actual images acquired at different camera locations and orientations.Keywords: camera calibration, corner detector, edge detector, saddle points
Procedia PDF Downloads 40625235 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 17525234 Comparison of Receiver Operating Characteristic Curve Smoothing Methods
Authors: D. Sigirli
Abstract:
The Receiver Operating Characteristic (ROC) curve is a commonly used statistical tool for evaluating the diagnostic performance of screening and diagnostic test with continuous or ordinal scale results which aims to predict the presence or absence probability of a condition, usually a disease. When the test results were measured as numeric values, sensitivity and specificity can be computed across all possible threshold values which discriminate the subjects as diseased and non-diseased. There are infinite numbers of possible decision thresholds along the continuum of the test results. The ROC curve presents the trade-off between sensitivity and the 1-specificity as the threshold changes. The empirical ROC curve which is a non-parametric estimator of the ROC curve is robust and it represents data accurately. However, especially for small sample sizes, it has a problem of variability and as it is a step function there can be different false positive rates for a true positive rate value and vice versa. Besides, the estimated ROC curve being in a jagged form, since the true ROC curve is a smooth curve, it underestimates the true ROC curve. Since the true ROC curve is assumed to be smooth, several smoothing methods have been explored to smooth a ROC curve. These include using kernel estimates, using log-concave densities, to fit parameters for the specified density function to the data with the maximum-likelihood fitting of univariate distributions or to create a probability distribution by fitting the specified distribution to the data nd using smooth versions of the empirical distribution functions. In the present paper, we aimed to propose a smooth ROC curve estimation based on the boundary corrected kernel function and to compare the performances of ROC curve smoothing methods for the diagnostic test results coming from different distributions in different sample sizes. We performed simulation study to compare the performances of different methods for different scenarios with 1000 repetitions. It is seen that the performance of the proposed method was typically better than that of the empirical ROC curve and only slightly worse compared to the binormal model when in fact the underlying samples were generated from the normal distribution.Keywords: empirical estimator, kernel function, smoothing, receiver operating characteristic curve
Procedia PDF Downloads 15225233 Time-Domain Expressions for Bridge Self-Excited Aerodynamic Forces by Modified Particle Swarm Optimizer
Authors: Hao-Su Liu, Jun-Qing Lei
Abstract:
This study introduces the theory of modified particle swarm optimizer and its application in time-domain expressions for bridge self-excited aerodynamic forces. Based on the indicial function expression and the rational function expression in time-domain expression for bridge self-excited aerodynamic forces, the characteristics of the two methods, i.e. the modified particle swarm optimizer and conventional search method, are compared in flutter derivatives’ fitting process. Theoretical analysis and numerical results indicate that adopting whether the indicial function expression or the rational function expression, the fitting flutter derivatives obtained by modified particle swarm optimizer have better goodness of fit with ones obtained from experiment. As to the flutter derivatives which have higher nonlinearity, the self-excited aerodynamic forces, using the flutter derivatives obtained through modified particle swarm optimizer fitting process, are much closer to the ones simulated by the experimental. The modified particle swarm optimizer was used to recognize the parameters of time-domain expressions for flutter derivatives of an actual long-span highway-railway truss bridge with double decks at the wind attack angle of 0°, -3° and +3°. It was found that this method could solve the bounded problems of attenuation coefficient effectively in conventional search method, and had the ability of searching in unboundedly area. Accordingly, this study provides a method for engineering industry to frequently and efficiently obtain the time-domain expressions for bridge self-excited aerodynamic forces.Keywords: time-domain expressions, bridge self-excited aerodynamic forces, modified particle swarm optimizer, long-span highway-railway truss bridge
Procedia PDF Downloads 31425232 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load
Authors: Ahmad Saadiq, Neeraj Sahu
Abstract:
Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve
Procedia PDF Downloads 32525231 Investigation of Garment Fit Using Virtual Try-On Technology
Authors: Kristina Ancutiene, Agne Lage, Ada Gulbiniene
Abstract:
Virtual garment fitting has gotten considerable attention for researchers currently. Virtual try-on technologies provide the opportunity to check garment fit using various fabrics and sizes. Differences in fabric mechanical properties produce differences in garment fit. This research aimed to investigate the virtual garment fit concerning the fabric's mechanical properties by determining distance ease between the body and the garment. In this research, virtual women mannequin was covered with straight fit virtual dress stitched in Modaris 3D (CAD Lectra). Garment fitting was investigated using seven cotton/cotton blended plain weave fabrics. Ease allowance value at bust, waist and hip girths in 2D basic patterns was changed uniformly from 0 cm to 8 cm. The values of distance ease in 3D virtual garments at the three main girths were investigated. Distance ease distribution in the virtual garment was investigated also. It was defined that by increasing of 2D patterns ease allowance, 3D garment distance ease changes proportionally but differently using various fabrics. Correlation analysis between 3D garment ease and mechanical properties showed that tensile strain in weft direction had the strongest relation.Keywords: 3D CAD, distance ease, fabric, garment fit, virtual try-on
Procedia PDF Downloads 17625230 Determination of the Axial-Vector from an Extended Linear Sigma Model
Authors: Tarek Sayed Taha Ali
Abstract:
The dependence of the axial-vector coupling constant gA on the quark masses has been investigated in the frame work of the extended linear sigma model. The field equations have been solved in the mean-field approximation. Our study shows a better fitting to the experimental data compared with the existing models.Keywords: extended linear sigma model, nucleon properties, axial coupling constant, physic
Procedia PDF Downloads 44525229 Cultural Embeddedness of E-Participation Methods in Hungary
Authors: Hajnalka Szarvas
Abstract:
The research examines the effectiveness of e-participation tools and methods from a point of view of cultural fitting to the Hungarian community traditions. Participation can have very different meanings depending on the local cultural and historical traditions, experiences of the certain societies. Generally when it is about e-democracy or e-participation tools most of the researches are dealing with its technological sides and novelties, but there is not much said about the cultural and social context of the different platforms. However from the perspective of their success it would be essential to look at the human factor too, the actual users, how the certain DMS or any online platform is fitting to the way of thought, the way of functioning of the certain society. Therefore the paper will explore that to what extent the different online platforms like Loomio, Democracy OS, Your Priorities EVoks, Populus, miutcank.hu, Liquid Democracy, Brain Bar Budapest Lab are compatible with the Hungarian mental structures and community traditions, the contents of collective mind about community functioning. As a result the influence of cultural embeddedness of the logic of e-participation development tools on success of these methods will be clearly seen. Furthermore the most crucial factors in general which determine the efficiency of e-participation development tools in Hungary will be demonstrated.Keywords: cultural embeddedness, e-participation, local community traditions, mental structures
Procedia PDF Downloads 30325228 Modelling of Heat Generation in a 18650 Lithium-Ion Battery Cell under Varying Discharge Rates
Authors: Foo Shen Hwang, Thomas Confrey, Stephen Scully, Barry Flannery
Abstract:
Thermal characterization plays an important role in battery pack design. Lithium-ion batteries have to be maintained between 15-35 °C to operate optimally. Heat is generated (Q) internally within the batteries during both the charging and discharging phases. This can be quantified using several standard methods. The most common method of calculating the batteries heat generation is through the addition of both the joule heating effects and the entropic changes across the battery. In addition, such values can be derived by identifying the open-circuit voltage (OCV), nominal voltage (V), operating current (I), battery temperature (T) and the rate of change of the open-circuit voltage in relation to temperature (dOCV/dT). This paper focuses on experimental characterization and comparative modelling of the heat generation rate (Q) across several current discharge rates (0.5C, 1C, and 1.5C) of a 18650 cell. The analysis is conducted utilizing several non-linear mathematical functions methods, including polynomial, exponential, and power models. Parameter fitting is carried out over the respective function orders; polynomial (n = 3~7), exponential (n = 2) and power function. The generated parameter fitting functions are then used as heat source functions in a 3-D computational fluid dynamics (CFD) solver under natural convection conditions. Generated temperature profiles are analyzed for errors based on experimental discharge tests, conducted at standard room temperature (25°C). Initial experimental results display low deviation between both experimental and CFD temperature plots. As such, the heat generation function formulated could be easier utilized for larger battery applications than other methods available.Keywords: computational fluid dynamics, curve fitting, lithium-ion battery, voltage drop
Procedia PDF Downloads 9525227 Methodologies for Crack Initiation in Welded Joints Applied to Inspection Planning
Authors: Guang Zou, Kian Banisoleiman, Arturo González
Abstract:
Crack initiation and propagation threatens structural integrity of welded joints and normally inspections are assigned based on crack propagation models. However, the approach based on crack propagation models may not be applicable for some high-quality welded joints, because the initial flaws in them may be so small that it may take long time for the flaws to develop into a detectable size. This raises a concern regarding the inspection planning of high-quality welded joins, as there is no generally acceptable approach for modeling the whole fatigue process that includes the crack initiation period. In order to address the issue, this paper reviews treatment methods for crack initiation period and initial crack size in crack propagation models applied to inspection planning. Generally, there are four approaches, by: 1) Neglecting the crack initiation period and fitting a probabilistic distribution for initial crack size based on statistical data; 2) Extrapolating the crack propagation stage to a very small fictitious initial crack size, so that the whole fatigue process can be modeled by crack propagation models; 3) Assuming a fixed detectable initial crack size and fitting a probabilistic distribution for crack initiation time based on specimen tests; and, 4) Modeling the crack initiation and propagation stage separately using small crack growth theories and Paris law or similar models. The conclusion is that in view of trade-off between accuracy and computation efforts, calibration of a small fictitious initial crack size to S-N curves is the most efficient approach.Keywords: crack initiation, fatigue reliability, inspection planning, welded joints
Procedia PDF Downloads 35325226 Research on the Spatio-Temporal Evolution Pattern of Traffic Dominance in Shaanxi Province
Authors: Leng Jian-Wei, Wang Lai-Jun, Li Ye
Abstract:
In order to measure and analyze the transportation situation within the counties of Shaanxi province over a certain period of time and to promote the province's future transportation planning and development, this paper proposes a reasonable layout plan and compares model rationality. The study uses entropy weight method to measure the transportation advantages of 107 counties in Shaanxi province from three dimensions: road network density, trunk line influence and location advantage in 2013 and 2021, and applies spatial autocorrelation analysis method to analyze the spatial layout and development trend of county-level transportation, and conducts ordinary least square (OLS)regression on transportation impact factors and other influencing factors. The paper also compares the regression fitting degree of the Geographically weighted regression(GWR) model and the OLS model. The results show that spatially, the transportation advantages of Shaanxi province generally show a decreasing trend from the Weihe Plain to the surrounding areas and mainly exhibit high-high clustering phenomenon. Temporally, transportation advantages show an overall upward trend, and the phenomenon of spatial imbalance gradually decreases. People's travel demands have changed to some extent, and the demand for rapid transportation has increased overall. The GWR model regression fitting degree of transportation advantages is 0.74, which is higher than the OLS regression model's fitting degree of 0.64. Based on the evolution of transportation advantages, it is predicted that this trend will continue for a period of time in the future. To improve the transportation advantages of Shaanxi province increasing the layout of rapid transportation can effectively enhance the transportation advantages of Shaanxi province. When analyzing spatial heterogeneity, geographic factors should be considered to establish a more reliable modelKeywords: traffic dominance, GWR model, spatial autocorrelation analysis, temporal and spatial evolution
Procedia PDF Downloads 8925225 Development and Evaluation of a Psychological Adjustment and Adaptation Status Scale for Breast Cancer Survivors
Authors: Jing Chen, Jun-E Liu, Peng Yue
Abstract:
Objective: The objective of this study was to develop a psychological adjustment and adaptation status scale for breast cancer survivors, and to examine the reliability and validity of the scale. Method: 37 breast cancer survivors were recruited in qualitative research; a five-subject theoretical framework and an item pool of 150 items of the scale were derived from the interview data. In order to evaluate and select items and reach a preliminary validity and reliability for the original scale, the suggestions of study group members, experts and breast cancer survivors were taken, and statistical methods were used step by step in a sample of 457 breast cancer survivors. Results: An original 24-item scale was developed. The five dimensions “domestic affections”, “interpersonal relationship”, “attitude of life”, “health awareness”, “self-control/self-efficacy” explained 58.053% of the total variance. The content validity was assessed by experts, the CVI was 0.92. The construct validity was examined in a sample of 264 breast cancer survivors. The fitting indexes of confirmatory factor analysis (CFA) showed good fitting of the five dimensions model. The criterion-related validity of the total scale with PTGI was satisfactory (r=0.564, p<0.001). The internal consistency reliability and test-retest reliability were tested. Cronbach’s alpha value (0.911) showed a good internal consistency reliability, and the intraclass correlation coefficient (ICC=0.925, p<0.001) showed a satisfactory test-retest reliability. Conclusions: The scale was brief and easy to understand, was suitable for breast cancer patients whose physical strength and energy were limited.Keywords: breast cancer survivors, rehabilitation, psychological adaption and adjustment, development of scale
Procedia PDF Downloads 51325224 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 13925223 Electron-Ion Recombination of N^{2+} and O^{3+} Ions
Authors: Shahin A. Abdel-Naby, Asad T. Hassan, Stuart Loch, Michael Fogle, Negil R. Badnell, Michael S. Pindzola
Abstract:
Accurate and reliable laboratory astrophysical data for electron-ion recombination are needed for plasma modeling. Dielectronic recombination (DR) rate coefficients are calculated for boron-like nitrogen and oxygen ions using state-of-the-art multi-configuration Breit-Pauli atomic structure AUTOSTRUCTURE collisional package within the generalized collisional-radiative framework. The calculations are performed in intermediate coupling scheme associated with n = 0 (2 2) and n = 1 (2 3) core-excitations. Good agreements are found between the theoretically convoluted rate coefficients and the experimental measurements performed at CRYRING heavy-ion storage ring for both ions. Fitting coefficients for the rate coefficients are produced for these ions in the temperature range q2(102-107) K, where q is the ion charge before recombination.Keywords: Atomic data, atomic processes, electron-ion collision, plasma
Procedia PDF Downloads 16725222 Research on Sensing Performance of Polyimide-Based Composite Materials
Authors: Rui Zhao, Dongxu Zhang, Min Wan
Abstract:
Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.Keywords: polyimide, composite, sensing, resistance change rate
Procedia PDF Downloads 8225221 Liquid-Liquid Equilibrium Study in Solvent Extraction of o-Cresol from Coal Tar
Authors: Dewi Selvia Fardhyanti, Astrilia Damayanti
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation, also in some industries such as steel, power plant, cement, and others. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in solvent extraction of o-Cresol from the coal tar. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of o-Cresol for those system.Keywords: coal tar, o-Cresol, Wohl, Van Laar, three-suffix margules
Procedia PDF Downloads 27725220 Non-Parametric Regression over Its Parametric Couterparts with Large Sample Size
Authors: Jude Opara, Esemokumo Perewarebo Akpos
Abstract:
This paper is on non-parametric linear regression over its parametric counterparts with large sample size. Data set on anthropometric measurement of primary school pupils was taken for the analysis. The study used 50 randomly selected pupils for the study. The set of data was subjected to normality test, and it was discovered that the residuals are not normally distributed (i.e. they do not follow a Gaussian distribution) for the commonly used least squares regression method for fitting an equation into a set of (x,y)-data points using the Anderson-Darling technique. The algorithms for the nonparametric Theil’s regression are stated in this paper as well as its parametric OLS counterpart. The use of a programming language software known as “R Development” was used in this paper. From the analysis, the result showed that there exists a significant relationship between the response and the explanatory variable for both the parametric and non-parametric regression. To know the efficiency of one method over the other, the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) are used, and it is discovered that the nonparametric regression performs better than its parametric regression counterparts due to their lower values in both the AIC and BIC. The study however recommends that future researchers should study a similar work by examining the presence of outliers in the data set, and probably expunge it if detected and re-analyze to compare results.Keywords: Theil’s regression, Bayesian information criterion, Akaike information criterion, OLS
Procedia PDF Downloads 30525219 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment
Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa
Abstract:
The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score
Procedia PDF Downloads 26625218 Thermodynamic Modelling of Liquid-Liquid Equilibria (LLE) in the Separation of p-Cresol from the Coal Tar by Solvent Extraction
Authors: D. S. Fardhyanti, Megawati, W. B. Sediawan
Abstract:
Coal tar is a liquid by-product of the process of coal gasification and carbonation. This liquid oil mixture contains various kinds of useful compounds such as aromatic compounds and phenolic compounds. These compounds are widely used as raw material for insecticides, dyes, medicines, perfumes, coloring matters, and many others. This research investigates thermodynamic modelling of liquid-liquid equilibria (LLE) in the separation of phenol from the coal tar by solvent extraction. The equilibria are modeled by ternary components of Wohl, Van Laar, and Three-Suffix Margules models. The values of the parameters involved are obtained by curve-fitting to the experimental data. Based on the comparison between calculated and experimental data, it turns out that among the three models studied, the Three-Suffix Margules seems to be the best to predict the LLE of p-Cresol mixtures for those system.Keywords: coal tar, phenol, Wohl, Van Laar, Three-Suffix Margules
Procedia PDF Downloads 25825217 Walmart Sales Forecasting using Machine Learning in Python
Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad
Abstract:
Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error
Procedia PDF Downloads 14925216 A Case Study of Control of Blast-Induced Ground Vibration on Adjacent Structures
Authors: H. Mahdavinezhad, M. Labbaf, H. R. Tavakoli
Abstract:
In recent decades, the study and control of the destructive effects of explosive vibration in construction projects has received more attention, and several experimental equations in the field of vibration prediction as well as allowable vibration limit for various structures are presented. Researchers have developed a number of experimental equations to estimate the peak particle velocity (PPV), in which the experimental constants must be obtained at the site of the explosion by fitting the data from experimental explosions. In this study, the most important of these equations was evaluated for strong massive conglomerates around Dez Dam by collecting data on explosions, including 30 particle velocities, 27 displacements, 27 vibration frequencies and 27 acceleration of earth vibration at different distances; they were recorded in the form of two types of detonation systems, NUNEL and electric. Analysis showed that the data from the explosion had the best correlation with the cube root of the explosive, R2=0.8636, but overall the correlation coefficients are not much different. To estimate the vibration in this project, data regression was performed in the other formats, which resulted in the presentation of new equation with R2=0.904 correlation coefficient. Finally according to the importance of the studied structures in order to ensure maximum non damage to adjacent structures for each diagram, a range of application was defined so that for distances 0 to 70 meters from blast site, exponent n=0.33 and for distances more than 70 m, n =0.66 was suggested.Keywords: blasting, blast-induced vibration, empirical equations, PPV, tunnel
Procedia PDF Downloads 131