Search results for: buffers
18 Development and Optimization of Colon Targeted Drug Delivery System of Ayurvedic Churna Formulation Using Eudragit L100 and Ethyl Cellulose as Coating Material
Authors: Anil Bhandari, Imran Khan Pathan, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit
Abstract:
The purpose of this study was to prepare time and pH dependent release tablets of Ayurvedic Churna formulation and evaluate their advantages as colon targeted drug delivery system. The Vidangadi Churna was selected for this study which contains Embelin and Gallic acid. Embelin is used in Helminthiasis as therapeutic agent. Embelin is insoluble in water and unstable in gastric environment so it was formulated in time and pH dependent tablets coated with combination of two polymers Eudragit L100 and ethyl cellulose. The 150mg of core tablet of dried extract and lactose were prepared by wet granulation method. The compression coating was used in the polymer concentration of 150mg for both the layer as upper and lower coating tablet was investigated. The results showed that no release was found in 0.1 N HCl and pH 6.8 phosphate buffers for initial 5 hours and about 98.97% of the drug was released in pH 7.4 phosphate buffer in total 17 hours. The in vitro release profiles of drug from the formulation could be best expressed first order kinetics as highest linearity (r2= 0.9943). The results of the present study have demonstrated that the time and pH dependent tablets system is a promising vehicle for preventing rapid hydrolysis in gastric environment and improving oral bioavailability of Embelin and Gallic acid for treatment of Helminthiasis.Keywords: embelin, gallic acid, Vidangadi Churna, colon targeted drug delivery
Procedia PDF Downloads 36017 Supervisory Emotional Display Affects Employee’s Well-Being
Authors: Huan Zhang, Darius K. S Chan
Abstract:
Despite a large number of studies linking emotional labor and its detrimental impact for laborer, research on how emotional labor would influence the receiver is still in its infancy. Especially under the call for “people management”, supervisors inside the organization are more inclined to display happy mood to support their employees, thus endorsing emotional labor. The present study focuses on the employees in the service industry as emotional labor recipients and investigates how they respond to their supervisors’ emotional display, given their sensitivity to emotional cues. Targeted at a sample of 250 survey data from a wide range of customer service professions, this ongoing study examines how perceived supervisory emotional labor would moderate the relationship between employees surface acting and their well-being. Our major hypotheses are that employees’ surface acting predicts well-being level, and that perceived supervisory emotional labor to moderate the surface acting—outcome links. Preliminary findings have provided some support to the hypothesized model. Specifically, supervisors who are perceived to be high in surface acting are also regarded as fake and pseudo, hence the enhancing the detrimental effect of employees’ surface acting is attenuated, resulting in lower job satisfaction, higher physical stress and burnout; whereas perceived high supervisor’s deep acting, as associated with genuine and authenticity, buffers the negative impact and leads to higher job satisfaction, lower physical stress and burnout. This study first confirms the negative impacts of the surface acting on well-being for service industry employees as laborer and then extends the emotional labor studies by considering them as recipients of supervisory emotional labor. The findings provide insights for leaders by pointing out the importance of authentic emotional expression in workplace.Keywords: perceived supervisory emotional labor, surface acting, well-being
Procedia PDF Downloads 39516 Comparative Study of Flood Plain Protection Zone Determination Methodologies in Colombia, Spain and Canada
Authors: P. Chang, C. Lopez, C. Burbano
Abstract:
Flood protection zones are riparian buffers that are formed to manage and mitigate the impact of flooding, and in turn, protect local populations. The purpose of this study was to evaluate the Guía Técnica de Criterios para el Acotamiento de las Rondas Hídricas in Colombia against international regulations in Canada and Spain, in order to determine its limitations and contribute to its improvement. The need to establish a specific corridor that allows for the dynamic development of a river is clear; however, limitations present in the Colombian Technical Guide are identified. The study shows that international regulations provide similar concepts as used in Colombia, but additionally integrate aspects such as regionalization that allows for a better characterization of the channel way, and incorporate the frequency of flooding and its probability of occurrence in the concept of risk when determining the protection zone. The case study analyzed in Dosquebradas - Risaralda aimed at comparing the application of the different standards through hydraulic modeling. It highlights that the current Colombian standard does not offer sufficient details in its implementation phase, which leads to a false sense of security related to inaccuracy and lack of data. Furthermore, the study demonstrates how the Colombian norm is ill-adapted to the conditions of Dosquebradas typical of the Andes region, both in the social and hydraulic aspects, and does not reduce the risk, nor does it improve the protection of the population. Our study considers it pertinent to include risk estimation as an integral part of the methodology when establishing protect flood zone, considering the particularity of water systems, as they are characterized by an heterogeneous natural dynamic behavior.Keywords: environmental corridor, flood zone determination, hydraulic domain, legislation flood protection zone
Procedia PDF Downloads 11315 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria
Authors: Rinat Arbel-Goren, Joel Stavans
Abstract:
Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript
Procedia PDF Downloads 16414 Liquidity Risk of Banks in Light of a Dominant Share of Foreign Capital in the Polish Banking Sector
Authors: Karolina Patora
Abstract:
This article investigates liquidity risk management by banks, which has gained significant importance since the global financial crisis of 2008. The issue is of particular interest for countries like Poland, in which foreign capital plays a dominant role. Such an ownership structure poses certain risks to the local banking sector, which faces an increased probability of the withdrawal of funding or assets’ transfers abroad in case of a crisis. Both these factors can have a detrimental influence on the liquidity position of foreign-owned banks and hence negatively affect the financial stability of the whole banking sector. The aim of this study is to evaluate the impact of a dominating share of foreign investors in the Polish banking sector on the liquidity position of commercial banks. The study hypothesizes that the ownership structure of the Polish banking sector, in which there are banks predominantly controlled by foreign investors, does not pose a threat to the liquidity position of Polish banks. A supplementary research hypothesis is that the liquidity risk profile of foreign-owned banks differs from that of domestic banks. The sample consists of 14 foreign-owned banks and 5 domestic banks owned by local investors, which together constitute approximately 87% of the banking sector’s assets. The data covers the period of 2004–2014. The results of the regression models show no evidence of significant differences in terms of the dynamics of changes of the liquidity buffers between the foreign-owned and domestic banks, although the signs of the coefficients might suggest that the foreign-owned banks were decreasing the holdings of liquid assets at a slower pace over the examined period, compared to the domestic banks. However, no proof of the statistical significance of these findings has been found. The supplementary research hypothesis that the liquidity risk profile of foreign-controlled banks differs from that of domestic banks was rejected.Keywords: foreign-owned banks, liquidity position, liquidity risk, financial stability
Procedia PDF Downloads 29613 Ultrasensitive Detection and Discrimination of Cancer-Related Single Nucleotide Polymorphisms Using Poly-Enzyme Polymer Bead Amplification
Authors: Lorico D. S. Lapitan Jr., Yihan Xu, Yuan Guo, Dejian Zhou
Abstract:
The ability of ultrasensitive detection of specific genes and discrimination of single nucleotide polymorphisms is important for clinical diagnosis and biomedical research. Herein, we report the development of a new ultrasensitive approach for label-free DNA detection using magnetic nanoparticle (MNP) assisted rapid target capture/separation in combination with signal amplification using poly-enzyme tagged polymer nanobead. The sensor uses an MNP linked capture DNA and a biotin modified signal DNA to sandwich bind the target followed by ligation to provide high single-nucleotide polymorphism discrimination. Only the presence of a perfect match target DNA yields a covalent linkage between the capture and signal DNAs for subsequent conjugation of a neutravidin-modified horseradish peroxidase (HRP) enzyme through the strong biotin-nuetravidin interaction. This converts each captured DNA target into an HRP which can convert millions of copies of a non-fluorescent substrate (amplex red) to a highly fluorescent product (resorufin), for great signal amplification. The use of polymer nanobead each tagged with thousands of copies of HRPs as the signal amplifier greatly improves the signal amplification power, leading to greatly improved sensitivity. We show our biosensing approach can specifically detect an unlabeled DNA target down to 10 aM with a wide dynamic range of 5 orders of magnitude (from 0.001 fM to 100.0 fM). Furthermore, our approach has a high discrimination between a perfectly matched gene and its cancer-related single-base mismatch targets (SNPs): It can positively detect the perfect match DNA target even in the presence of 100 fold excess of co-existing SNPs. This sensing approach also works robustly in clinical relevant media (e.g. 10% human serum) and gives almost the same SNP discrimination ratio as that in clean buffers. Therefore, this ultrasensitive SNP biosensor appears to be well-suited for potential diagnostic applications of genetic diseases.Keywords: DNA detection, polymer beads, signal amplification, single nucleotide polymorphisms
Procedia PDF Downloads 24912 Selection of Most Appropriate Poplar and Willow Cultivars for Landfill Remediation Using Plant Physiology Parameters
Authors: Andrej Pilipović, Branislav Kovačević, Marina Milović, Lazar Kesić, Saša Pekeč, Leopold Poljaković-Pajnik, Saša Orlović
Abstract:
The effect of landfills on the environment reflects in the dispersion of the contaminants on surrounding soils by the groundwater plume. Such negative effect can be mitigated with the establishment of vegetative buffers surrounding landfills. The “TreeRemEnergy” project funded by the Science Fund of Republic of Serbia – Green program focuses on development of phytobuffers for landfill phytoremediation with the use of Short Rotation Woody Crops (SRWC) plantations that can be further used for the biomass for energy. One of the goals of the project is to select most appropriate poplar (Populus sp.) and willow (Salix sp.) clones through phytorecurrent selection that involves testing of various breeding traits. Physiological parameters serve as a significant contribution to the breeding process aimed to early detection of potential candidates. This study involved testing of the effect of the landfill soils on the photosynthetic processes of the selected poplar and willow candidates. For this purpose, measurements of the gas exchange, chlorophyll content and chlorophyll fluorescence were measured on the tested plants. Obtained results showed that there were differences in the influence of the controlled sources of variation on examined physiological parameters. The effect of clone was significant in all parameters, while the effect of the substrate was not statistically significant in any of measured parameters. However, the effect of interaction Clone×Substrate was significant in intercellular CO2 concentration(ci), stomatal conductance (gs) and transpiration rate (E), suggesting that water regime of the tested clones showed different response to the tested soils. Some clones showed more “generalist” behavior (380, 107/65/9, and PE19/66), while “specialist” behavior was recorded in clones PE4/68, S1-8, and 79/64/2. On the other hand, there was no significant effect of the tested substrate on the pigments content measured with SPAD meter. Results of this study allowed us to narrow the group of clones for further trails in field conditions.Keywords: clones, net photosynthesis, WUE, transpiration, stomatal conductance, SPAD
Procedia PDF Downloads 6511 New Drug Discoveries and Packaging Challenges
Authors: Anupam Chanda
Abstract:
Presently Packaging plays a significant role for drug discoveries. The process of selecting materials and the type of packaging also offers an opportunity for the Packaging scientist to look for biological delivery choices. Most injectable protein products were supplied in some sort of glass vial, prefilled syringe, cartridge. Those product having high Ph content there is a chance of “delamination “from inner surface of glass vial. With protein-based drugs, the biggest issue is the effect of packaging derivatives on the protein’s threedimensional and surface structure. These are any effects that relate to denaturation or aggregation of the protein due to oxidation or interactions from contaminants or impurities in the preparation. The potential for these effects needs to be carefully considered in choosing the container and the container closure system to avoid putting patients in jeopardy. Cause of Delamination : -Formulations with a high pH include phosphate and citrate buffers increase the risk of glass delamination. -High alkali content in glass could accelerate erosion. -High temperature during the vial-forming process increase the risk of glass delamination. -Terminal sterilization (irradiated at 20-40 kGy for 150 min) also is a risk factor for specific products(veterinary parenteral administration),could cause delamination. -High product-storage temperatures and long exposure times can increase the rate and severity of glass delamination. How to prevent Delamination -Treating the surface of the glass vials with materials, such as ammonium sulfate or siliconization can reduce the rate of glass erosion. -Consider alternative sterilization methods only in rare cases. -The correct specification for the glass to ensure its suitability for the pH of the product. -Use Cyclic olefin copolymer(COC)/Cyclic olefin Polymer(COP) Adsorption of protein and Solutions: Option#1 Coat with linear methoxylated polyglycerol and hyperbranchedmethoxylated polyglycerol. Option#2 Thehyperbranched non-methoxylated coating performed best. Option#3 Coat with hyperbranched polyglycerol Option#4 Right selection of Sterilization of glass vial/syringe.Keywords: delamination of glass, ptrotien adoptions inside the glass surface, extractable & leachable solutions, injectable designs for new drugs
Procedia PDF Downloads 9410 Pressures of a Pandemic on the Perinatal Women: Experiences of Welsh Women
Authors: Filiz Celik, Rachel Harrad, Rob Keasley, Paul Bennett
Abstract:
The COVID-19 pandemic has posed a significant challenge to many, with some groups with particular vulnerability to adverse psychological impacts. These include those disadvantaged by mental ill health, either pre-existing or occurring during pregnancy or post-partum. Using a qualitative approach, the research aimed to identify the challenges posed by COVID-19 to women, their infants and families during the perinatal period and to suggest what further support can help alleviate the adverse mental health impact of COVID-19. 21 expectant and new mothers who were currently receiving support via a peri-natal mental health service participated in semi-structured interviews. In these interviews, participants explored the impact of changes in social circumstances and healthcare providers as a result of COVID-19 restrictions, with the resultant audio recordings transcribed and analyzed using Reflexive Thematic Analysis (RTA). Based on these accounts, it was concluded that women, their partners and potentially their infants experienced heightened peri-natal distress, and their experience at this time increased their risk for future mental health problems. Women described emerging as more vulnerable, owing to their role as primary caregivers during the perinatal period and also explained how social isolation and limited access to services meant protective buffers against mental health deterioration were reduced and the resources they needed in order to develop resilience were weakened. Although partners were invited to take part in the research, a sizeable volume of data could not be generated to fully assess the impact of the pandemic on a partner’s mental well-being. However, women expressed concerns about the paternal mental health of partners and husbands which invites us to be further vigilant to paternal mental health and associated experiences. Overall, these interviews serve to highlight and provide a voice to these women and their families who describe experiencing disadvantage at an already vulnerable time in their lives, as well as illustrating the need for services to prioritize the needs of this population when acute events strike, be those future pandemics or other disasters.Keywords: patient experience, perinatal mental health, covid-19 pandemic, heightened anxiety, birth trauma, post-natal well-being
Procedia PDF Downloads 699 Ethanol Precipitation and Characterization of L-Asparaginase from Aspergillus oryzae
Authors: L. L. Tundisi, A. Pessoa Jr., E. B. Tambourgi, E. Silveira, P. G. Mazzola
Abstract:
L-asparaginase (L-ASNase) is the gold standard treatment for acute lymphoblastic leukemia that mainly affects pediatric patients; treatment increases survival from 20% to 90%. The characterization of other L-Asparaginases, apart from the most used from Escherichia coli and Erwinia chrysanthemi, has been reported, but the choice of the most appropriate is still under debate. This choice should be based on its pharmacokinetics, immune hypersensitivity, doses, prices, pharmacodynamics. The main factors influencing the antileukemic activity of ASNase are enzymatic activity, Km, glutaminase activity, clearance of the enzyme and development of resistance. However, most of the commercialized enzyme present an intrinsic glutaminase activity, which is responsible for some side effects. In this study, glutaminase free asparaginase produced from Aspergillus oryzae was precipitated in different percentages of ethanol (0–80%), until optimum ethanol concentration of 60% (w/w) was found. Following, precipitation of crude L-ASNase was performed in a single step, using 60% (w/w) ethanol, under constant agitation and temperature. It presented activity of 135.45 U/mg and after gel filtration chromatography with Sephadex G-the enzymatic activity was 322.02 U/mg. The apparent molecular mass of the purified L-ASNase fraction was estimated by 10% SDS-PAGE. Proteins were stained with Coomassie Brilliant Blue R-250. The molar mass range was from 10 kDa to 250 kDa. L-ASNase from Aspergillus oryzae was characterized aiming possible therapeutic use. Four different buffers (phosphate-citrate buffer pH 2.6 to 5.8; phosphate buffer pH 5.8 to 7.4; Tris - HCl pH 7.4 to 9.0; and carbonate buffer pH 9.8 to 10.6) were used to measure the optimum pH for L-ASNase activity. The optimum temperature for enzyme activity was measured at optimal pH conditions (Tris-HCl and phosphate buffer, pH 7.4) at different temperatures ranging from 5 to 55°C. All activities were calculated by quantifying the free ammonia, using the Nessler reagent. The kinetic parameters calculation, e.g. Michaelis-Menten constant (Km), maximum velocity (Vmax) and Hills coefficient (n), were performed by incubating the enzyme in different concentrations of the substrate at optimum conditions of pH and fitted on Hill’s equation. This glutaminase free asparaginase showed a low Km (3.39 mM and 3.81 mM) and enzymatic activity of 135.45 U/mg after precipitation with ethanol. After gel filtration chromatography it rose to 322.02 U/mg. Optimum activity was found between pH 5.8 - 9.0, best activity results with phosphate buffer pH 7.4 and Tris-HCl pH 7.4 and showed activity from 5°C to 55°C. These results indicate that L-ASNase from A. oryzae has the potential for human use.Keywords: biopharmaceuticals, bioprocessing, bioproducts, biotechnology, enzyme activity, ethanol precipitation
Procedia PDF Downloads 2928 Influence of Genotype, Explant, and Hormone Treatment on Agrobacterium-Transformation Success in Salix Callus Culture
Authors: Lukas J. Evans, Danilo D. Fernando
Abstract:
Shrub willows (Salix spp.) have many characteristics which make them suitable for a variety of applications such as riparian zone buffers, environmental contaminant sequestration, living snow fences, and biofuel production. In some cases, these functions are limited due to physical or financial obstacles associated with the number of individuals needed to reasonably satisfy that purpose. One way to increase the efficiency of willows is to bioengineer them with the genetic improvements suitable for the desired use. To accomplish this goal, an optimized in vitro transformation protocol via Agrobacterium tumefaciens is necessary to reliably express genes of interest. Therefore, the aim of this study is to observe the influence of tissue culture with different willow cultivars, hormones, and explants on the percentage of calli expressing reporter gene green florescent protein (GFP) to find ideal transformation conditions. Each callus was produced from 1 month old open-pollinated seedlings of three Salix miyabeana cultivars (‘SX61’, ‘WT1’, and ‘WT2’) from three different explants (lamina, petiole, and internodes). Explants were cultured for 1 month on an MS media with different concentrations of 6-Benzylaminopurine (BAP) and 1-Naphthaleneacetic acid (NAA) (No hormones, 1 mg⁻¹L BAP only, 3 mg⁻¹L NAA only, 1 mg⁻¹L BAP and 3 mg⁻¹L NAA, and 3 mg⁻¹L BAP and 1 mg⁻¹L NAA) to produce a callus. Samples were then treated with Agrobacterium tumefaciens at an OD600 of 0.6-0.8 to insert the transgene GFP for 30 minutes, co-cultivated for 72 hours, and selected on the same media type they were cultured on with added 7.5 mg⁻¹L of Hygromycin for 1 week before GFP visualization under a UV dissecting scope. Percentage of GFP expressing calli as well as the average number of fluorescing GFP units per callus were recorded and results were evaluated through an ANOVA test (α = 0.05). The WT1 internode-derived calli on media with 3 mg-1L NAA+1 mg⁻¹L BAP and mg⁻¹L BAP alone produced a significantly higher percentage of GFP expressing calli than each other group (19.1% and 19.4%, respectively). Additionally, The WT1 internode group cultured with 3 mg⁻¹L NAA+1 mg⁻¹L BAP produced an average of 2.89 GFP units per callus while the group cultivated with 1 mg⁻¹L BAP produced an average of 0.84 GFP units per callus. In conclusion, genotype, explant choice, and hormones all play a significant role in increasing successful transformation in willows. Future studies to produce whole callus GFP expression and subsequent plantlet regeneration are necessary for a complete willow transformation protocol.Keywords: agrobacterium, callus, Salix, tissue culture
Procedia PDF Downloads 1237 Biophysical Assessment of the Ecological Condition of Wetlands in the Parkland and Grassland Natural Regions of Alberta, Canada
Authors: Marie-Claude Roy, David Locky, Ermias Azeria, Jim Schieck
Abstract:
It is estimated that up to 70% of the wetlands in the Parkland and Grassland natural regions of Alberta have been lost due to various land-use activities. These losses include ecosystem function and services they once provided. Those wetlands remaining are often embedded in a matrix of human-modified habitats and despite efforts taken to protect them the effects of land-uses on wetland condition and function remain largely unknown. We used biophysical field data and remotely-sensed human footprint data collected at 322 open-water wetlands by the Alberta Biodiversity Monitoring Institute (ABMI) to evaluate the impact of surrounding land use on the physico-chemistry characteristics and plant functional traits of wetlands. Eight physio-chemistry parameters were assessed: wetland water depth, water temperature, pH, salinity, dissolved oxygen, total phosphorus, total nitrogen, and dissolved organic carbon. Three plant functional traits were evaluated: 1) origin (native and non-native), 2) life history (annual, biennial, and perennial), and 3) habitat requirements (obligate-wetland and obligate-upland). Intensity land-use was quantified within a 250-meter buffer around each wetland. Ninety-nine percent of wetlands in the Grassland and Parkland regions of Alberta have land-use activities in their surroundings, with most being agriculture-related. Total phosphorus in wetlands increased with the cover of surrounding agriculture, while salinity, total nitrogen, and dissolved organic carbon were positively associated with the degree of soft-linear (e.g. pipelines, trails) land-uses. The abundance of non-native and annual/biennial plants increased with the amount of agriculture, while urban-industrial land-use lowered abundance of natives, perennials, and obligate wetland plants. Our study suggests that land-use types surrounding wetlands affect the physicochemical and biological conditions of wetlands. This research suggests that reducing human disturbances through reclamation of wetland buffers may enhance the condition and function of wetlands in agricultural landscapes.Keywords: wetlands, biophysical assessment, land use, grassland and parkland natural regions
Procedia PDF Downloads 3336 Incidence and Molecular Mechanism of Human Pathogenic Bacterial Interaction with Phylloplane of Solanum lycopersicum
Authors: Indu Gaur, Neha Bhadauria, Shilpi Shilpi, Susmita Goswami, Prem D. Sharma, Prabir K. Paul
Abstract:
The concept of organic agriculture has been accepted as novelty in Indian society, but there is no data available on the human pathogens colonizing plant parts due to such practices. Also, the pattern and mechanism of their colonization need to be understood in order to devise possible strategies for their prevention. In the present study, human pathogenic bacteria were isolated from organically grown tomato plants and five of them were identified as Klebsiella pneumoniae, Enterobacter ludwigii, Serratia fonticola, Stenotrophomonas maltophilia and Chryseobacterium jejuense. Tomato plants were grown in controlled aseptic conditions with 25±1˚C, 70% humidity and 12 hour L/D photoperiod. Six weeks old plants were divided into 6 groups of 25 plants each and treated as follows: Group 1: K. pneumonia, Group 2: E. ludwigii, Group 3: S. fonticola, Group 4: S. maltophilia, Group 5: C. jejuense, Group 6: Sterile distilled water (control). The inoculums for all treatments were prepared by overnight growth with uniform concentration of 108 cells/ml. Leaf samples from above groups were collected at 0.5, 2, 4, 6 and 24 hours post inoculation for the colony forming unit counts (CFU/cm2 of leaf area) of individual pathogens using leaf impression method. These CFU counts were used for the in vivo colonization assay and adherence assay of individual pathogens. Also, resistance of these pathogens to at least 12 antibiotics was studied. Based on these findings S. fonticola was found to be most prominently colonizing the phylloplane of tomato and was further studied. Tomato plants grown in controlled aseptic conditions same as mentioned above were divided into 2 groups of 25 plants each and treated as follows: Group 1: S. fonticola, Group 2: Sterile distilled water (control). Leaf samples from above groups were collected at 0, 24, 48, 72 and 96 hours post inoculation and homogenized in suitable buffers for surface and cell wall protein isolation. Protein samples thus obtained were subjected to isocratic SDS-gel electrophoresis and analyzed. It was observed that presence of S. fonticola could induce the expression of at least 3 additional cell wall proteins at different time intervals. Surface proteins also showed variation in the expression pattern at different sampling intervals. Further identification of these proteins by MALDI-MS and bioinformatics tools revealed the gene(s) involved in the interaction of S. fonticola with tomato phylloplane.Keywords: cell wall proteins, human pathogenic bacteria, phylloplane, solanum lycopersicum
Procedia PDF Downloads 2285 Co-Smoldered Digestate Ash as Additive for Anaerobic Digestion of Berry Fruit Waste: Stability and Enhanced Production Rate
Authors: Arinze Ezieke, Antonio Serrano, William Clarke, Denys Villa-Gomez
Abstract:
Berry cultivation results in discharge of high organic strength putrescible solid waste which potentially contributes to environmental degradation, making it imperative to assess options for its complete management. Anaerobic digestion (AD) could be an ideal option when the target is energy generation; however, due to berry fruit characteristics high carbohydrate composition, the technology could be limited by its high alkalinity requirement which suggests dosing of additives such as buffers and trace elements supplement. Overcoming this limitation in an economically viable way could entail replacement of synthetic additives with recycled by-product waste. Consequently, ash from co-smouldering of high COD characteristic AD digestate and coco-coir could be a promising material to be used to enhance the AD of berry fruit waste, given its characteristic high pH, alkalinity and metal concentrations which is typical of synthetic additives. Therefore, the aim of the research was to evaluate the stability and process performance from the AD of BFW when ash from co-smoldered digestate and coir are supplemented as alkalinity and trace elements (TEs) source. Series of batch experiments were performed to ascertain the necessity for alkalinity addition and to see whether the alkalinity and metals in the co-smouldered digestate ash can provide the necessary buffer and TEs for AD of berry fruit waste. Triplicate assays were performed in batch systems following I/S of 2 (in VS), using serum bottles (160 mL) sealed and placed in a heated room (35±0.5 °C), after creating anaerobic conditions. Control experiment contained inoculum and substrates only, and inoculum, substrate and NaHCO3 for optimal total alkalinity concentration and TEs assays, respectively. Total alkalinity concentration refers to alkalinity of inoculum and the additives. The alkalinity and TE potential of the ash were evaluated by supplementing ash (22.574 g/kg) of equivalent total alkalinity concentration to that of the pre-determined optimal from NaHCO3, and by dosing ash (0.012 – 7.574 g/kg) of varying concentrations of specific essential TEs (Co, Fe, Ni, Se), respectively. The result showed a stable process at all examined conditions. Supplementation of 745 mg/L CaCO3 NaHCO3 resulted to an optimum TAC of 2000 mg/L CaCO3. Equivalent ash supplementation of 22.574 g/kg allowed the achievement of this pre-determined optimum total alkalinity concentration, resulting to a stable process with a 92% increase in the methane production rate (323 versus 168 mL CH4/ (gVS.d)), but a 36% reduction in the cumulative methane production (103 versus 161 mL CH4/gVS). Addition of ashes at incremental dosage as TEs source resulted to a reduction in the Cumulative methane production, with the highest dosage of 7.574 g/kg having the highest effect of -23.5%; however, the seemingly immediate bioavailability of TE at this high dosage allowed for a +15% increase in the methane production rate. With an increased methane production rate, the results demonstrated that the ash at high dosages could be an effective supplementary material for either a buffered or none buffered berry fruit waste AD system.Keywords: anaerobic digestion, alkalinity, co-smoldered digestate ash, trace elements
Procedia PDF Downloads 1224 Inclusion Body Refolding at High Concentration for Large-Scale Applications
Authors: J. Gabrielczyk, J. Kluitmann, T. Dammeyer, H. J. Jördening
Abstract:
High-level expression of proteins in bacteria often causes production of insoluble protein aggregates, called inclusion bodies (IB). They contain mainly one type of protein and offer an easy and efficient way to get purified protein. On the other hand, proteins in IB are normally devoid of function and therefore need a special treatment to become active. Most refolding techniques aim at diluting the solubilizing chaotropic agents. Unfortunately, optimal refolding conditions have to be found empirically for every protein. For large-scale applications, a simple refolding process with high yields and high final enzyme concentrations is still missing. The constructed plasmid pASK-IBA63b containing the sequence of fructosyltransferase (FTF, EC 2.4.1.162) from Bacillus subtilis NCIMB 11871 was transformed into E. coli BL21 (DE3) Rosetta. The bacterium was cultivated in a fed-batch bioreactor. The produced FTF was obtained mainly as IB. For refolding experiments, five different amounts of IBs were solubilized in urea buffer with protein concentration of 0.2-8.5 g/L. Solubilizates were refolded with batch or continuous dialysis. The refolding yield was determined by measuring the protein concentration of the clear supernatant before and after the dialysis. Particle size was measured by dynamic light scattering. We tested the solubilization properties of fructosyltransferase IBs. The particle size measurements revealed that the solubilization of the aggregates is achieved at urea concentration of 5M or higher and confirmed by absorption spectroscopy. All results confirm previous investigations that refolding yields are dependent upon initial protein concentration. In batch dialysis, the yields dropped from 67% to 12% and 72% to 19% for continuous dialysis, in relation to initial concentrations from 0.2 to 8.5 g/L. Often used additives such as sucrose and glycerol had no effect on refolding yields. Buffer screening indicated a significant increase in activity but also temperature stability of FTF with citrate/phosphate buffer. By adding citrate to the dialysis buffer, we were able to increase the refolding yields to 82-47% in batch and 90-74% in the continuous process. Further experiments showed that in general, higher ionic strength of buffers had major impact on refolding yields; doubling the buffer concentration increased the yields up to threefold. Finally, we achieved corresponding high refolding yields by reducing the chamber volume by 75% and the amount of buffer needed. The refolded enzyme had an optimal activity of 12.5±0.3 x104 units/g. However, detailed experiments with native FTF revealed a reaggregation of the molecules and loss in specific activity depending on the enzyme concentration and particle size. For that reason, we actually focus on developing a process of simultaneous enzyme refolding and immobilization. The results of this study show a new approach in finding optimal refolding conditions for inclusion bodies at high concentrations. Straightforward buffer screening and increase of the ionic strength can optimize the refolding yield of the target protein by 400%. Gentle removal of chaotrope with continuous dialysis increases the yields by an additional 65%, independent of the refolding buffer applied. In general time is the crucial parameter for successful refolding of solubilized proteins.Keywords: dialysis, inclusion body, refolding, solubilization
Procedia PDF Downloads 2943 Housing Recovery in Heavily Damaged Communities in New Jersey after Hurricane Sandy
Authors: Chenyi Ma
Abstract:
Background: The second costliest hurricane in U.S. history, Sandy landed in southern New Jersey on October 29, 2012, and struck the entire state with high winds and torrential rains. The disaster killed more than 100 people, left more than 8.5 million households without power, and damaged or destroyed more than 200,000 homes across the state. Immediately after the disaster, public policy support was provided in nine coastal counties that constituted 98% of the major and severely damaged housing units in NJ overall. The programs include Individuals and Households Assistance Program, Small Business Loan Program, National Flood Insurance Program, and the Federal Emergency Management Administration (FEMA) Public Assistance Grant Program. In the most severely affected counties, additional funding was provided through Community Development Block Grant: Reconstruction, Rehabilitation, Elevation, and Mitigation Program, and Homeowner Resettlement Program. How these policies individually and as a whole impacted housing recovery across communities with different socioeconomic and demographic profiles has not yet been studied, particularly in relation to damage levels. The concept of community social vulnerability has been widely used to explain many aspects of natural disasters. Nevertheless, how communities are vulnerable has been less fully examined. Community resilience has been conceptualized as a protective factor against negative impacts from disasters, however, how community resilience buffers the effects of vulnerability is not yet known. Because housing recovery is a dynamic social and economic process that varies according to context, this study examined the path from community vulnerability and resilience to housing recovery looking at both community characteristics and policy interventions. Sample/Methods: This retrospective longitudinal case study compared a literature-identified set of pre-disaster community characteristics, the effects of multiple public policy programs, and a set of time-variant community resilience indicators to changes in housing stock (operationally defined by percent of building permits to total occupied housing units/households) between 2010 and 2014, two years before and after Hurricane Sandy. The sample consisted of 51 municipalities in the nine counties in which between 4% and 58% of housing units suffered either major or severe damage. Structural equation modeling (SEM) was used to determine the path from vulnerability to the housing recovery, via multiple public programs, separately and as a whole, and via the community resilience indicators. The spatial analytical tool ArcGIS 10.2 was used to show the spatial relations between housing recovery patterns and community vulnerability and resilience. Findings: Holding damage levels constant, communities with higher proportions of Hispanic households had significantly lower levels of housing recovery while communities with households with an adult >age 65 had significantly higher levels of the housing recovery. The contrast was partly due to the different levels of total public support the two types of the community received. Further, while the public policy programs individually mediated the negative associations between African American and female-headed households and housing recovery, communities with larger proportions of African American, female-headed and Hispanic households were “vulnerable” to lower levels of housing recovery because they lacked sufficient public program support. Even so, higher employment rates and incomes buffered vulnerability to lower housing recovery. Because housing is the "wobbly pillar" of the welfare state, the housing needs of these particular groups should be more fully addressed by disaster policy.Keywords: community social vulnerability, community resilience, hurricane, public policy
Procedia PDF Downloads 3722 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness
Authors: Marit D. Murry, Amy K. Marks
Abstract:
The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience
Procedia PDF Downloads 1101 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops
Authors: Simon Komesker, Achim Wagner, Martin Ruskowski
Abstract:
In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.Keywords: holonic manufacturing system, modular production system, planning, and control, system structure
Procedia PDF Downloads 169