Search results for: Philipp Wilde
11 Comparison of Cognitive Load in Virtual Reality and Conventional Simulation-Based Training: A Randomized Controlled Trial
Authors: Michael Wagner, Philipp Steinbauer, Andrea Katharina Lietz, Alexander Hoffelner, Johannes Fessler
Abstract:
Background: Cardiopulmonary resuscitations are stressful situations in which vital decisions must be made within seconds. Lack of routine due to the infrequency of pediatric emergencies can lead to serious medical and communication errors. Virtual reality can fundamentally change the way simulation training is conducted in the future. It appears to be a useful learning tool for technical and non-technical skills. It is important to investigate the use of VR in providing a strong sense of presence within simulations. Methods: In this randomized study, we will enroll doctors and medical students from the Medical University of Vienna, who will receive learning material regarding the resuscitation of a one-year-old child. The study will be conducted in three phases. In the first phase, 20 physicians and 20 medical students from the Medical University of Vienna will be included. They will perform simulation-based training with a standardized scenario of a critically ill child with a hypovolemic shock. The main goal of this phase is to establish a baseline for the following two phases to generate comparative values regarding cognitive load and stress. In phase 2 and 3, the same participants will perform the same scenario in a VR setting. In both settings, on three set points of progression, one of three predefined events is triggered. For each event, three different stress levels (easy, medium, difficult) will be defined. Stress and cognitive load will be analyzed using the NASA Task Load Index, eye-tracking parameters, and heart rate. Subsequently, these values will be compared between VR training and traditional simulation-based training. Hypothesis: We hypothesize that the VR training and the traditional training groups will not differ in physiological response (cognitive load, heart rate, and heart rate variability). We further assume that virtual reality training can be used as cost-efficient additional training. Objectives: The aim of this study is to measure cognitive load and stress level during a real-life simulation training and compare it with VR training in order to show that VR training evokes the same physiological response and cognitive load as real-life simulation training.Keywords: virtual reality, cognitive load, simulation, adaptive virtual reality training
Procedia PDF Downloads 11510 Dosimetric Comparison among Different Head and Neck Radiotherapy Techniques Using PRESAGE™ Dosimeter
Authors: Jalil ur Rehman, Ramesh C. Tailor, Muhammad Isa Khan, Jahnzeeb Ashraf, Muhammad Afzal, Geofferry S. Ibbott
Abstract:
Purpose: The purpose of this analysis was to investigate dose distribution of different techniques (3D-CRT, IMRT and VMAT) of head and neck cancer using 3-dimensional dosimeter called PRESAGETM Dosimeter. Materials and Methods: Computer tomography (CT) scans of radiological physics center (RPC) head and neck anthropomorphic phantom with both RPC standard insert and PRESAGETM insert were acquired separated with Philipp’s CT scanner and both CT scans were exported via DICOM to the Pinnacle version 9.4 treatment planning system (TPS). Each plan was delivered twice to the RPC phantom first containing the RPC standard insert having TLD and film dosimeters and then again containing the Presage insert having 3-D dosimeter (PRESAGETM) by using a Varian True Beam linear accelerator. After irradiation, the standard insert including point dose measurements (TLD) and planar Gafchromic® EBT film measurement were read using RPC standard procedure. The 3D dose distribution from PRESAGETM was read out with the Duke Midsized optical scanner dedicated to RPC (DMOS-RPC). Dose volume histogram (DVH), mean and maximal doses for organs at risk were calculated and compared among each head and neck technique. The prescription dose was same for all head and neck radiotherapy techniques which was 6.60 Gy/friction. Beam profile comparison and gamma analysis were used to quantify agreements among film measurement, PRESAGETM measurement and calculated dose distribution. Quality assurances of all plans were performed by using ArcCHECK method. Results: VMAT delivered the lowest mean and maximum doses to organ at risk (spinal cord, parotid) than IMRT and 3DCRT. Such dose distribution was verified by absolute dose distribution using thermoluminescent dosimeter (TLD) system. The central axial, sagittal and coronal planes were evaluated using 2D gamma map criteria(± 5%/3 mm) and results were 99.82% (axial), 99.78% (sagital), 98.38% (coronal) for VMAT plan and found the agreement between PRESAGE and pinnacle was better than IMRT and 3D-CRT plan excludes a 7 mm rim at the edge of the dosimeter. Profile showed good agreement for all plans between film, PRESAGE and pinnacle and 3D gamma was performed for PTV and OARs, VMAT and 3DCRT endow with better agreement than IMRT. Conclusion: VMAT delivered lowered mean and maximal doses to organs at risk and better PTV coverage during head and neck radiotherapy. TLD, EBT film and PRESAGETM dosimeters suggest that VMAT was better for the treatment of head and neck cancer than IMRT and 3D-CRT.Keywords: RPC, 3DCRT, IMRT, VMAT, EBT2 film, TLD, PRESAGETM
Procedia PDF Downloads 3959 Structural Invertibility and Optimal Sensor Node Placement for Error and Input Reconstruction in Dynamic Systems
Authors: Maik Kschischo, Dominik Kahl, Philipp Wendland, Andreas Weber
Abstract:
Understanding and modelling of real-world complex dynamic systems in biology, engineering and other fields is often made difficult by incomplete knowledge about the interactions between systems states and by unknown disturbances to the system. In fact, most real-world dynamic networks are open systems receiving unknown inputs from their environment. To understand a system and to estimate the state dynamics, these inputs need to be reconstructed from output measurements. Reconstructing the input of a dynamic system from its measured outputs is an ill-posed problem if only a limited number of states is directly measurable. A first requirement for solving this problem is the invertibility of the input-output map. In our work, we exploit the fact that invertibility of a dynamic system is a structural property, which depends only on the network topology. Therefore, it is possible to check for invertibility using a structural invertibility algorithm which counts the number of node disjoint paths linking inputs and outputs. The algorithm is efficient enough, even for large networks up to a million nodes. To understand structural features influencing the invertibility of a complex dynamic network, we analyze synthetic and real networks using the structural invertibility algorithm. We find that invertibility largely depends on the degree distribution and that dense random networks are easier to invert than sparse inhomogeneous networks. We show that real networks are often very difficult to invert unless the sensor nodes are carefully chosen. To overcome this problem, we present a sensor node placement algorithm to achieve invertibility with a minimum set of measured states. This greedy algorithm is very fast and also guaranteed to find an optimal sensor node-set if it exists. Our results provide a practical approach to experimental design for open, dynamic systems. Since invertibility is a necessary condition for unknown input observers and data assimilation filters to work, it can be used as a preprocessing step to check, whether these input reconstruction algorithms can be successful. If not, we can suggest additional measurements providing sufficient information for input reconstruction. Invertibility is also important for systems design and model building. Dynamic models are always incomplete, and synthetic systems act in an environment, where they receive inputs or even attack signals from their exterior. Being able to monitor these inputs is an important design requirement, which can be achieved by our algorithms for invertibility analysis and sensor node placement.Keywords: data-driven dynamic systems, inversion of dynamic systems, observability, experimental design, sensor node placement
Procedia PDF Downloads 1508 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System
Authors: Anas Hallak, Latifa Seblini, Juergen Wilde
Abstract:
In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive
Procedia PDF Downloads 1937 Older Consumer’s Willingness to Trust Social Media Advertising: A Case of Australian Social Media Users
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities due mainly to their increasing consumer/user base and, secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional media, such as broadcast media and print media, and, more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilized as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: (1) Gen Z/Millennials Reliability = 4.90/7 vs. Gen X/Boomers Reliability = 4.34/7; (2) Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and (3) Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioral intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users in an attempt to foster positive behavioral responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, internet studies
Procedia PDF Downloads 386 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization
Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov
Abstract:
Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide
Procedia PDF Downloads 1005 Older Consumer’s Willingness to Trust Social Media Advertising: An Australian Case
Authors: Simon J. Wilde, David M. Herold, Michael J. Bryant
Abstract:
Social media networks have become the hotbed for advertising activities, due mainly to their increasing consumer/user base, and secondly, owing to the ability of marketers to accurately measure ad exposure and consumer-based insights on such networks. More than half of the world’s population (4.8 billion) now uses social media (60%), with 150 million new users having come online within the last 12 months (to June 2022). As the use of social media networks by users grows, key business strategies used for interacting with these potential customers have matured, especially social media advertising. Unlike other traditional media outlets, social media advertising is highly interactive and digital channel-specific. Social media advertisements are clearly targetable, providing marketers with an extremely powerful marketing tool. Yet despite the measurable benefits afforded to businesses engaged in social media advertising, recent controversies (such as the relationship between Facebook and Cambridge Analytica in 2018) have only heightened the role trust and privacy play within these social media networks. The purpose of this exploratory paper is to investigate the extent to which social media users trust social media advertising. Understanding this relationship will fundamentally assist marketers in better understanding social media interactions and their implications for society. Using a web-based quantitative survey instrument, survey participants were recruited via a reputable online panel survey site. Respondents to the survey represented social media users from all states and territories within Australia. Completed responses were received from a total of 258 social media users. Survey respondents represented all core age demographic groupings, including Gen Z/Millennials (18-45 years = 60.5% of respondents) and Gen X/Boomers (46-66+ years = 39.5% of respondents). An adapted ADTRUST scale, using a 20 item 7-point Likert scale, measured trust in social media advertising. The ADTRUST scale has been shown to be a valid measure of trust in advertising within traditional different media, such as broadcast media and print media, and more recently, the Internet (as a broader platform). The adapted scale was validated through exploratory factor analysis (EFA), resulting in a three-factor solution. These three factors were named reliability, usefulness and affect, and the willingness to rely on. Factor scores (weighted measures) were then calculated for these factors. Factor scores are estimates of the scores survey participants would have received on each of the factors had they been measured directly, with the following results recorded (Reliability = 4.68/7; Usefulness and Affect = 4.53/7; and Willingness to Rely On = 3.94/7). Further statistical analysis (independent samples t-test) determined the difference in factor scores between the factors when age (Gen Z/Millennials vs. Gen X/Boomers) was utilised as the independent, categorical variable. The results showed the difference in mean scores across all three factors to be statistically significant (p<0.05) for these two core age groupings: Gen Z/Millennials Reliability = 4.90/7 vs Gen X/Boomers Reliability = 4.34/7; Gen Z/Millennials Usefulness and Affect = 4.85/7 vs Gen X/Boomers Usefulness and Affect = 4.05/7; and Gen Z/Millennials Willingness to Rely On = 4.53/7 vs Gen X/Boomers Willingness to Rely On = 3.03/7. The results clearly indicate that older social media users lack trust in the quality of information conveyed in social media ads, when compared to younger, more social media-savvy consumers. This is especially evident with respect to Factor 3 (Willingness to Rely On), whose underlying variables reflect one’s behavioural intent to act based on the information conveyed in advertising. These findings can be useful to marketers, advertisers, and brand managers in that the results highlight a critical need to design ‘authentic’ advertisements on social media sites to better connect with these older users, in an attempt to foster positive behavioural responses from within this large demographic group – whose engagement with social media sites continues to increase year on year.Keywords: social media advertising, trust, older consumers, online
Procedia PDF Downloads 814 Risks for Cyanobacteria Harmful Algal Blooms in Georgia Piedmont Waterbodies Due to Land Management and Climate Interactions
Authors: Sam Weber, Deepak Mishra, Susan Wilde, Elizabeth Kramer
Abstract:
The frequency and severity of cyanobacteria harmful blooms (CyanoHABs) have been increasing over time, with point and non-point source eutrophication and shifting climate paradigms being blamed as the primary culprits. Excessive nutrients, warm temperatures, quiescent water, and heavy and less regular rainfall create more conducive environments for CyanoHABs. CyanoHABs have the potential to produce a spectrum of toxins that cause gastrointestinal stress, organ failure, and even death in humans and animals. To promote enhanced, proactive CyanoHAB management, risk modeling using geospatial tools can act as predictive mechanisms to supplement current CyanoHAB monitoring, management and mitigation efforts. The risk maps would empower water managers to focus their efforts on high risk water bodies in an attempt to prevent CyanoHABs before they occur, and/or more diligently observe those waterbodies. For this research, exploratory spatial data analysis techniques were used to identify the strongest predicators for CyanoHAB blooms based on remote sensing-derived cyanobacteria cell density values for 771 waterbodies in the Georgia Piedmont and landscape characteristics of their watersheds. In-situ datasets for cyanobacteria cell density, nutrients, temperature, and rainfall patterns are not widely available, so free gridded geospatial datasets were used as proxy variables for assessing CyanoHAB risk. For example, the percent of a watershed that is agriculture was used as a proxy for nutrient loading, and the summer precipitation within a watershed was used as a proxy for water quiescence. Cyanobacteria cell density values were calculated using atmospherically corrected images from the European Space Agency’s Sentinel-2A satellite and multispectral instrument sensor at a 10-meter ground resolution. Seventeen explanatory variables were calculated for each watershed utilizing the multi-petabyte geospatial catalogs available within the Google Earth Engine cloud computing interface. The seventeen variables were then used in a multiple linear regression model, and the strongest predictors of cyanobacteria cell density were selected for the final regression model. The seventeen explanatory variables included land cover composition, winter and summer temperature and precipitation data, topographic derivatives, vegetation index anomalies, and soil characteristics. Watershed maximum summer temperature, percent agriculture, percent forest, percent impervious, and waterbody area emerged as the strongest predictors of cyanobacteria cell density with an adjusted R-squared value of 0.31 and a p-value ~ 0. The final regression equation was used to make a normalized cyanobacteria cell density index, and a Jenks Natural Break classification was used to assign waterbodies designations of low, medium, or high risk. Of the 771 waterbodies, 24.38% were low risk, 37.35% were medium risk, and 38.26% were high risk. This study showed that there are significant relationships between free geospatial datasets representing summer maximum temperatures, nutrient loading associated with land use and land cover, and the area of a waterbody with cyanobacteria cell density. This data analytics approach to CyanoHAB risk assessment corroborated the literature-established environmental triggers for CyanoHABs, and presents a novel approach for CyanoHAB risk mapping in waterbodies across the greater southeastern United States.Keywords: cyanobacteria, land use/land cover, remote sensing, risk mapping
Procedia PDF Downloads 2113 Family Firm Internationalization: Identification of Alternative Success Pathways
Authors: Sascha Kraus, Wolfgang Hora, Philipp Stieg, Thomas Niemand, Ferdinand Thies, Matthias Filser
Abstract:
In most countries, small and medium-sized enterprises (SME) are the backbone of the economy due to their impact on job creation, innovation and wealth creation. Moreover, the ongoing globalization makes it inevitable – even for SME that traditionally focused on their domestic markets – to internationalize their business activities to realize further growth and survive in international markets. Thus, internationalization has become one of the most common growth strategies for SME and has received increasing scholarly attention over the last two decades. One the downside internationalization can be also regarded as the most complex strategy that a firm can undertake. Particularly for family firms, that are often characterized by limited financial capital, a risk-averse nature and limited growth aspirations, it could be argued that family firms are more likely to face greater challenges when taking the pathway to internationalization. Especially the triangulation of family, ownership, and management (so-called ‘familiness’) manifests in a unique behavior and decision-making process which is often characterized by the importance given to noneconomic goals and distinguishes a family firm from other businesses. Taking this into account, the concept of socio-emotional wealth (SEW) has been evolved to describe the behavior of family firms. In order to investigate how different internal and external firm characteristics shape internationalization success of family firms, we drew on a sample consisting of 297 small and medium-sized family firms from Germany, Austria, Switzerland, and Liechtenstein. Thus, we include SEW as essential family firm characteristic and added the two major intra-organizational characteristics, entrepreneurial orientation (EO), absorptive capacity (AC) as well as collaboration intensity (CI) and relational knowledge (RK) as two major external network characteristics. Based on previous research we assume that these characteristics are important to explain internationalization success of family firm SME. Regarding the data analysis, we applied a Fuzzy Set Qualitative Comparative Analysis (fsQCA), an approach that allows identifying configurations of firm characteristics, specifically used to study complex causal relationships where traditional regression techniques reach their limits. Results indicate that several combinations of these family firm characteristics can lead to international success, with no permanently required key characteristic. Instead, there are many roads to walk down for family firms to achieve internationalization success. Consequently, our data states that family owned SME are heterogeneous and internationalization is a complex and dynamic process. Results further show that network related characteristics occur in all sets, thus represent an essential element in the internationalization process of family owned SME. The contribution of our study is twofold, as we investigate different forms of international expansion for family firms and how to improve them. First, we are able to broaden the understanding of the intersection between family firm and SME internationalization with respect to major intra-organizational and network-related variables. Second, from a practical perspective, we offer family firm owners a basis for setting up internal capabilities to achieve international success.Keywords: entrepreneurial orientation, family firm, fsQCA, internationalization, socio-emotional wealth
Procedia PDF Downloads 2412 Partial Discharge Characteristics of Free- Moving Particles in HVDC-GIS
Authors: Philipp Wenger, Michael Beltle, Stefan Tenbohlen, Uwe Riechert
Abstract:
The integration of renewable energy introduces new challenges to the transmission grid, as the power generation is located far from load centers. The associated necessary long-range power transmission increases the demand for high voltage direct current (HVDC) transmission lines and DC distribution grids. HVDC gas-insulated switchgears (GIS) are considered being a key technology, due to the combination of the DC technology and the long operation experiences of AC-GIS. To ensure long-term reliability of such systems, insulation defects must be detected in an early stage. Operational experience with AC systems has proven evidence, that most failures, which can be attributed to breakdowns of the insulation system, can be detected and identified via partial discharge (PD) measurements beforehand. In AC systems the identification of defects relies on the phase resolved partial discharge pattern (PRPD). Since there is no phase information within DC systems this method cannot be transferred to DC PD diagnostic. Furthermore, the behaviour of e.g. free-moving particles differs significantly at DC: Under the influence of a constant direct electric field, charge carriers can accumulate on particles’ surfaces. As a result, a particle can lift-off, oscillate between the inner conductor and the enclosure or rapidly bounces at just one electrode, which is known as firefly motion. Depending on the motion and the relative position of the particle to the electrodes, broadband electromagnetic PD pulses are emitted, which can be recorded by ultra-high frequency (UHF) measuring methods. PDs are often accompanied by light emissions at the particle’s tip which enables optical detection. This contribution investigates PD characteristics of free moving metallic particles in a commercially available 300 kV SF6-insulated HVDC-GIS. The influences of various defect parameters on the particle motion and the PD characteristic are evaluated experimentally. Several particle geometries, such as cylinder, lamella, spiral and sphere with different length, diameter and weight are determined. The applied DC voltage is increased stepwise from inception voltage up to UDC = ± 400 kV. Different physical detection methods are used simultaneously in a time-synchronized setup. Firstly, the electromagnetic waves emitted by the particle are recorded by an UHF measuring system. Secondly, a photomultiplier tube (PMT) detects light emission with a wavelength in the range of λ = 185…870 nm. Thirdly, a high-speed camera (HSC) tracks the particle’s motion trajectory with high accuracy. Furthermore, an electrically insulated electrode is attached to the grounded enclosure and connected to a current shunt in order to detect low frequency ion currents: The shunt measuring system’s sensitivity is in the range of 10 nA at a measuring bandwidth of bw = DC…1 MHz. Currents of charge carriers, which are generated at the particle’s tip migrate through the gas gap to the electrode and can be recorded by the current shunt. All recorded PD signals are analyzed in order to identify characteristic properties of different particles. This includes e.g. repetition rates and amplitudes of successive pulses, characteristic frequency ranges and detected signal energy of single PD pulses. Concluding, an advanced understanding of underlying physical phenomena particle motion in direct electric field can be derived.Keywords: current shunt, free moving particles, high-speed imaging, HVDC-GIS, UHF
Procedia PDF Downloads 1601 Towards Dynamic Estimation of Residential Building Energy Consumption in Germany: Leveraging Machine Learning and Public Data from England and Wales
Authors: Philipp Sommer, Amgad Agoub
Abstract:
The construction sector significantly impacts global CO₂ emissions, particularly through the energy usage of residential buildings. To address this, various governments, including Germany's, are focusing on reducing emissions via sustainable refurbishment initiatives. This study examines the application of machine learning (ML) to estimate energy demands dynamically in residential buildings and enhance the potential for large-scale sustainable refurbishment. A major challenge in Germany is the lack of extensive publicly labeled datasets for energy performance, as energy performance certificates, which provide critical data on building-specific energy requirements and consumption, are not available for all buildings or require on-site inspections. Conversely, England and other countries in the European Union (EU) have rich public datasets, providing a viable alternative for analysis. This research adapts insights from these English datasets to the German context by developing a comprehensive data schema and calibration dataset capable of predicting building energy demand effectively. The study proposes a minimal feature set, determined through feature importance analysis, to optimize the ML model. Findings indicate that ML significantly improves the scalability and accuracy of energy demand forecasts, supporting more effective emissions reduction strategies in the construction industry. Integrating energy performance certificates into municipal heat planning in Germany highlights the transformative impact of data-driven approaches on environmental sustainability. The goal is to identify and utilize key features from open data sources that significantly influence energy demand, creating an efficient forecasting model. Using Extreme Gradient Boosting (XGB) and data from energy performance certificates, effective features such as building type, year of construction, living space, insulation level, and building materials were incorporated. These were supplemented by data derived from descriptions of roofs, walls, windows, and floors, integrated into three datasets. The emphasis was on features accessible via remote sensing, which, along with other correlated characteristics, greatly improved the model's accuracy. The model was further validated using SHapley Additive exPlanations (SHAP) values and aggregated feature importance, which quantified the effects of individual features on the predictions. The refined model using remote sensing data showed a coefficient of determination (R²) of 0.64 and a mean absolute error (MAE) of 4.12, indicating predictions based on efficiency class 1-100 (G-A) may deviate by 4.12 points. This R² increased to 0.84 with the inclusion of more samples, with wall type emerging as the most predictive feature. After optimizing and incorporating related features like estimated primary energy consumption, the R² score for the training and test set reached 0.94, demonstrating good generalization. The study concludes that ML models significantly improve prediction accuracy over traditional methods, illustrating the potential of ML in enhancing energy efficiency analysis and planning. This supports better decision-making for energy optimization and highlights the benefits of developing and refining data schemas using open data to bolster sustainability in the building sector. The study underscores the importance of supporting open data initiatives to collect similar features and support the creation of comparable models in Germany, enhancing the outlook for environmental sustainability.Keywords: machine learning, remote sensing, residential building, energy performance certificates, data-driven, heat planning
Procedia PDF Downloads 57