Search results for: safety mechanism
485 Chinese Acupuncture: A Potential Treatment for Autism Rat Model via Improving Synaptic Function
Authors: Sijie Chen, Xiaofang Chen, Juan Wang, Yingying Zhang, Yu Hong, Wanyu Zhuang, Xinxin Huang, Ping Ou, Longsheng Huang
Abstract:
Purpose: Autistic symptom improvement can be observed in children treated with acupuncture, but the mechanism is still being explored. In the present study, we used scalp acupuncture to treat autism rat model, and then their improvement in the abnormal behaviors and specific mechanisms behind were revealed by detecting animal behaviors, analyzing the RNA sequencing of the prefrontal cortex(PFC), and observing the ultrastructure of PFC neurons under the transmission electron microscope. Methods: On gestational day 12.5, Wistar rats were given valproic acid (VPA) by intraperitoneal injection, and their offspring were considered to be reliable rat models of autism. They were randomized to VPA or VPA-acupuncture group (n=8). Offspring of Wistar pregnant rats that were simultaneously injected with saline were randomly selected as the wild-type group (WT). VPA_acupuncture group rats received acupuncture intervention at 23 days of age for 4 weeks, and the other two groups followed without intervention. After the intervention, all experimental rats underwent behavioral tests. Immediately afterward, they were euthanized by cervical dislocation, and their prefrontal cortex was isolated for RNA sequencing and transmission electron microscopy. Results: The main results are as follows: 1. Animal behavioural tests: VPA group rats showed more anxiety-like behaviour and repetitive, stereotyped behaviour than WT group rats. While VPA group rats showed less spatial exploration ability, activity level, social interaction, and social novelty preference than WT group rats. It was gratifying to observe that acupuncture indeed improved these abnormal behaviors of autism rat model. 2. RNA-sequencing: The three groups of rats differed in the expression and enrichment pathways of multiple genes related to synaptic function, neural signal transduction, and circadian rhythm regulation. Our experiments indicated that acupuncture can alleviate the major symptoms of ASD by improving these neurological abnormalities. 3. Under the transmission electron microscopy, several lysosomes and mitochondrial structural abnormalities were observed in the prefrontal neurons of VPA group rats, which were manifested as atrophy of the mitochondrial membran, blurring or disappearance of the mitochondrial cristae, and even vacuolization. Moreover, the number of synapses and synaptic vesicles was relatively small. Conversely, the mitochondrial structure of rats in the WT group and VPA_acupuncture was normal, and the number of synapses and synaptic vesicles was relatively large. Conclusion: Acupuncture effectively improved the abnormal behaviors of autism rat model and the ultrastructure of the PFC neurons, which might worked by improving their abnormal synaptic function, synaptic plasticity and promoting neuronal signal transduction.Keywords: autism spectrum disorder, acupuncture, animal behavior, RNA sequencing, transmission electron microscope
Procedia PDF Downloads 45484 Preliminary Analysis on the Distribution of Elements in Cannabis
Authors: E. Zafeiraki, P. Nisianakis, K. Machera
Abstract:
Cannabis plant contains 113 cannabinoids and it is commonly known for its psychoactive substance tetrahydrocannabinol or as a source of narcotic substances. The recent years’ cannabis cultivation also increases due to its wide use both for medical and industrial purposes as well as for uses as para-pharmaceuticals, cosmetics and food commodities. Depending on the final product, different parts of the plant are utilized, with the leaves and bud (seeds) being the most frequently used. Cannabis can accumulate various contaminants, including heavy metals, both from the soil and the water in which the plant grows. More specifically, metals may occur naturally in the soil and water, or they can enter into the environment through fertilizers, pesticides and fungicides that are commonly applied to crops. The high probability of metals accumulation in cannabis, combined with the latter growing use, raise concerns about the potential health effects in humans and consequently lead to the need for the implementation of safety measures for cannabis products, such as guidelines for regulating contaminants, including metals, and especially the ones characterized by high toxicity in cannabis. Acknowledging the above, the aim of the current study was first to investigate metals contamination in cannabis samples collected from Greece, and secondly to examine potential differences in metals accumulation among the different parts of the plant. To our best knowledge, this is the first study presenting information on elements in cannabis cultivated in Greece, and also on the distribution pattern of the former in the plant body. To this end, the leaves and the seeds of all the samples were initially separated and dried and then digested with Nitric acid (HNO₃) and Hydrochloric acid (HCl). For the analysis of these samples, an Inductive Coupled Plasma-Mass Spectrometry (ICP-MS) method was developed, able to quantify 28 elements. Internal standards were added at a constant rate and concentration to all calibration standards and unknown samples, while two certified reference materials were analyzed in every batch to ensure the accuracy of the measurements. The repeatability of the method and the background contamination were controlled by the analysis of quality control (QC) standards and blank samples in every sequence, respectively. According to the results, essential metals, such as Ca, Zn and Mg, were detected at high levels. On the contrary, the concentration of high toxicity metals, like As (average: 0.10ppm), Pb (average: 0.36ppm), Cd (average: 0.04ppm), and Hg (average: 0.012ppm) were very low in all the samples, indicating that no harmful effects on human health can be caused by the analyzed samples. Moreover, it appears that the pattern of contamination of metals is very similar in all the analyzed samples, which could be attributed to the same origin of the analyzed cannabis, i.e., the common soil composition, use of fertilizers, pesticides, etc. Finally, as far as the distribution pattern between the different parts of the plant is concerned, it was revealed that leaves present a higher concentration in comparison to seeds for all metals examined.Keywords: cannabis, heavy metals, ICP-MS, leaves and seeds, elements
Procedia PDF Downloads 99483 Integration of Entrepreneurial Mindset Learning in Green Chemistry and Processes Course
Authors: Tsvetanka Filipova
Abstract:
Entrepreneurial mindset learning (EML) is the combined process of instilling curiosity and invention, developing insight and value creation while building on other active pedagogy, such as project-based learning (PBL). It is essential to introduce students to chemistry and chemical engineering entrepreneurship in a manner that gives a holistic approach by first educating students on diverse entrepreneurial skills and then providing an opportunity to build their innovation. Chemistry and chemical engineering students have an opportunity to be engaged in an entrepreneurial class project in the Green Chemistry and Processes course at South Dakota Mines. The course provides future chemists and chemical engineers with the knowledge and skills required to enable them to design materials and processes in an environmentally benign way. This paper presents findings from implementing an open-ended design project in the Green Chemistry and Processes course. The goal of this team project is to have student teams design sustainable polymer materials to fulfill a need and/or opportunity related to a fictitious aerospace company that satisfies technical, safety, environmental, regulatory, economic, and social needs. Each student team is considered a start-up company charged with the task of designing sustainable polymer materials for aerospace applications. Through their work on the project, students utilize systems and entrepreneurial thinking in selecting their design project, being aware of the existent technologies (literature and patent search) and users and clients (connections), determining the goals and motivations (creating value), and what need or problem they are trying to address (curiosity). The project draws systems boundaries by focusing on student exploration of feedstocks to end-of-life of polymeric materials and products. Additional subtopics to explore are green processes for syntheses, green engineering for process design, and the economics of sustainable polymers designed for circularity. Project deliverables are team project reports and project presentations to a panel of industry, chemistry, and engineering professionals. Project deliverables are team project reports and project presentations to a panel of industry, chemistry, and engineering professionals. The impact of the entrepreneurial mindset project is evaluated through a student survey at the end of the semester. It has been found that the Innovative Solution project was excellent in promoting student curiosity, creativity, critical and systems thinking and teamwork. The results of this study suggest that incorporating EML positively impacted students’ professional skill development, their ability to understand and appreciate the socio-technical context of chemistry and engineering, and the cultivation of an entrepreneurial mindset to discover, evaluate and exploit opportunities.Keywords: curriculum, entrepreneurial mindset learning, green chemistry and engineering, systems thinking
Procedia PDF Downloads 5482 The Effects of Stoke's Drag, Electrostatic Force and Charge on Penetration of Nanoparticles through N95 Respirators
Authors: Jacob Schwartz, Maxim Durach, Aniruddha Mitra, Abbas Rashidi, Glen Sage, Atin Adhikari
Abstract:
NIOSH (National Institute for Occupational Safety and Health) approved N95 respirators are commonly used by workers in construction sites where there is a large amount of dust being produced from sawing, grinding, blasting, welding, etc., both electrostatically charged and not. A significant portion of airborne particles in construction sites could be nanoparticles created beside coarse particles. The penetration of the particles through the masks may differ depending on the size and charge of the individual particle. In field experiments relevant to this current study, we found that nanoparticles of medium size ranges are penetrating more frequently than nanoparticles of smaller and larger sizes. For example, penetration percentages of nanoparticles of 11.5 – 27.4 nm into a sealed N95 respirator on a manikin head ranged from 0.59 to 6.59%, whereas nanoparticles of 36.5 – 86.6 nm ranged from 7.34 to 16.04%. The possible causes behind this increased penetration of mid-size nanoparticles through mask filters are not yet explored. The objective of this study is to identify causes behind this unusual behavior of mid-size nanoparticles. We have considered such physical factors as Boltzmann distribution of the particles in thermal equilibrium with the air, kinetic energy of the particles at impact on the mask, Stoke’s drag force, and electrostatic forces in the mask stopping the particles. When the particles collide with the mask, only the particles that have enough kinetic energy to overcome the energy loss due to the electrostatic forces and the Stokes’ drag in the mask can pass through the mask. To understand this process, the following assumptions were made: (1) the effect of Stoke’s drag depends on the particles’ velocity at entry into the mask; (2) the electrostatic force is proportional to the charge on the particles, which in turn is proportional to the surface area of the particles; (3) the general dependence on electrostatic charge and thickness means that for stronger electrostatic resistance in the masks and thicker the masks’ fiber layers the penetration of particles is reduced, which is a sensible conclusion. In sampling situations where one mask was soaked in alcohol eliminating electrostatic interaction the penetration was much larger in the mid-range than the same mask with electrostatic interaction. The smaller nanoparticles showed almost zero penetration most likely because of the small kinetic energy, while the larger sized nanoparticles showed almost negligible penetration most likely due to the interaction of the particle with its own drag force. If there is no electrostatic force the fraction for larger particles grows. But if the electrostatic force is added the fraction for larger particles goes down, so diminished penetration for larger particles should be due to increased electrostatic repulsion, may be due to increased surface area and therefore larger charge on average. We have also explored the effect of ambient temperature on nanoparticle penetrations and determined that the dependence of the penetration of particles on the temperature is weak in the range of temperatures in the measurements 37-42°C, since the factor changes in the range from 3.17 10-3K-1 to 3.22 10-3K-1.Keywords: respiratory protection, industrial hygiene, aerosol, electrostatic force
Procedia PDF Downloads 194481 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water
Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien
Abstract:
Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment
Procedia PDF Downloads 234480 The Role of Anti-corruption Clauses in the Fight Against Corruption in Petroleum Sector
Authors: Azar Mahmoudi
Abstract:
Despite the rise of global anti-corruption movements and the strong emergence of international and national anti-corruption laws, corrupt practices are still prevalent in most places, and countries still struggle to translate these laws into practice. On the other hand, in most countries, political and economic elites oppose anti-corruption reforms. In such a situation, the role of external actors, like the other States, international organizations, and transnational actors, becomes essential. Among them, Transnational Corporations [TNCs] can develop their own regime-like framework to govern their internal activities, and through this, they can contribute to the regimes established by State actors to solve transnational issues. Among various regimes, TNCs may choose to comply with the transnational anti-corruption legal regime to avoid the cost of non-compliance with anti-corruption laws. As a result, they decide to strenghen their anti-corruption compliance as they expand into new overseas markets. Such a decision extends anti-corruption standards among their employees and third-party agents and within their projects across countries. To better address the challenges posed by corruption, TNCs have adopted a comprehensive anti-corruption toolkit. Among the various instruments, anti-corruption clauses have become one of the most anti-corruption means in international commercial agreements. Anti-corruption clauses, acting as a due diligence tool, can protect TNCs against the engagement of third-party agents in corrupt practices and further promote anti-corruption standards among businesses operating across countries. An anti-corruption clause allows parties to create a contractual commitment to exclude corrupt practices during the term of their agreement, including all levels of negotiation and implementation. Such a clause offers companies a mechanism to reduce the risk of potential corruption in their dealings with third parties while avoiding civil and administrative penalties. There have been few attempts to examine the role of anti-corruption clauses in the fight against corruption; therefore, this paper aims to fill this gap and examine anti-corruption clauses in a specific sector where corrupt practices are widespread and endemic, i.e., the petroleum industry. This paper argues that anti-corruption clauses are a positive step in ensuring that the petroleum industry operates in an ethical and transparent manner, helping to reducing the risk of corruption and promote integrity in this sector. Contractual anti-corruption clauses vary in terms of the types commitment, so parties have a wide range of options to choose from for their preferred clauses incorporated within their contracts. This paper intends to propose a categorization of anti-corruption clauses in the petroleum sector. It examines particularly the anti-corruption clauses incorporated in transnational hydrocarbon contracts published by the Resource Contract Portal, an online repository of extractive contracts. Then, this paper offers a quantitative assessment of anti-corruption clauses according to the types of contract, the date of conclusion, and the geographical distribution.Keywords: anti-corruption, oil and gas, transnational corporations, due diligence, contractual clauses, hydrocarbon, petroleum sector
Procedia PDF Downloads 131479 Consensual A-Monogamous Relationships: Challenges and Ways of Coping
Authors: Tal Braverman Uriel, Tal Litvak Hirsch
Abstract:
Background and Objectives: Little or only partial emphasis has been placed on exploring the complexity of consensual non-monogamous relationships. The term "polyamory" refers to consensual non-monogamy, and it is defined as having emotional and/or sexual relations simultaneously with two or more people, the consent and knowledge of all the partners concerned. Managing multiple romantic relationships with different people evokes more emotions, leads to more emotional conflicts arising from different interests, and demands practical strategies. An individual's transition from a monogamous lifestyle to a consensual non-monogamous lifestyle yields new challenges, accompanied by stress, uncertainty, and question marks, as do other life-changing events, such as divorce or transition to parenthood. The study examines both the process of transition and adaptation to a consensually non-monogamous relationship, as well as the coping mechanism involved in the daily conduct of this lifestyle. The research focuses on understanding the consequences, challenges, and coping methods from a personal, marital, and familial point of view and focuses on 40 middle-aged individuals (20 men and 20 women ages 40-60). The research sheds light on a way of life that has not been previously studied in Israel and is still considered unacceptable. Theories of crisis (e.g., as Folkman and Lazarus) were applied, and as a result, a deeper understanding of the subject was reached, all while focusing on multiple aspects of dealing with stress. The basic research question examines the consequences of entering a polyamorous life from a personal point of view as an individual, partner, and parent and the ways of coping with these consequences. Method: The research is conducted with a narrative qualitative approach in the interpretive paradigm, including semi-structured in-depth interviews. The method of analysis is thematic. Results: The findings indicate that in most cases, an individual's motivation to open the relationship is mainly a longing for better sexuality and for an added layer of excitement to their lives. Most of the interviewees were assisted by their spouses in the process, as well as by social networks and podcasts on the subject. Some of them therapeutic professionals from the field are helpful. It also clearly emerged that among those who experienced acute emotional crises with the primary partner or painful separations from secondary partners, all believed polyamory to be the adequate way of life for them. Finally, a key resource for managing tension and stress is the ability to share and communicate with the primary partner. Conclusions: The study points to the challenges and benefits of a non-monogamous lifestyle as well as the use of coping mechanisms and resources that are consistent with the existing theory and research in the field in the context of life changes. The study indicates the need to expand the research canvas in the future in the context of parenting and the consequences for children.Keywords: a-monogamy, consent, family, stress, tension
Procedia PDF Downloads 76478 Oncolytic H-1 Parvovirus Entry in Cancer Cells through Clathrin-Mediated Endocytosis
Authors: T. Ferreira, A. Kulkarni, C. Bretscher, K. Richter, M. Ehrlich, A. Marchini
Abstract:
H-1 protoparvovirus (H-1PV) is a virus with inherent oncolytic and oncosuppressive activities while remaining non-pathogenic in humans. H-1PV was the first oncolytic parvovirus to undergo clinical testing. Results from trials in patients with glioblastoma or pancreatic carcinoma showed an excellent safety profile and first signs of efficacy. H-1PV infection is vastly dependent on cellular factors, from cell attachment and entry to viral replication and egress. Hence, we believe that the characterisation of the parvovirus life cycle would ultimately help further improve H-1PV clinical outcome. In the present study, we explored the entry pathway of H-1PV in cervical HeLa and glioma NCH125 cancer cell lines. Electron and confocal microscopy showed viral particles associated with clathrin-coated pits and vesicles, providing the first evidence that H-1PV cell entry occurs through clathrin-mediated endocytosis. Accordingly, we observed that by blocking clathrin-mediated endocytosis with hypertonic sucrose, chlorpromazine, or pitstop 2, H-1PV transduction was markedly decreased. Accordingly, siRNA-mediated knockdown of AP2M1, which retains a crucial role in clathrin-mediated endocytosis, verified the reliance of H-1PV on this route to enter HeLa and NCH125 cancer cells. By contrast, we found no evidence of viral entry through caveolae-mediated endocytosis. Indeed, pre-treatment of cells with nystatin or methyl-β-cyclodextrin, both inhibitors of caveolae-mediated endocytosis, did not affect viral transduction levels. Unexpectedly, siRNA-mediated knockdown of caveolin-1, the main driver of caveolae-mediated endocytosis, increased H-1PV transduction, suggesting caveolin-1 is a negative modulator of H-1PV infection. We also show that H-1PV entry is dependent on dynamin, a protein responsible for mediating the scission of vesicle neck and promoting further internalisation. Furthermore, since dynamin inhibition almost completely abolished H-1PV infection, makes it unlikely that H-1PV uses macropinocytosis as an alternative pathway to enter cells. After viral internalisation, H-1PV passes through early to late endosomes as observed by confocal microscopy. Inside these endocytic compartments, the acidic environment proved to be crucial for a productive infection. Inhibition of acidification of pH dramatically reduced H-1PV transduction. Besides, a fraction of H-1PV particles was observed inside LAMP1-positive lysosomes, most likely following a non-infectious route. To the author's best knowledge, this is the first study to characterise the cell entry pathways of H-1PV. Along these lines, this work will further contribute to understand H-1PV oncolytic properties as well as to improve its clinical potential in cancer virotherapy.Keywords: clathrin-mediated endocytosis, H-1 parvovirus, oncolytic virus, virus entry
Procedia PDF Downloads 155477 Flexible Programmable Circuit Board Electromagnetic 1-D Scanning Micro-Mirror Laser Rangefinder by Active Triangulation
Authors: Vixen Joshua Tan, Siyuan He
Abstract:
Scanners have been implemented within single point laser rangefinders, to determine the ranges within an environment by sweeping the laser spot across the surface of interest. The research motivation is to exploit a smaller and cheaper alternative scanning component for the emitting portion within current designs of laser rangefinders. This research implements an FPCB (Flexible Programmable Circuit Board) Electromagnetic 1-Dimensional scanning micro-mirror as a scanning component for laser rangefinding by means of triangulation. The prototype uses a laser module, micro-mirror, and receiver. The laser module is infrared (850 nm) with a power output of 4.5 mW. The receiver consists of a 50 mm convex lens and a 45mm 1-dimensional PSD (Position Sensitive Detector) placed at the focal length of the lens at 50 mm. The scanning component is an elliptical Micro-Mirror attached onto an FPCB Structure. The FPCB structure has two miniature magnets placed symmetrically underneath it on either side, which are then electromagnetically actuated by small solenoids, causing the FPCB to mechanically rotate about its torsion beams. The laser module projects a laser spot onto the micro-mirror surface, hence producing a scanning motion of the laser spot during the rotational actuation of the FPCB. The receiver is placed at a fixed distance from the micro-mirror scanner and is oriented to capture the scanning motion of the laser spot during operation. The elliptical aperture dimensions of the micro-mirror are 8mm by 5.5 mm. The micro-mirror is supported by an FPCB with two torsion beams with dimensions of 4mm by 0.5mm. The overall length of the FPCB is 23 mm. The voltage supplied to the solenoids is sinusoidal with an amplitude of 3.5 volts and 4.5 volts to achieve optical scanning angles of +/- 10 and +/- 17 degrees respectively. The operating scanning frequency during experiments was 5 Hz. For an optical angle of +/- 10 degrees, the prototype is capable of detecting objects within the ranges from 0.3-1.2 meters with an error of less than 15%. As for an optical angle of +/- 17 degrees the measuring range was from 0.3-0.7 meters with an error of 16% or less. Discrepancy between the experimental and actual data is possibly caused by misalignment of the components during experiments. Furthermore, the power of the laser spot collected by the receiver gradually decreased as the object was placed further from the sensor. A higher powered laser will be tested to potentially measure further distances more accurately. Moreover, a wide-angled lens will be used in future experiments when higher scanning angles are used. Modulation within the current and future higher powered lasers will be implemented to enable the operation of the laser rangefinder prototype without the use of safety goggles.Keywords: FPCB electromagnetic 1-D scanning micro-mirror, laser rangefinder, position sensitive detector, PSD, triangulation
Procedia PDF Downloads 135476 High Strain Rate Behavior of Harmonic Structure Designed Pure Nickel: Mechanical Characterization Microstructure Analysis and 3D Modelisation
Authors: D. Varadaradjou, H. Kebir, J. Mespoulet, D. Tingaud, S. Bouvier, P. Deconick, K. Ameyama, G. Dirras
Abstract:
The development of new architecture metallic alloys with controlled microstructures is one of the strategic ways for designing materials with high innovation potential and, particularly, with improved mechanical properties as required for structural materials. Indeed, unlike conventional counterparts, metallic materials having so-called harmonic structure displays strength and ductility synergy. The latter occurs due to a unique microstructure design: a coarse grain structure surrounded by a 3D continuous network of ultra-fine grain known as “core” and “shell,” respectively. In the present study, pure harmonic-structured (HS) Nickel samples were processed via controlled mechanical milling and followed by spark plasma sintering (SPS). The present work aims at characterizing the mechanical properties of HS pure Nickel under room temperature dynamic loading through a Split Hopkinson Pressure Bar (SHPB) test and the underlying microstructure evolution. A stopper ring was used to maintain the strain at a fixed value of about 20%. Five samples (named B1 to B5) were impacted using different striker bar velocities from 14 m/s to 28 m/s, yielding strain rate in the range 4000-7000 s-1. Results were considered until a 10% deformation value, which is the deformation threshold for the constant strain rate assumption. The non-deformed (INIT – post-SPS process) and post-SHPB microstructure (B1 to B5) were investigated by EBSD. It was observed that while the strain rate is increased, the average grain size within the core decreases. An in-depth analysis of grains and grain boundaries was made to highlight the thermal (such as dynamic recrystallization) or mechanical (such as grains fragmentation by dislocation) contribution within the “core” and “shell.” One of the most widely used methods for determining the dynamic behavior of materials is the SHPB technique developed by Kolsky. A 3D simulation of the SHPB test was created through ABAQUS in dynamic explicit. This 3D simulation allows taking into account all modes of vibration. An inverse approach was used to identify the material parameters from the equation of Johnson-Cook (JC) by minimizing the difference between the numerical and experimental data. The JC’s parameters were identified using B1 and B5 samples configurations. Predictively, identified parameters of JC’s equation shows good result for the other sample configuration. Furthermore, mean rise of temperature within the harmonic Nickel sample can be obtained through ABAQUS and show an elevation of about 35°C for all fives samples. At this temperature, a thermal mechanism cannot be activated. Therefore, grains fragmentation within the core is mainly due to mechanical phenomena for a fixed final strain of 20%.Keywords: 3D simulation, fragmentation, harmonic structure, high strain rate, Johnson-cook model, microstructure
Procedia PDF Downloads 231475 Effect of Oxygen Ion Irradiation on the Structural, Spectral and Optical Properties of L-Arginine Acetate Single Crystals
Authors: N. Renuka, R. Ramesh Babu, N. Vijayan
Abstract:
Ion beams play a significant role in the process of tuning the properties of materials. Based on the radiation behavior, the engineering materials are categorized into two different types. The first one comprises organic solids which are sensitive to the energy deposited in their electronic system and the second one comprises metals which are insensitive to the energy deposited in their electronic system. However, exposure to swift heavy ions alters this general behavior. Depending on the mass, kinetic energy and nuclear charge, an ion can produce modifications within a thin surface layer or it can penetrate deeply to produce long and narrow distorted area along its path. When a high energetic ion beam impinges on a material, it causes two different types of changes in the material due to the columbic interaction between the target atom and the energetic ion beam: (i) inelastic collisions of the energetic ion with the atomic electrons of the material; and (ii) elastic scattering from the nuclei of the atoms of the material, which is extremely responsible for relocating the atoms of matter from their lattice position. The exposure of the heavy ions renders the material return to equilibrium state during which the material undergoes surface and bulk modifications which depends on the mass of the projectile ion, physical properties of the target material, its energy, and beam dimension. It is well established that electronic stopping power plays a major role in the defect creation mechanism provided it exceeds a threshold which strongly depends on the nature of the target material. There are reports available on heavy ion irradiation especially on crystalline materials to tune their physical and chemical properties. L-Arginine Acetate [LAA] is a potential semi-organic nonlinear optical crystal and its optical, mechanical and thermal properties have already been reported The main objective of the present work is to enhance or tune the structural and optical properties of LAA single crystals by heavy ion irradiation. In the present study, a potential nonlinear optical single crystal, L-arginine acetate (LAA) was grown by slow evaporation solution growth technique. The grown LAA single crystal was irradiated with oxygen ions at the dose rate of 600 krad and 1M rad in order to tune the structural and optical properties. The structural properties of pristine and oxygen ions irradiated LAA single crystals were studied using Powder X- ray diffraction and Fourier Transform Infrared spectral studies which reveal the structural changes that are generated due to irradiation. Optical behavior of pristine and oxygen ions irradiated crystals is studied by UV-Vis-NIR and photoluminescence analyses. From this investigation we can concluded that oxygen ions irradiation modifies the structural and optical properties of LAA single crystals.Keywords: heavy ion irradiation, NLO single crystal, photoluminescence, X-ray diffractometer
Procedia PDF Downloads 254474 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 647473 Economic Impact of Rana Plaza Collapse
Authors: Md. Omar Bin Harun Khan
Abstract:
The collapse of the infamous Rana Plaza, a multi-storeyed commercial building in Savar, near Dhaka, Bangladesh has brought with it a plethora of positive and negative consequences. Bangladesh being a key player in the export of clothing, found itself amidst a wave of economic upheaval following this tragic incident that resulted in numerous Bangladeshis, most of whom were factory workers. This paper compares the consequences that the country’s Ready Made Garments (RMG) sector is facing now, two years into the incident. The paper presents a comparison of statistical data from study reports and brings forward perspectives from all dimensions of Labour, Employment and Industrial Relations in Bangladesh following the event. The paper brings across the viewpoint of donor organizations and donor countries, the impacts of several initiatives taken by foreign organizations like the International Labour Organization, and local entities like the Bangladesh Garment Manufacturers and Exporters Association (BGMEA) in order to reinforce compliance and stabilize the shaky foundation that the RMG sector had found itself following the collapse. Focus of the paper remains on the stance taken by the suppliers in Bangladesh, with inputs from buying houses and factories, and also on the reaction of foreign brands. The paper also focuses on the horrific physical, mental and financial implications sustained by the victims and their families, and the consequent uproar from workers in general regarding compliance with work safety and workers’ welfare conditions. The purpose is to get across both sides of the scenario: the economic impact that suppliers / factories/ sellers/ buying houses/exporters have faced in Bangladesh as a result of complete loss of reliability on them regarding working standards; and also to cover the aftershock felt on the other end of the spectrum by the importers/ buyers, particularly the foreign entities, in terms of the sudden accountability of being affiliated with non- compliant factories. The collapse of Rana Plaza has received vast international attention and strong criticism. Nevertheless, the almost immediate strengthening of labourrights and the wholesale reform undertaken on all sides of the supply chain, evidence a move of all local and foreign stakeholders towards greater compliance and taking of precautionary steps for prevention of further disasters. The tragedy that Rana Plaza embodies served as a much-needed epiphany for the soaring RMG Sector of Bangladesh. Prompt co-operation on the part of all stakeholders and regulatory bodies now show a move towards sustainable development, which further ensures safeguarding against any future irregularities and pave the way for steady economic growth.Keywords: economy, employment standards, Rana Plaza, RMG
Procedia PDF Downloads 338472 Application of Response Surface Methodology to Assess the Impact of Aqueous and Particulate Phosphorous on Diazotrophic and Non-Diazotrophic Cyanobacteria Associated with Harmful Algal Blooms
Authors: Elizabeth Crafton, Donald Ott, Teresa Cutright
Abstract:
Harmful algal blooms (HABs), more notably cyanobacteria-dominated HABs, compromise water quality, jeopardize access to drinking water and are a risk to public health and safety. HABs are representative of ecosystem imbalance largely caused by environmental changes, such as eutrophication, that are associated with the globally expanding human population. Cyanobacteria-dominated HABs are anticipated to increase in frequency, magnitude, and are predicted to plague a larger geographical area as a result of climate change. The weather pattern is important as storm-driven, pulse-input of nutrients have been correlated to cyanobacteria-dominated HABs. The mobilization of aqueous and particulate nutrients and the response of the phytoplankton community is an important relationship in this complex phenomenon. This relationship is most apparent in high-impact areas of adequate sunlight, > 20ᵒC, excessive nutrients and quiescent water that corresponds to ideal growth of HABs. Typically the impact of particulate phosphorus is dismissed as an insignificant contribution; which is true for areas that are not considered high-impact. The objective of this study was to assess the impact of a simulated storm-driven, pulse-input of reactive phosphorus and the response of three different cyanobacteria assemblages (~5,000 cells/mL). The aqueous and particulate sources of phosphorus and changes in HAB were tracked weekly for 4 weeks. The first cyanobacteria composition consisted of Planktothrix sp., Microcystis sp., Aphanizomenon sp., and Anabaena sp., with 70% of the total population being non-diazotrophic and 30% being diazotrophic. The second was comprised of Anabaena sp., Planktothrix sp., and Microcystis sp., with 87% diazotrophic and 13% non-diazotrophic. The third composition has yet to be determined as these experiments are ongoing. Preliminary results suggest that both aqueous and particulate sources are contributors of total reactive phosphorus in high-impact areas. The results further highlight shifts in the cyanobacteria assemblage after the simulated pulse-input. In the controls, the reactors dosed with aqueous reactive phosphorus maintained a constant concentration for the duration of the experiment; whereas, the reactors that were dosed with aqueous reactive phosphorus and contained soil decreased from 1.73 mg/L to 0.25 mg/L of reactive phosphorus from time zero to 7 days; this was higher than the blank (0.11 mg/L). Suggesting a binding of aqueous reactive phosphorus to sediment, which is further supported by the positive correlation observed between total reactive phosphorus concentration and turbidity. The experiments are nearly completed and a full statistical analysis will be completed of the results prior to the conference.Keywords: Anabaena, cyanobacteria, harmful algal blooms, Microcystis, phosphorous, response surface methodology
Procedia PDF Downloads 167471 Algal/Bacterial Membrane Bioreactor for Bioremediation of Chemical Industrial Wastewater Containing 1,4 Dioxane
Authors: Ahmed Tawfik
Abstract:
Oxidation of 1,4 dioxane produces metabolites by-products involving glycolaldehyde and acids that have geno- and cytotoxicity impact on microbial degradation. Thereby, the incorporation of algae with bacteria in the treatment system would eliminate and overcome the accumulation of metabolites that are utilized as a carbon source for the build-up of biomass. Therefore, the aim of the present study is to assess the potential of algae/bacteria-based membrane bioreactor (AB-MBR) for biodegradation of 1,4 dioxane-rich wastewater at a high imposed loading rate. Three identical reactors, i.e., AB-MBR1, AB-MBR2, and AB-MBR3, were operated in parallel at 1,4 dioxane loading rates of 641.7, 320.9, and 160.4 mg/L. d., and HRTs of 6.0, 12 and 24 h. respectively. The AB-MBR1 achieved 1,4 dioxane removal rate of 263.7 mg/L.d., where the residual value in the treated effluent amounted to 94.4±22.9 mg/L. Reducing the 1,4 dioxane loading rate (LR) to 320.9 mg/L.d in the AB-MBR2 maximized the removal rate efficiency of 265.9 mg/L.d., with a removal efficiency of 82.8±3.2%. The minimum value of 1,4 dioxane of 17.3±1.8 mg/L in the treated effluent of AB-MBR3 was obtained at an HRT of 24.0 h and loading rate of 160.4 mg/L.d. The mechanism of 1,4 dioxane degradation in AB-MBR was a combination of volatilization (8.03±0.6%), UV oxidation (14.1±0.9%), microbial biodegradation (49.1±3.9%) and absorption/uptake and assimilation by algae (28.8±2.%). Further, the Thioclava, Afipia, and Mycobacterium genera oxidized and produced the required enzymes for hydrolysis and cleavage of the dioxane ring into 2-hydroxy-1,4 dioxane. Moreover, the fungi, i.e., Basidiomycota and Cryptomycota, played a big role in the degradation of the 1,4 dioxane into 2-hydroxy-1,4 dioxane. Xanthobacter and Mesorhizobium were involved in the metabolism process by secreting alcohol dehydrogenase (ADH), aldehyde dehydrogenase (ALDH), and glycolate oxidase. Bacteria and fungi produced dehydrogenase (DH) for the transformation of 2-hydroxy-1,4 dioxane into 2-hydroxy-ethoxyacetaldehyde. The latter is converted into Ethylene glycol by Aldehyde hydrogenase (ALDH). Ethylene glycol is oxidized into acids using Alcohol hydrogenase (ADH). The Diatomea, Chlorophyta, and Streptophyta utilize the metabolites for biomass assimilation and produce the required oxygen for further oxidation of the dioxane and its metabolites by-products of bacteria and fungi. The major portion of metabolites (ethylene glycol, glycolic acid, and oxalic acid were removed due to uptake and absorption by algae (43±4.3%), followed by adsorption (18.4±0.9%). The volatilization and UV oxidation contribution for the degradation of metabolites were 8.7±0.7% and 12.3±0.8%, respectively. The capabilities of genera Defluviimonas, Thioclava, Luteolibacter, and Afipia. The genera of Defluviimonas, Thioclava, Luteolibacter, and Mycobacterium were grown under a high 1,4 dioxane LR of 641.7 mg/L.d. The Chlorophyta (4.1-43.6%), Streptophyta (2.5-21.7%), and Diatomea (0.8-1.4%) phyla were dominant for degradation of 1,4 dioxane. The results of this study strongly demonstrated that the bioremediation and bioaugmentation process can safely remove 1,4 dioxane from industrial wastewater while minimizing environmental concerns and reducing economic costs.Keywords: wastewater, membrane bioreactor, bacterial community, algal community
Procedia PDF Downloads 44470 Studies of the Reaction Products Resulted from Glycerol Electrochemical Conversion under Galvanostatic Mode
Authors: Ching Shya Lee, Mohamed Kheireddine Aroua, Wan Mohd Ashri Wan Daud, Patrick Cognet, Yolande Peres, Mohammed Ajeel
Abstract:
In recent years, with the decreasing supply of fossil fuel, renewable energy has received a significant demand. Biodiesel which is well known as vegetable oil based fatty acid methyl ester is an alternative fuel for diesel. It can be produced from transesterification of vegetable oils, such as palm oil, sunflower oil, rapeseed oil, etc., with methanol. During the transesterification process, crude glycerol is formed as a by-product, resulting in 10% wt of the total biodiesel production. To date, due to the fast growing of biodiesel production in worldwide, the crude glycerol supply has also increased rapidly and resulted in a significant price drop for glycerol. Therefore, extensive research has been developed to use glycerol as feedstock to produce various added-value chemicals, such as tartronic acid, mesoxalic acid, glycolic acid, glyceric acid, propanediol, acrolein etc. The industrial processes that usually involved are selective oxidation, biofermentation, esterification, and hydrolysis. However, the conversion of glycerol into added-value compounds by electrochemical approach is rarely discussed. Currently, the approach is mainly focused on the electro-oxidation study of glycerol under potentiostatic mode for cogenerating energy with other chemicals. The electro-organic synthesis study from glycerol under galvanostatic mode is seldom reviewed. In this study, the glycerol was converted into various added-value compounds by electrochemical method under galvanostatic mode. This work aimed to study the possible compounds produced from glycerol by electrochemical technique in a one-pot electrolysis cell. The electro-organic synthesis study from glycerol was carried out in a single compartment reactor for 8 hours, over the platinum cathode and anode electrodes under acidic condition. Various parameters such as electric current (1.0 A to 3.0 A) and reaction temperature (27 °C to 80 °C) were evaluated. The products obtained were characterized by using gas chromatography-mass spectroscopy equipped with an aqueous-stable polyethylene glycol stationary phase column. Under the optimized reaction condition, the glycerol conversion achieved as high as 95%. The glycerol was successfully converted into various added-value chemicals such as ethylene glycol, glycolic acid, glyceric acid, acetaldehyde, formic acid, and glyceraldehyde; given the yield of 1%, 45%, 27%, 4%, 0.7% and 5%, respectively. Based on the products obtained from this study, the reaction mechanism of this process is proposed. In conclusion, this study has successfully converted glycerol into a wide variety of added-value compounds. These chemicals are found to have high market value; they can be used in the pharmaceutical, food and cosmetic industries. This study effectively opens a new approach for the electrochemical conversion of glycerol. For further enhancement on the product selectivity, electrode material is an important parameter to be considered.Keywords: biodiesel, glycerol, electrochemical conversion, galvanostatic mode
Procedia PDF Downloads 193469 Influence of Strain on the Corrosion Behavior of Dual Phase 590 Steel
Authors: Amit Sarkar, Jayanta K. Mahato, Tushar Bhattacharya, Amrita Kundu, P. C. Chakraborti
Abstract:
With increasing the demand for safety and fuel efficiency of automobiles, automotive manufacturers are looking for light weight, high strength steel with excellent formability and corrosion resistance. Dual-phase steel is finding applications in automotive sectors, because of its high strength, good formability, and high corrosion resistance. During service automotive components suffer from environmental attack and thereby gradual degradation of the components occurs reducing the service life of the components. The objective of the present investigation is to assess the effect of deformation on corrosion behaviour of DP590 grade dual phase steel which is used in automotive industries. The material was received from TATA Steel Jamshedpur, India in the form of 1 mm thick sheet. Tensile properties of the steel at strain rate of 10-3 sec-1: 0.2 % Yield Stress is 382 MPa, Ultimate Tensile Strength is 629 MPa, Uniform Strain is 16.30% and Ductility is 29%. Rectangular strips of 100x10x1 mm were machined keeping the long axis of the strips parallel to rolling direction of the sheet. These strips were longitudinally deformed at a strain rate at 10-3 sec-1 to a different percentage of strain, e.g. 2.5, 5, 7.5,10 and 12.5%, and then slowly unloaded. Small specimens were extracted from the mid region of the unclamped portion of these deformed strips. These small specimens were metallographic polished, and corrosion behaviour has been studied by potentiodynamic polarization, electrochemical impedance spectra, and cyclic polarization and potentiostatic tests. Present results show that among three different environments, the 3.5 pct NaCl solution is most aggressive in case of DP 590 dual-phase steel. It is observed that with the increase in the amount of deformation, corrosion rate increases. With deformation, the stored energy increases and leads to enhanced corrosion rate. Cyclic polarization results revealed highly deformed specimen are more prone to pitting corrosion as compared to the condition when amount of deformation is less. It is also observed that stability of the passive layer decreases with the amount of deformation. With the increase of deformation, current density increases in a passive zone and passive zone is also decreased. From Electrochemical impedance spectroscopy study it is found that with increasing amount of deformation polarization resistance (Rp) decreases. EBSD results showed that average geometrically necessary dislocation density increases with increasing strain which in term increased galvanic corrosion as dislocation areas act as the less noble metal.Keywords: dual phase 590 steel, prestrain, potentiodynamic polarization, cyclic polarization, electrochemical impedance spectra
Procedia PDF Downloads 429468 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique
Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham
Abstract:
Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT
Procedia PDF Downloads 190467 A Cloud-Based Federated Identity Management in Europe
Authors: Jesus Carretero, Mario Vasile, Guillermo Izquierdo, Javier Garcia-Blas
Abstract:
Currently, there is a so called ‘identity crisis’ in cybersecurity caused by the substantial security, privacy and usability shortcomings encountered in existing systems for identity management. Federated Identity Management (FIM) could be solution for this crisis, as it is a method that facilitates management of identity processes and policies among collaborating entities without enforcing a global consistency, that is difficult to achieve when there are ID legacy systems. To cope with this problem, the Connecting Europe Facility (CEF) initiative proposed in 2014 a federated solution in anticipation of the adoption of the Regulation (EU) N°910/2014, the so-called eIDAS Regulation. At present, a network of eIDAS Nodes is being deployed at European level to allow that every citizen recognized by a member state is to be recognized within the trust network at European level, enabling the consumption of services in other member states that, until now were not allowed, or whose concession was tedious. This is a very ambitious approach, since it tends to enable cross-border authentication of Member States citizens without the need to unify the authentication method (eID Scheme) of the member state in question. However, this federation is currently managed by member states and it is initially applied only to citizens and public organizations. The goal of this paper is to present the results of a European Project, named eID@Cloud, that focuses on the integration of eID in 5 cloud platforms belonging to authentication service providers of different EU Member States to act as Service Providers (SP) for private entities. We propose an initiative based on a private eID Scheme both for natural and legal persons. The methodology followed in the eID@Cloud project is that each Identity Provider (IdP) is subscribed to an eIDAS Node Connector, requesting for authentication, that is subscribed to an eIDAS Node Proxy Service, issuing authentication assertions. To cope with high loads, load balancing is supported in the eIDAS Node. The eID@Cloud project is still going on, but we already have some important outcomes. First, we have deployed the federation identity nodes and tested it from the security and performance point of view. The pilot prototype has shown the feasibility of deploying this kind of systems, ensuring good performance due to the replication of the eIDAS nodes and the load balance mechanism. Second, our solution avoids the propagation of identity data out of the native domain of the user or entity being identified, which avoids problems well known in cybersecurity due to network interception, man in the middle attack, etc. Last, but not least, this system allows to connect any country or collectivity easily, providing incremental development of the network and avoiding difficult political negotiations to agree on a single authentication format (which would be a major stopper).Keywords: cybersecurity, identity federation, trust, user authentication
Procedia PDF Downloads 166466 Switchable Lipids: From a Molecular Switch to a pH-Sensitive System for the Drug and Gene Delivery
Authors: Jeanne Leblond, Warren Viricel, Amira Mbarek
Abstract:
Although several products have reached the market, gene therapeutics are still in their first stages and require optimization. It is possible to improve their lacking efficiency by the use of carefully engineered vectors, able to carry the genetic material through each of the biological barriers they need to cross. In particular, getting inside the cell is a major challenge, because these hydrophilic nucleic acids have to cross the lipid-rich plasmatic and/or endosomal membrane, before being degraded into lysosomes. It takes less than one hour for newly endocytosed liposomes to reach highly acidic lysosomes, meaning that the degradation of the carried gene occurs rapidly, thus limiting the transfection efficiency. We propose to use a new pH-sensitive lipid able to change its conformation upon protonation at endosomal pH values, leading to the disruption of the lipidic bilayer and thus to the fast release of the nucleic acids into the cytosol. It is expected that this new pH-sensitive mechanism promote endosomal escape of the gene, thereby its transfection efficiency. The main challenge of this work was to design a preparation presenting fast-responding lipidic bilayer destabilization properties at endosomal pH 5 while remaining stable at blood pH value and during storage. A series of pH-sensitive lipids able to perform a conformational switch upon acidification were designed and synthesized. Liposomes containing these switchable lipids, as well as co-lipids were prepared and characterized. The liposomes were stable at 4°C and pH 7.4 for several months. Incubation with siRNA led to the full entrapment of nucleic acids as soon as the positive/negative charge ratio was superior to 2. The best liposomal formulation demonstrated a silencing efficiency up to 10% on HeLa cells, very similar to a commercial agent, with a lowest toxicity than the commercial agent. Using flow cytometry and microscopy assays, we demonstrated that drop of pH was required for the transfection efficiency, since bafilomycin blocked the transfection efficiency. Additional evidence was brought by the synthesis of a negative control lipid, which was unable to switch its conformation, and consequently exhibited no transfection ability. Mechanistic studies revealed that the uptake was mediated through endocytosis, by clathrin and caveolae pathways, as reported for previous lipid nanoparticle systems. This potent system was used for the treatment of hypercholesterolemia. The switchable lipids were able to knockdown PCSK9 expression on human hepatocytes (Huh-7). Its efficiency is currently evaluated on in vivo mice model of PCSK9 KO mice. In summary, we designed and optimized a new cationic pH-sensitive lipid for gene delivery. Its transfection efficiency is similar to the best available commercial agent, without the usually associated toxicity. The promising results lead to its use for the treatment of hypercholesterolemia on a mice model. Anticancer applications and pulmonary chronic disease are also currently investigated.Keywords: liposomes, siRNA, pH-sensitive, molecular switch
Procedia PDF Downloads 204465 The Impact Of Türki̇ye’s Decision-making Mechanism On The Transformation In Türkiye-syria Relations (2002-2024)
Authors: Ibrahim Akkan
Abstract:
This study analyses the transformation of Türkiye's Syria policy between 2002 and 2024 and the impact of domestic political dynamics in this process. Since the collapse of the Ottoman Empire, Türkiye and Syria have had a tense relationship for a long time due to reasons such as border issues, water sharing, security concerns and the activities of terrorist organizations. However, the process that started with the Adana Agreement in 1998 gained momentum with the Justice and Development Party (Ak Party) coming to power in 2002 and a historical period of rapprochement began between the two countries. During this period, Türkiye adopted the concept of “zero problems with neighbors” in its foreign policy and deepened its strategic partnerships in the region. Turkish-Syrian relations also developed within this framework, the trade volume between the two countries increased and cooperation was strengthened through mutual visits and diplomatic agreements. However, the Arab Spring that started in 2011 was a sharp turning point in Turkish-Syrian relations. The harsh stance of the Bashar Assad administration against the popular uprisings in Syria caused Türkiye to take a stance against Assad and support opposition groups. This process led to the severing of diplomatic ties between the two countries and the gradual deterioration of relations until 2024. Türkiye directly intervened in the civil war in Syria after the Arab Spring and conducted military operations in northern Syria that highlighted security policies. The main purpose of this study is to examine the transformation in Türkiye's Syria policies between 2002 and 2024 and to analyze the role of domestic political dynamics in Türkiye in this transformation. The main research question of the study is how domestic political actors in Türkiye, especially decision-makers (leaders, governments, political parties), shape foreign policy. In this context, the extent to which the leadership of the Ak Party government is decisive in decision-making processes and how the impact of domestic dynamics on foreign policy emerges will be studied. In this study, how both the pressures of the international system and domestic political dynamics shape foreign policy will be analyzed using the theoretical framework of neoclassical realism. How decision-making processes are decisive in foreign policy will be examined through a case study specific to Türkiye-Syria relations. In addition, the strategic preferences of leaders such as Recep Tayyip Erdoğan and Ahmet Davutoğlu in foreign policy and how these preferences overlap with developments in domestic politics will be evaluated using the discourse analysis method. This study aims to make a new contribution to the literature by providing a comprehensive analysis of how domestic dynamics shape foreign policy in Türkiye-Syria relations.Keywords: decision-making mechanisms, foreign policy analysis, neoclassical realism, syria, türkiye
Procedia PDF Downloads 2464 Comparison of GIS-Based Soil Erosion Susceptibility Models Using Support Vector Machine, Binary Logistic Regression and Artificial Neural Network in the Southwest Amazon Region
Authors: Elaine Lima Da Fonseca, Eliomar Pereira Da Silva Filho
Abstract:
The modeling of areas susceptible to soil loss by hydro erosive processes consists of a simplified instrument of reality with the purpose of predicting future behaviors from the observation and interaction of a set of geoenvironmental factors. The models of potential areas for soil loss will be obtained through binary logistic regression, artificial neural networks, and support vector machines. The choice of the municipality of Colorado do Oeste in the south of the western Amazon is due to soil degradation due to anthropogenic activities, such as agriculture, road construction, overgrazing, deforestation, and environmental and socioeconomic configurations. Initially, a soil erosion inventory map constructed through various field investigations will be designed, including the use of remotely piloted aircraft, orbital imagery, and the PLANAFLORO/RO database. 100 sampling units with the presence of erosion will be selected based on the assumptions indicated in the literature, and, to complement the dichotomous analysis, 100 units with no erosion will be randomly designated. The next step will be the selection of the predictive parameters that exert, jointly, directly, or indirectly, some influence on the mechanism of occurrence of soil erosion events. The chosen predictors are altitude, declivity, aspect or orientation of the slope, curvature of the slope, composite topographic index, flow power index, lineament density, normalized difference vegetation index, drainage density, lithology, soil type, erosivity, and ground surface temperature. After evaluating the relative contribution of each predictor variable, the erosion susceptibility model will be applied to the municipality of Colorado do Oeste - Rondônia through the SPSS Statistic 26 software. Evaluation of the model will occur through the determination of the values of the R² of Cox & Snell and the R² of Nagelkerke, Hosmer and Lemeshow Test, Log Likelihood Value, and Wald Test, in addition to analysis of the Confounding Matrix, ROC Curve and Accumulated Gain according to the model specification. The validation of the synthesis map resulting from both models of the potential risk of soil erosion will occur by means of Kappa indices, accuracy, and sensitivity, as well as by field verification of the classes of susceptibility to erosion using drone photogrammetry. Thus, it is expected to obtain the mapping of the following classes of susceptibility to erosion very low, low, moderate, very high, and high, which may constitute a screening tool to identify areas where more detailed investigations need to be carried out, applying more efficient social resources.Keywords: modeling, susceptibility to erosion, artificial intelligence, Amazon
Procedia PDF Downloads 66463 Combained Cultivation of Endemic Strains of Lactic Acid Bacteria and Yeast with Antimicrobial Properties
Authors: A. M. Isakhanyan, F. N. Tkhruni, N. N. Yakimovich, Z. I. Kuvaeva, T. V. Khachatryan
Abstract:
Introduction: At present, the simbiotics based on different genera and species of lactic acid bacteria (LAB) and yeasts are used. One of the basic properties of probiotics is presence of antimicrobial activity and therefore selection of LAB and yeast strains for their co-cultivation with the aim of increasing of the activity is topical. Since probiotic yeast and bacteria have different mechanisms of action, natural synergies between species, higher viability and increasing of antimicrobial activity might be expected from mixing both types of probiotics. Endemic strains of LAB Enterococcus faecium БТK-64, Lactobaccilus plantarum БТK-66, Pediococcus pentosus БТK-28, Lactobacillus rhamnosus БТK-109 and Kluyveromyces lactis БТX-412, Saccharomycopsis sp. БТX- 151 strains of yeast, with probiotic properties and hight antimicrobial activity, were selected. Strains are deposited in "Microbial Depository Center" (MDC) SPC "Armbiotechnology". Methods: LAB and yeast strains were isolated from different dairy products from rural households of Armenia. The genotyping by 16S rRNA sequencing for LAB and 26S RNA sequencing for yeast were used. Combined cultivation of LAB and yeast strains was carried out in the nutrient media on the basis of milk whey, in anaerobic conditions (without shaker, in a thermostat at 37oC, 48 hours). The complex preparations were obtained by purification of cell free culture broth (CFC) broth by the combination of ion-exchange chromatography and gel filtration methods. The spot-on-lawn method was applied for determination of antimicrobial activity and expressed in arbitrary units (AU/ml). Results. The obtained data showed that at the combined growth of bacteria and yeasts, the cultivation conditions (medium composition, time of growth, genera of LAB and yeasts) affected the display of antimicrobial activity. Purification of CFC broth allowed obtaining partially purified antimicrobial complex preparation which contains metabiotics from both bacteria and yeast. The complex preparation inhibited the growth of pathogenic and conditionally pathogenic bacteria, isolated from various internal organs from diseased animals and poultry with greater efficiency than the preparations derived individually alone from yeast and LAB strains. Discussion. Thus, our data shown perspectives of creation of a new class of antimicrobial preparations on the basis of combined cultivation of endemic strains of LAB and yeast. Obtained results suggest the prospect of use of the partially purified complex preparations instead antibiotics in the agriculture and for food safety. Acknowledgments: This work was supported by the RA MES State Committee of Science and Belarus National Foundation for Basic Research in the frames of the joint Armenian - Belarusian joint research project 13РБ-064.Keywords: co-cultivation, antimicrobial activity, biosafety, metabiotics, lactic acid bacteria, yeast
Procedia PDF Downloads 339462 Social Value of Travel Time Savings in Sub-Saharan Africa
Authors: Richard Sogah
Abstract:
The significance of transport infrastructure investments for economic growth and development has been central to the World Bank’s strategy for poverty reduction. Among the conventional surface transport infrastructures, road infrastructure is significant in facilitating the movement of human capital goods and services. When transport projects (i.e., roads, super-highways) are implemented, they come along with some negative social values (costs), such as increased noise and air pollution for local residents living near these facilities, displaced individuals, etc. However, these projects also facilitate better utilization of existing capital stock and generate other observable benefits that can be easily quantified. For example, the improvement or construction of roads creates employment, stimulates revenue generation (toll), reduces vehicle operating costs and accidents, increases accessibility, trade expansion, safety improvement, etc. Aside from these benefits, travel time savings (TTSs) which are the major economic benefits of urban and inter-urban transport projects and therefore integral in the economic assessment of transport projects, are often overlooked and omitted when estimating the benefits of transport projects, especially in developing countries. The absence of current and reliable domestic travel data and the inability of replicated models from the developed world to capture the actual value of travel time savings due to the large unemployment, underemployment, and other labor-induced distortions has contributed to the failure to assign value to travel time savings when estimating the benefits of transport schemes in developing countries. This omission of the value of travel time savings from the benefits of transport projects in developing countries poses problems for investors and stakeholders to either accept or dismiss projects based on schemes that favor reduced vehicular operating costs and other parameters rather than those that ease congestion, increase average speed, facilitate walking and handloading, and thus save travel time. Given the complex reality in the estimation of the value of travel time savings and the presence of widespread informal labour activities in Sub-Saharan Africa, we construct a “nationally ranked distribution of time values” and estimate the value of travel time savings based on the area beneath the distribution. Compared with other approaches, our method captures both formal sector workers and individuals/people who work outside the formal sector and hence changes in their time allocation occur in the informal economy and household production activities. The dataset for the estimations is sourced from the World Bank, the International Labour Organization, etc.Keywords: road infrastructure, transport projects, travel time savings, congestion, Sub-Sahara Africa
Procedia PDF Downloads 110461 From Stigma to Solutions: Harnessing Innovation and Local Wisdom to Tackle Harms Associated with Menstrual Seclusion (Chhaupadi) in Nepal
Authors: Sara E. Baumann, Megan A. Rabin, Mary Hawk, Bhimsen Devkota, Kajol Upadhyaya, Guna Raj Shrestha, Brigit Joseph, Annika Agarwal, Jessica G. Burke
Abstract:
In Nepal, prevailing sociocultural norms associated with menstruation prompt adherence to stringent rules that limit participation in daily activities. Chhaupadi is a specific menstrual tradition in Nepal in which women and girls segregate themselves and follow a series of restrictions during menstruation. Despite having numerous physical and mental health implications, extant interventions have yet to sustainably address the harms associated with chhaupadi. In this study, the authors describe insights garnered from a collaboration with community members in Dailekh district, who formulated their own approaches to mitigate the adverse facets of chhaupadi. Envisaged as an entry point to improve women’s menstrual health experiences, this investigation employed an approach that uses Human-centered Design and a community-engaged approach. The authors conducted a four-day design workshop which unfolded in two phases: The Discovery Phase, to uncover chhaupadi context and key stakeholders, and the Design Phase, to design contextually relevant interventions. Diverse community-members, including those with lived experience practicing chhaupadi, developed five intervention concepts: 1) harnessing Female Community Health Volunteers as role models, for counseling, and raising awareness; 2) focusing on mothers and mother’s groups to instigate behavioral shifts; 3) engaging the broader community in behavior change efforts; 4) empowering fathers to effect change in their homes through counseling and education; and 5) training and emboldening youth to advocate for positive change through advocacy in their schools and homes. This research underscores the importance of employing multi-level approaches tailored to specific stakeholder groups, given Nepal’s rich cultural diversity. The engagement of Female Community Health Volunteers emerged as a promising yet underexplored intervention concept for chhaupadi, warranting broader implementation. Crucially, it is also imperative for interventions to prioritize tackling deleterious aspects of the chhaupadi tradition, emphasizing safety considerations, all while acknowledging chhaupadi’s entrenched cultural history; for some, there are positive aspects of the tradition that women and girls wish to preserve.Keywords: human-centered design, menstrual health, Nepal, community-engagement, intervention development, women's health, rural health
Procedia PDF Downloads 63460 Optical and Structural Characterization of Rare Earth Doped Phosphate Glasses
Authors: Zélia Maria Da Costa Ludwig, Maria José Valenzuela Bell, Geraldo Henriques Da Silva, Thales Alves Faraco, Victor Rocha Da Silva, Daniel Rotmeister Teixeira, Vírgilio De Carvalho Dos Anjos, Valdemir Ludwig
Abstract:
Advances in telecommunications grow with the development of optical amplifiers based on rare earth ions. The focus has been concentrated in silicate glasses although their amplified spontaneous emission is limited to a few tens of nanometers (~ 40nm). Recently, phosphate glasses have received great attention due to their potential application in optical data transmission, detection, sensors and laser detector, waveguide and optical fibers, besides its excellent physical properties such as high thermal expansion coefficients and low melting temperature. Compared with the silica glasses, phosphate glasses provide different optical properties such as, large transmission window of infrared, and good density. Research on the improvement of physical and chemical durability of phosphate glass by addition of heavy metals oxides in P2O5 has been performed. The addition of Na2O further improves the solubility of rare earths, while increasing the Al2O3 links in the P2O5 tetrahedral results in increased durability and aqueous transition temperature and a decrease of the coefficient of thermal expansion. This work describes the structural and spectroscopic characterization of a phosphate glass matrix doped with different Er (Erbium) concentrations. The phosphate glasses containing Er3+ ions have been prepared by melt technique. A study of the optical absorption, luminescence and lifetime was conducted in order to characterize the infrared emission of Er3+ ions at 1540 nm, due to the radiative transition 4I13/2 → 4I15/2. Our results indicate that the present glass is a quite good matrix for Er3+ ions, and the quantum efficiency of the 1540 nm emission was high. A quenching mechanism for the mentioned luminescence was not observed up to 2,0 mol% of Er concentration. The Judd-Ofelt parameters, radiative lifetime and quantum efficiency have been determined in order to evaluate the potential of Er3+ ions in new phosphate glass. The parameters follow the trend as Ω2 > Ω4 > Ω6. It is well known that the parameter Ω2 is an indication of the dominant covalent nature and/or structural changes in the vicinity of the ion (short range effects), while Ω4 and Ω6 intensity parameters are long range parameters that can be related to the bulk properties such as viscosity and rigidity of the glass. From the PL measurements, no red or green upconversion was measured when pumping the samples with laser excitation at 980 nm. As future prospects: Synthesize this glass system with silver in order to determine the influence of silver nanoparticles on the Er3+ ions.Keywords: phosphate glass, erbium, luminescence, glass system
Procedia PDF Downloads 510459 Infant and Young Child Dietary Diversification Using Locally Available Foods after Nutrition Education in Rural Malawi
Authors: G. C. Phiri, E. A. Heil, A. A. Kalimbira, E. Muehlhoff, C. Masangano, B. M. Mtimuni, J. Herrmann, M. B. Krawinkel, I. Jordan
Abstract:
Background and objectives: High prevalence of undernutrition in Malawi is caused by poor complementary foods. Lack of knowledge of age appropriate food within the household might affect utilization of available resources. FAO-Malawi implemented nutrition education (NE) sessions in 200 villages in Kasungu and Mzimba districts from December 2012 to April 2013 targeting 15 caregivers per village of children aged 6-18 months, grandmothers, spouses and community leaders. Two trained volunteers per village facilitated 10 NE sessions on breastfeeding, food safety and hygiene and complementary feeding using locally available resources. This study assessed the reported dietary diversification practices of infant and young child after nutrition education and the factors that influenced adoption of the practice. Methodology: Questionnaire-based interviews with caregivers were conducted in 16 randomly selected villages (n=108) before training-(t1) and seven months after training-(t2). Knowledge score (KS) was calculated on the indicators breastfeeding, hygiene and complementary feeding. Count regression was performed using SPSS 22. Eight focus group discussions (FGDs) were separately conducted among caregivers and grandmothers in 4 villages. Content analysis was used to analyze FGDs data. Results: Following NE, caregivers' KS significantly increased (p<0.001) between t1 and t2 for breastfeeding (7.7 vs. 9.8, max=18), hygiene (3.8 vs. 5.9, max=7) and complementary feeding (10.2 vs. 16.2, max=26). Caregivers indicated that they stopped preparation of plain-refined maize meal porridge after they gained knowledge on dietary diversification of complementary foods. They learnt mushing and pounding of ingredients for enriched porridge. Whole-maize meal or potatoes were often enriched with vegetables, legumes, small fish or eggs and cooking oil. Children liked the taste of enriched porridge. Amount of enriched porridge consumed at each sitting increase among previously fussy-eater children. Meal frequency increased by including fruits as snacks in child’s diet. Grandmothers observed preparation of enriched porridge among the mothers using locally available foods. Grandmothers liked the taste of enriched porridge and not the greenish color of the porridge. Both grandmothers and mothers reported that children were playing independently after consuming enriched porridge and were strong and healthy. These motivated adoption of the practice. Conclusion: Increased knowledge and skill of preparation and utilisation of locally available foods promoted children’s dietary diversification. Children liking the enriched porridge motivated adoption of dietary diversification.Keywords: behaviour change, complementary feeding, dietary diversification, IYCN
Procedia PDF Downloads 472458 The Incorporation of Themes Related to Islandness in Tourism Branding among Cold-Water, Warm-Water, and Temperate-Water Islands
Authors: Susan C. Graham
Abstract:
Islands have a long established allure for travellers the world over. From earliest accounts of human history, travellers were drawn by the sense of islandness embodied by these destinations. The concept of islandness describes the essence of what makes islands unique relative to non-islands and extends beyond geographic interpretations by attempting to capture the specific sense of self-exhibited by islanders in relation to their connection to place. The themes most strongly associated with islandness include a) a strong connection to water as both the life blood and a physical barrier, b) a unique culture and robust arts community that is deeply linked to both the island and islanders, c) an appreciation of and for nature, d) a rich sense of history and tradition connected to the place, e) a sense of community and belonging that arose through shared triumphs and struggles, and f) a profound awareness of independence, separateness, and uniqueness derived from both physical and social experience. The island brand, like all brands, is a marketing tactic designed to succinctly express a specific value proposition in simplistic ways which might include a brand symbol, logo, slogan, or representation meant to distinguish one brand from another. If a value proposition is the identification of attributes that separate one brand from another by highlighting the brand’s uniqueness, then presumably island brands may, at least in part, emphasize islandness as part of the destination brand. Yet it may in naïve to expect all islands to brand themselves using similar themes when islands can differ so substantially in terms of population, geography, political climate, economy, culture, and history. Of particular interest is the increased focus on tourism among 'cold-water' islands. This paper will examine the incorporation of themes related to islandness in tourism branding among cold-water, warm-water, and temperate-water islands. The tourism logos of 83 islands were collected and assessed for the use of themes related to islandness, namely water, arts and culture, nature, history and tradition, community and belongingness, and independence, separateness, and uniqueness. The ratings for each theme related to islandness for each of the 83 island destinations were then analyzed to identify if differences exist between cold-water, warm-water, and temperate-water islands. A general consensus of what constitutes 'cold-water' destinations is lacking, therefore a water temperature of 15C was adopted using the guidelines from the National Center for Cold Water Safety. Among these 83 islands, the average high and average low water temperatures of 196 specific locations, including the capital, northern, and southern most points of each island, was recorded to determine if the location was a cold-water (average high and low below 15C), warm-water (average high and low above 15C), or temperate-water (average high above 15C and low below 15C) location.Keywords: branding, cold-water, islands, tourism
Procedia PDF Downloads 224457 Ganga Rejuvenation through Forestation and Conservation Measures in Riverscape
Authors: Ombir Singh
Abstract:
In spite of the religious and cultural pre-dominance of the river Ganga in the Indian ethos, fragmentation and degradation of the river continued down the ages. Recognizing the national concern on environmental degradation of the river and its basin, Ministry of Water Resources, River Development & Ganga Rejuvenation (MoWR,RD&GR), Government of India has initiated a number of pilot schemes for the rejuvenation of river Ganga under the ‘Namami Gange’ Programme. Considering the diversity, complexity, and intricacies of forest ecosystems and pivotal multiple functions performed by them and their inter-connectedness with highly dynamic river ecosystems, forestry interventions all along the river Ganga from its origin at Gaumukh, Uttarakhand to its mouth at Ganga Sagar, West Bengal has been planned by the ministry. For that Forest Research Institute (FRI) in collaboration with National Mission for Clean Ganga (NMCG) has prepared a Detailed Project Report (DPR) on Forestry Interventions for Ganga. The Institute has adopted an extensive consultative process at the national and state levels involving various stakeholders relevant in the context of river Ganga and employed a science-based methodology including use of remote sensing and GIS technologies for geo-spatial analysis, modeling and prioritization of sites for proposed forestation and conservation interventions. Four sets of field data formats were designed to obtain the field based information for forestry interventions, mainly plantations and conservation measures along the river course. In response, five stakeholder State Forest Departments had submitted more than 8,000 data sheets to the Institute. In order to analyze a voluminous field data received from five participating states, the Institute also developed a software to collate, analyze and generation of reports on proposed sites in Ganga basin. FRI has developed potential plantation and treatment models for the proposed forestry and other conservation measures in major three types of landscape components visualized in the Ganga riverscape. These are: (i) Natural, (ii) Agriculture, and (iii) Urban Landscapes. Suggested plantation models broadly varied for the Uttarakhand Himalayas and the Ganga Plains in five participating states. Besides extensive plantations in three type of landscapes within the riverscape, various conservation measures such as soil and water conservation, riparian wildlife management, wetland management, bioremediation and bio-filtration and supporting activities such as policy and law intervention, concurrent research, monitoring and evaluation, and mass awareness campaigns have been envisioned in the DPR. The DPR also incorporates the details of the implementation mechanism, budget provisioned for different components of the project besides allocation of budget state-wise to five implementing agencies, national partner organizations and the Nodal Ministry.Keywords: conservation, Ganga, river, water, forestry interventions
Procedia PDF Downloads 149456 Fabrication of High-Aspect Ratio Vertical Silicon Nanowire Electrode Arrays for Brain-Machine Interfaces
Authors: Su Yin Chiam, Zhipeng Ding, Guang Yang, Danny Jian Hang Tng, Peiyi Song, Geok Ing Ng, Ken-Tye Yong, Qing Xin Zhang
Abstract:
Brain-machine interfaces (BMI) is a ground rich of exploration opportunities where manipulation of neural activity are used for interconnect with myriad form of external devices. These research and intensive development were evolved into various areas from medical field, gaming and entertainment industry till safety and security field. The technology were extended for neurological disorders therapy such as obsessive compulsive disorder and Parkinson’s disease by introducing current pulses to specific region of the brain. Nonetheless, the work to develop a real-time observing, recording and altering of neural signal brain-machine interfaces system will require a significant amount of effort to overcome the obstacles in improving this system without delay in response. To date, feature size of interface devices and the density of the electrode population remain as a limitation in achieving seamless performance on BMI. Currently, the size of the BMI devices is ranging from 10 to 100 microns in terms of electrodes’ diameters. Henceforth, to accommodate the single cell level precise monitoring, smaller and denser Nano-scaled nanowire electrode arrays are vital in fabrication. In this paper, we would like to showcase the fabrication of high aspect ratio of vertical silicon nanowire electrodes arrays using microelectromechanical system (MEMS) method. Nanofabrication of the nanowire electrodes involves in deep reactive ion etching, thermal oxide thinning, electron-beam lithography patterning, sputtering of metal targets and bottom anti-reflection coating (BARC) etch. Metallization on the nanowire electrode tip is a prominent process to optimize the nanowire electrical conductivity and this step remains a challenge during fabrication. Metal electrodes were lithographically defined and yet these metal contacts outline a size scale that is larger than nanometer-scale building blocks hence further limiting potential advantages. Therefore, we present an integrated contact solution that overcomes this size constraint through self-aligned Nickel silicidation process on the tip of vertical silicon nanowire electrodes. A 4 x 4 array of vertical silicon nanowires electrodes with the diameter of 290nm and height of 3µm has been successfully fabricated.Keywords: brain-machine interfaces, microelectromechanical systems (MEMS), nanowire, nickel silicide
Procedia PDF Downloads 435