Search results for: problem-based learning approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19224

Search results for: problem-based learning approach

13584 Deep Learning for SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo Ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring. SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, polarimetric SAR image, convolutional neural network, deep learnig, deep neural network

Procedia PDF Downloads 74
13583 We Have Never Seen a Dermatologist. Reaching the Unreachable Through Teledermatology

Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa Kitunzi, Annabella Haninka Ejiri

Abstract:

Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. Our overall goal was to increase access to dermatologist-led care for prisoners with AD through teledermatology in Uganda. We aimed to; i) to increase awareness and understanding of teledermatology among prison health workers; and ii) to improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons: Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prisons staff with AD. We conducted a five days training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: Draft iconographic atlas of the main dermatoses in pigmented African skin Increased proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80% Increased proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year. Increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year. Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one year

Keywords: teledermatology, prisoners, reaching, un-reachable

Procedia PDF Downloads 118
13582 Health Economics in the Cost-Benefit Analysis of Transport Schemes

Authors: Henry Kelly, Helena Shaw

Abstract:

This paper will seek how innovative methods from Health Economics and, to a lesser extent, wellbeing analysis can be applied in the Cost-Benefit Analysis (CBA) of transport infrastructure and policy interventions. The context for this will focus on the framework articulated by the UK Treasury (finance department) and the English Department for Transport. Both have well-established methods for undertaking CBA, but there is increased policy interest, particularly at a regional level of exploring broader strategic goals beyond those traditionally associated with transport user benefits, productivity gains, and labour market access. Links to different CBA approaches internationally, such as New Zealand, France, and Wales will be referenced. By exploring a complementary method of accessing the impacts of policies through the quantification of health impacts is a fruitful line to explore. In a previous piece of work, 14 impact pathways were identified, mapping the relationship between transport and health. These are wide-ranging, from improved employment prospects, the stress of unreliable journey times, and air quality to isolation and loneliness. Importantly, we will consider these different measures of health from an intersectional point of view to ensure that the basis that remains in the health industry does not get translated across to this work. The objective is to explore how a CBA based on these pathways may, through quantifying forecast impacts in terms of Quality-Adjusted Life Years may, produce different findings than a standard approach. Of particular interest is how a health-based approach may have different distributional impacts on socio-economic groups and may favour distinct types of interventions. Consideration will be given to the degree this approach may double-count impacts or if it is possible to identify additional benefits to the established CBA approach. The investigation will explore a range of schemes, from a high-speed rail link, highway improvements, rural mobility hubs, and coach services to cycle lanes. The conclusions should aid the progression of methods concerning the assessment of publicly funded infrastructure projects.

Keywords: cost-benefit analysis, health, QALYs transport

Procedia PDF Downloads 84
13581 Translating Ex-landfill Development Needs and Adequacy of Open Space Provision in Malaysian Urban Development

Authors: S. Mazifah, A. Azahan, A. Kadir

Abstract:

This paper aims to examine the relationship between the needs of ex-landfill redevelopment and the adequacy of open space provision in the context of sustainable urban development planning in Malaysia as seen from the perspective of the National Urban Policy. With a specific focus on the Action Plan DPN6 and DPN9, ex-landfill redevelopment needs and provision of open space are detailed to identify their potential and constraints in the development of sustainable cities. As a result, this paper found a link between the needs of urban ex-landfill redevelopment and approach to provide adequate urban open space. Through the proposal of the development of public park at urban ex-landfill sites, the needs of ex-landfill redevelopment and the adequacy of urban open space provision is being 'united' and translated as an approach to create a sustainable urban development in Malaysia.

Keywords: ex-landfill redevelopment, open spaces, National Urban Policy, sustainable urban development

Procedia PDF Downloads 459
13580 Application of Nonparametric Geographically Weighted Regression to Evaluate the Unemployment Rate in East Java

Authors: Sifriyani Sifriyani, I Nyoman Budiantara, Sri Haryatmi, Gunardi Gunardi

Abstract:

East Java Province has a first rank as a province that has the most counties and cities in Indonesia and has the largest population. In 2015, the population reached 38.847.561 million, this figure showed a very high population growth. High population growth is feared to lead to increase the levels of unemployment. In this study, the researchers mapped and modeled the unemployment rate with 6 variables that were supposed to influence. Modeling was done by nonparametric geographically weighted regression methods with truncated spline approach. This method was chosen because spline method is a flexible method, these models tend to look for its own estimation. In this modeling, there were point knots, the point that showed the changes of data. The selection of the optimum point knots was done by selecting the most minimun value of Generalized Cross Validation (GCV). Based on the research, 6 variables were declared to affect the level of unemployment in eastern Java. They were the percentage of population that is educated above high school, the rate of economic growth, the population density, the investment ratio of total labor force, the regional minimum wage and the ratio of the number of big industry and medium scale industry from the work force. The nonparametric geographically weighted regression models with truncated spline approach had a coefficient of determination 98.95% and the value of MSE equal to 0.0047.

Keywords: East Java, nonparametric geographically weighted regression, spatial, spline approach, unemployed rate

Procedia PDF Downloads 323
13579 Teachers’ Experiences regarding Use of Information and Communication Technology for Visually Impaired Students

Authors: Zikra Faiz, Zaheer Asghar, Nisar Abid

Abstract:

Information and Communication Technologies (ICTs) includes computers, the Internet, and electronic delivery systems such as televisions, radios, multimedia, and overhead projectors etc. In the modern world, ICTs is considered as an essential element of the teaching-learning process. The study was aimed to discover the usage of ICTs in Special Education Institutions for Visually Impaired students, Lahore, Pakistan. Objectives of the study were to explore the problems faced by teachers while using ICT in the classroom. The study was phenomenology in nature; a qualitative survey method was used through a semi-structured interview protocol developed by the researchers. The sample comprised of eighty faculty members selected through a purposive sampling technique. Data were analyzed through thematic analysis technique with the help of open coding. The study findings revealed that multimedia, projectors, computers, laptops and LEDs are used in special education institutes to enhance the teaching-learning process. Teachers believed that ICTs could enhance the knowledge of visually impaired students and every student should use these technologies in the classroom. It was concluded that multimedia, projectors and laptops are used in classroom by teachers and students. ICTs can promote effectively through the training of teachers and students. It was suggested that the government should take steps to enhance ICTs in teacher training and other institutions by pre-service and in-service training of teachers.

Keywords: information and communication technologies, in-services teachers, special education institutions

Procedia PDF Downloads 135
13578 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations

Authors: Boudemagh Naime

Abstract:

Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.

Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling

Procedia PDF Downloads 368
13577 The Impact of Two Factors on EFL Learners' Fluency

Authors: Alireza Behfar, Mohammad Mahdavi

Abstract:

Nowadays, in the light of progress in the world of science, technology and communications, mastery of learning international languages is a sure and needful matter. In learning any language as a second language, progress and achieving a desirable level in speaking is indeed important for approximately all learners. In this research, we find out how preparation can influence L2 learners' oral fluency with respect to individual differences in working memory capacity. The participants consisted of sixty-one advanced L2 learners including MA students of TEFL at Isfahan University as well as instructors teaching English at Sadr Institute in Isfahan. The data collection consisted of two phases: A working memory test (reading span test) and a picture description task, with a one-month interval between the two tasks. Speaking was elicited through speech generation task in which the individuals were asked to discuss four topics emerging in two pairs. The two pairs included one simple and one complex topic and was accompanied by planning time and without any planning time respectively. Each topic was accompanied by several relevant pictures. L2 fluency was assessed based on preparation. The data were then analyzed in terms of the number of syllables, the number of silent pauses, and the mean length of pauses produced per minute. The study offers implications for strategies to improve learners’ both fluency and working memory.

Keywords: two factors, fluency, working memory capacity, preparation, L2 speech production reading span test picture description

Procedia PDF Downloads 235
13576 Case Study Approach Using Scenario Analysis to Analyze Unabsorbed Head Office Overheads

Authors: K. C. Iyer, T. Gupta, Y. M. Bindal

Abstract:

Head office overhead (HOOH) is an indirect cost and is recovered through individual project billings by the contractor. Delay in a project impacts the absorption of HOOH cost allocated to that particular project and thus diminishes the expected profit of the contractor. This unabsorbed HOOH cost is later claimed by contractors as damages. The subjective nature of the available formulae to compute unabsorbed HOOH is the difficulty that contractors and owners face and thus dispute it. The paper attempts to bring together the rationale of various HOOH formulae by gathering contractor’s HOOH cost data on all of its project, using case study approach and comparing variations in values of HOOH using scenario analysis. The case study approach uses project data collected from four construction projects of a contractor in India to calculate unabsorbed HOOH costs from various available formulae. Scenario analysis provides further variations in HOOH values after considering two independent situations mainly scope changes and new projects during the delay period. Interestingly, one of the findings in this study reveals that, in spite of HOOH getting absorbed by additional works available during the period of delay, a few formulae depict an increase in the value of unabsorbed HOOH, neglecting any absorption by the increase in scope. This indicates that these formulae are inappropriate for use in case of a change to the scope of work. Results of this study can help both parties in deciding on an appropriate formula more objectively, considering the events on a project causing the delay and contractor's position in respect of obtaining new projects.

Keywords: absorbed and unabsorbed overheads, head office overheads, scenario analysis, scope variation

Procedia PDF Downloads 171
13575 Liver Tumor Detection by Classification through FD Enhancement of CT Image

Authors: N. Ghatwary, A. Ahmed, H. Jalab

Abstract:

In this paper, an approach for the liver tumor detection in computed tomography (CT) images is represented. The detection process is based on classifying the features of target liver cell to either tumor or non-tumor. Fractional differential (FD) is applied for enhancement of Liver CT images, with the aim of enhancing texture and edge features. Later on, a fusion method is applied to merge between the various enhanced images and produce a variety of feature improvement, which will increase the accuracy of classification. Each image is divided into NxN non-overlapping blocks, to extract the desired features. Support vector machines (SVM) classifier is trained later on a supplied dataset different from the tested one. Finally, the block cells are identified whether they are classified as tumor or not. Our approach is validated on a group of patients’ CT liver tumor datasets. The experiment results demonstrated the efficiency of detection in the proposed technique.

Keywords: fractional differential (FD), computed tomography (CT), fusion, aplha, texture features.

Procedia PDF Downloads 360
13574 Gender-Based Violence in Pakistan: Addressing the Root Causes

Authors: Hafiz Awais Ahmad

Abstract:

This paper aims to examine the root causes of gender-based violence (GBV) in Pakistan and proposes strategies to address this issue. Using a qualitative approach, this study analyzed data from various sources, including interviews with survivors of GBV and experts in the field. The findings revealed that GBV in Pakistan is deeply rooted in patriarchal attitudes and practices, economic insecurity, lack of education, and limited access to justice. The study recommends a multi-faceted approach to address GBV, including legislative reforms, awareness-raising campaigns, economic empowerment, and improved access to justice for survivors. Furthermore, the study highlights the importance of engaging men and boys in efforts to address GBV and promote gender equality. The findings of this study have important implications for policy-makers, practitioners, and researchers working towards ending GBV in Pakistan.

Keywords: gender-based violence, Pakistan, legislative reforms, advocacy

Procedia PDF Downloads 152
13573 Solar Power Satellites: Reconsideration Based on Novel Approaches

Authors: Alex Ellery

Abstract:

Solar power satellites (SPS), despite their promise as a clean energy source, have been relegated out of consideration due to their enormous cost and technological challenge. It has been suggested that for solar power satellites to become economically feasible, launch costs must decrease from their current $20,000/kg to < $200/kg. Even with the advent of single-stage-to-orbit launchers which propose launch costs dropping to $2,000/kg, this will not be realized. Yet, the advantages of solar power satellites are many. Here, I present a novel approach to reduce the specific cost of solar power satellites to ~$1/kg by leveraging two enabling technologies – in-situ resource utilization and 3D printing. The power of such technologies will open up enormous possibilities for providing additional options for combating climate change whilst meeting demands for global energy. From the constraints imposed by in-situ resource utilization, a novel approach to solar energy conversion in SPS may be realized.

Keywords: clean energy sources, in-situ resource utilisation, solar power satellites, thermionic emission

Procedia PDF Downloads 427
13572 Multi-Criteria Based Robust Markowitz Model under Box Uncertainty

Authors: Pulak Swain, A. K. Ojha

Abstract:

Portfolio optimization is based on dealing with the problems of efficient asset allocation. Risk and Expected return are two conflicting criteria in such problems, where the investor prefers the return to be high and the risk to be low. Using multi-objective approach we can solve those type of problems. However the information which we have for the input parameters are generally ambiguous and the input values can fluctuate around some nominal values. We can not ignore the uncertainty in input values, as they can affect the asset allocation drastically. So we use Robust Optimization approach to the problems where the input parameters comes under box uncertainty. In this paper, we solve the multi criteria robust problem with the help of  E- constraint method.

Keywords: portfolio optimization, multi-objective optimization, ϵ - constraint method, box uncertainty, robust optimization

Procedia PDF Downloads 143
13571 Multivariate Genome-Wide Association Studies for Identifying Additional Loci for Myopia

Authors: Qiao Fan, Xiaobo Guo, Junxian Zhu, Xiaohu Ding, Ching-Yu Cheng, Tien-Yin Wong, Mingguang He, Heping Zhang, Xueqin Wang

Abstract:

A systematic, simultaneous analysis of multiple phenotypes in genome-wide association studies (GWASs) draws a great attention to integrate the signals from single phenotypes with increased power. However, lacking an interpretable and efficient multivariate GWAS analysis impede the application of such approach. In this study, we propose to decompose the multivariate model into a series of simple univariate models. This transformation illuminates what exactly the individual trait contributes to the significant signals from the multivariate analyses. By employing our approach in the analysis of three myopia-related endophenotypes from the Singapore Malay Eye Study (SIMES), we identify novel candidate loci which were successfully validated in an independent Guangzhou Twin Eye Study (GTES).

Keywords: GWAS multivariate, multiple traits, myopia, association

Procedia PDF Downloads 228
13570 A Novel Machining Method and Tool-Path Generation for Bent Mandrel

Authors: Hong Lu, Yongquan Zhang, Wei Fan, Xiangang Su

Abstract:

Bent mandrel has been widely used as precise mould in automobile industry, shipping industry and aviation industry. To improve the versatility and efficiency of turning method of bent mandrel with fixed rotational center, an instantaneous machining model based on cutting parameters and machine dimension is prospered in this paper. The spiral-like tool path generation approach in non-axisymmetric turning process of bent mandrel is developed as well to deal with the error of part-to-part repeatability in existed turning model. The actual cutter-location points are calculated by cutter-contact points, which are obtained from the approach of spiral sweep process using equal-arc-length segment principle in polar coordinate system. The tool offset is set to avoid the interference between tool and work piece is also considered in the machining model. Depend on the spindle rotational angle, synchronization control of X-axis, Z-axis and C-axis is adopted to generate the tool-path of the turning process. The simulation method is developed to generate NC program according to the presented model, which includes calculation of cutter-location points and generation of tool-path of cutting process. With the approach of a bent mandrel taken as an example, the maximum offset of center axis is 4mm in the 3D space. Experiment results verify that the machining model and turning method are appropriate for the characteristics of bent mandrel.

Keywords: bent mandrel, instantaneous machining model, simulation method, tool-path generation

Procedia PDF Downloads 337
13569 Tolerance of Ambiguity in Relation to Listening Performance across Learners of Various Linguistic Backgrounds

Authors: Amin Kaveh Boukani

Abstract:

Foreign language learning is not straightforward and can be affected by numerous factors, among which personality features like tolerance of ambiguity (TA) are so well-known and important. Such characteristics yet can be affected by other factors like learning additional languages. The current investigation, thus, opted to explore the possible effect of linguistic background (being bilingual or trilingual) on the tolerance of ambiguity (TA) of Iranian EFL learners. Furthermore, the possible mediating effect of TA on multilingual learners' language performance (listening comprehension in this study) was expounded. This research involved 68 EFL learners (32 bilinguals, 29 trilinguals) with the age range of 19-29 doing their degrees in the Department of English Language and Literature of Urmia University. A set of questionnaires, including tolerance of ambiguity (Herman et. al., 2010) and linguistic background information (Modirkhameneh, 2005), as well as the IELTS listening comprehension test, were used for data collection purposes. The results of a set of independent samples t-test and mediation analysis (Hayes, 2022) showed that (1) linguistic background (being bilingual or trilingual) had a significant direct effect on EFL learners' TA, (2) Linguistic background had a significant direct influence on listening comprehension, (3) TA had a substantial direct influence on listening comprehension, and (4) TA moderated the influence of linguistic background on listening comprehension considerably. These results suggest that multilingualism may be considered as an advantageous asset for EFL learners and should be a prioritized characteristic in EFL instruction in multilingual contexts. Further pedagogical implications and suggestions for research are proposed in light of effective EFL instruction in multilingual contexts.

Keywords: tolerance of ambiguity, listening comprehension, multilingualism, bilingual, trilingual

Procedia PDF Downloads 66
13568 Supplementing Aerial-Roving Surveys with Autonomous Optical Cameras: A High Temporal Resolution Approach to Monitoring and Estimating Effort within a Recreational Salmon Fishery in British Columbia, Canada

Authors: Ben Morrow, Patrick O'Hara, Natalie Ban, Tunai Marques, Molly Fraser, Christopher Bone

Abstract:

Relative to commercial fisheries, recreational fisheries are often poorly understood and pose various challenges for monitoring frameworks. In British Columbia (BC), Canada, Pacific salmon are heavily targeted by recreational fishers while also being a key source of nutrient flow and crucial prey for a variety of marine and terrestrial fauna, including endangered Southern Resident killer whales (Orcinus orca). Although commercial fisheries were historically responsible for the majority of salmon retention, recreational fishing now comprises both greater effort and retention. The current monitoring scheme for recreational salmon fisheries involves aerial-roving creel surveys. However, this method has been identified as costly and having low predictive power as it is often limited to sampling fragments of fluid and temporally dynamic fisheries. This study used imagery from two shore-based autonomous cameras in a highly active recreational fishery around Sooke, BC, and evaluated their efficacy in supplementing existing aerial-roving surveys for monitoring a recreational salmon fishery. This study involved continuous monitoring and high temporal resolution (over one million images analyzed in a single fishing season), using a deep learning-based vessel detection algorithm and a custom image annotation tool to efficiently thin datasets. This allowed for the quantification of peak-season effort from a busy harbour, species-specific retention estimates, high levels of detected fishing events at a nearby popular fishing location, as well as the proportion of the fishery management area represented by cameras. Then, this study demonstrated how it could substantially enhance the temporal resolution of a fishery through diel activity pattern analyses, scaled monthly to visualize clusters of activity. This work also highlighted considerable off-season fishing detection, currently unaccounted for in the existing monitoring framework. These results demonstrate several distinct applications of autonomous cameras for providing enhanced detail currently unavailable in the current monitoring framework, each of which has important considerations for the managerial allocation of resources. Further, the approach and methodology can benefit other studies that apply shore-based camera monitoring, supplement aerial-roving creel surveys to improve fine-scale temporal understanding, inform the optimal timing of creel surveys, and improve the predictive power of recreational stock assessments to preserve important and endangered fish species.

Keywords: cameras, monitoring, recreational fishing, stock assessment

Procedia PDF Downloads 126
13567 Integrated Nested Laplace Approximations For Quantile Regression

Authors: Kajingulu Malandala, Ranganai Edmore

Abstract:

The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.

Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation

Procedia PDF Downloads 170
13566 Applied of LAWA Classification for Assessment of the Water by Nutrients Elements: Case Oran Sebkha Basin

Authors: Boualla Nabila

Abstract:

The increasing demand on water, either for the drinkable water supply, or for the agricultural and industrial custom, requires a very thorough hydrochemical study to protect better and manage this resource. Oran is relatively a city with the worst quality of the water. Recently, the growing populations may put stress on natural waters by impairing the quality of the water. Campaign of water sampling of 55 points capturing different levels of the aquifer system was done for chemical analyzes of nutriments elements. The results allowed us to approach the problem of contamination based on the largely uniform nationwide approach LAWA (LänderarbeitsgruppeWasser), based on the EU CIS guidance, has been applied for the identification of pressures and impacts, allowing for easy comparison. Groundwater samples were analyzed, also, for physico-chemical parameters such as pH, sodium, potassium, calcium, magnesium, chloride, sulphate, carbonate and bicarbonate. The analytical results obtained in this hydrochemistry study were interpreted using Durov diagram. Based on these representations, the anomaly of high groundwater salinity observed in Oran Sebkha basin was explained by the high chloride concentration and to the presence of inverse cation exchange reaction. Durov diagram plot revealed that the groundwater has been evolved from Ca-HCO3 recharge water through mixing with the pre-existing groundwater to give mixed water of Mg-SO4 and Mg-Cl types that eventually reached a final stage of evolution represented by a Na-Cl water type.

Keywords: contamination, water quality, nutrients elements, approach LAWA, durov diagram

Procedia PDF Downloads 280
13565 An Approach for Association Rules Ranking

Authors: Rihab Idoudi, Karim Saheb Ettabaa, Basel Solaiman, Kamel Hamrouni

Abstract:

Medical association rules induction is used to discover useful correlations between pertinent concepts from large medical databases. Nevertheless, ARs algorithms produce huge amount of delivered rules and do not guarantee the usefulness and interestingness of the generated knowledge. To overcome this drawback, we propose an ontology based interestingness measure for ARs ranking. According to domain expert, the goal of the use of ARs is to discover implicit relationships between items of different categories such as ‘clinical features and disorders’, ‘clinical features and radiological observations’, etc. That’s to say, the itemsets which are composed of ‘similar’ items are uninteresting. Therefore, the dissimilarity between the rule’s items can be used to judge the interestingness of association rules; the more different are the items, the more interesting the rule is. In this paper, we design a distinct approach for ranking semantically interesting association rules involving the use of an ontology knowledge mining approach. The basic idea is to organize the ontology’s concepts into a hierarchical structure of conceptual clusters of targeted subjects, where each cluster encapsulates ‘similar’ concepts suggesting a specific category of the domain knowledge. The interestingness of association rules is, then, defined as the dissimilarity between corresponding clusters. That is to say, the further are the clusters of the items in the AR, the more interesting the rule is. We apply the method in our domain of interest – mammographic domain- using an existing mammographic ontology called Mammo with the goal of deriving interesting rules from past experiences, to discover implicit relationships between concepts modeling the domain.

Keywords: association rule, conceptual clusters, interestingness measures, ontology knowledge mining, ranking

Procedia PDF Downloads 324
13564 Self-Organizing Maps for Exploration of Partially Observed Data and Imputation of Missing Values in the Context of the Manufacture of Aircraft Engines

Authors: Sara Rejeb, Catherine Duveau, Tabea Rebafka

Abstract:

To monitor the production process of turbofan aircraft engines, multiple measurements of various geometrical parameters are systematically recorded on manufactured parts. Engine parts are subject to extremely high standards as they can impact the performance of the engine. Therefore, it is essential to analyze these databases to better understand the influence of the different parameters on the engine's performance. Self-organizing maps are unsupervised neural networks which achieve two tasks simultaneously: they visualize high-dimensional data by projection onto a 2-dimensional map and provide clustering of the data. This technique has become very popular for data exploration since it provides easily interpretable results and a meaningful global view of the data. As such, self-organizing maps are usually applied to aircraft engine condition monitoring. As databases in this field are huge and complex, they naturally contain multiple missing entries for various reasons. The classical Kohonen algorithm to compute self-organizing maps is conceived for complete data only. A naive approach to deal with partially observed data consists in deleting items or variables with missing entries. However, this requires a sufficient number of complete individuals to be fairly representative of the population; otherwise, deletion leads to a considerable loss of information. Moreover, deletion can also induce bias in the analysis results. Alternatively, one can first apply a common imputation method to create a complete dataset and then apply the Kohonen algorithm. However, the choice of the imputation method may have a strong impact on the resulting self-organizing map. Our approach is to address simultaneously the two problems of computing a self-organizing map and imputing missing values, as these tasks are not independent. In this work, we propose an extension of self-organizing maps for partially observed data, referred to as missSOM. First, we introduce a criterion to be optimized, that aims at defining simultaneously the best self-organizing map and the best imputations for the missing entries. As such, missSOM is also an imputation method for missing values. To minimize the criterion, we propose an iterative algorithm that alternates the learning of a self-organizing map and the imputation of missing values. Moreover, we develop an accelerated version of the algorithm by entwining the iterations of the Kohonen algorithm with the updates of the imputed values. This method is efficiently implemented in R and will soon be released on CRAN. Compared to the standard Kohonen algorithm, it does not come with any additional cost in terms of computing time. Numerical experiments illustrate that missSOM performs well in terms of both clustering and imputation compared to the state of the art. In particular, it turns out that missSOM is robust to the missingness mechanism, which is in contrast to many imputation methods that are appropriate for only a single mechanism. This is an important property of missSOM as, in practice, the missingness mechanism is often unknown. An application to measurements on one type of part is also provided and shows the practical interest of missSOM.

Keywords: imputation method of missing data, partially observed data, robustness to missingness mechanism, self-organizing maps

Procedia PDF Downloads 158
13563 Affective Attributes and Second Language Performance of Third Year Maritime Students: A Teacher's Compass

Authors: Sonia Pajaron, Flaviano Sentina, Ranulfo Etulle

Abstract:

Learning a second language calls for a total commitment from the learner whose response is necessary to successfully send and receive linguistic messages. It is relevant to virtually every aspect of human behaviour which is even more challenging when the components on -affective domains- are involved in second language learning. This study investigated the association between the identified affective attributes and second language performance of the one hundred seventeen (117) randomly selected third year maritime students. A descriptive-correlational method was utilized to generate data on their affective attributes while composition writing (2 series) and IELTS-based interview was done for speaking test. Additionally, to establish the respondents’ English language profile, data on their high school grades (GPA), entrance exam results in English subject (written) as well as in the interview was extracted as baseline information. Data were subjected to various statistical treatment (average means, percentages and pearson-r moment coefficient correlation) and found out that, Nautical Science and Marine Engineering students were found to have average high school grade, entrance test results, both written and in the interview turned out to be very satisfactory at 50% passing percentage. Varied results were manifested in their affective attributes towards learning the second language. On attitude, nautical science students had true positive attitude while marine engineering had only a moderate positive one. Secondly, the former were positively motivated to learn English while the latter were just moderately motivated. As regards anxiety, both groups embodied a moderate level of anxiety in the English language. Finally, data showed that nautical science students exuded real confidence while the marine engineering group had only moderate confidence with the second language. Respondents’ English academic achievement (GWA) was significantly correlated with confidence and speaking with anxiety towards the second language among the students from the nautical science group with moderate positive and low negative degree of correlation, respectively. On the other hand, the marine engineering students’ speaking test result was significantly correlated with anxiety and self-confidence with a moderate negative and low positive degree of correlation, respectively while writing was significantly correlated with motivation bearing a low positive degree of correlation.

Keywords: affective attributes, second language, second language performance, anxiety, attitude, self-confidence and motivation

Procedia PDF Downloads 274
13562 The Importance and Necessity for Acquiring Pedagogical Skills by the Practice Tutors for the Training of the General Nurses

Authors: Maria Luiza Fulga, Georgeta Truca, Mihaela Alexandru, Andriescu Mariana, Crin Marcean

Abstract:

The significance of nursing as a subject in the post-secondary healthcare curriculum is a major. We aimed to enable our students to assess the patient's risk, to establish prevention measures and to adapt to a specific learning context, in order to acquire the skills and abilities necessary for the nursing profession. In order to achieve these objectives, during the three years of study, teachers put an emphasis on acquiring communication skills, because in our country after the first cycle of hospital accreditation concluded in 2016, the National Authority for Quality of Health Management has introduced the criteria for the implementation and application of the nursing process according to the accreditation standards. According to these requirements, the nurse has to carry out the nursing assessment, based on communication as a distinct component, so that they can identify nursing diagnoses and implement the nursing plan. In this respect, we, the teachers, have refocused, by approaching various teaching strategies and preparing students for the real context of learning and applying what they learn. In the educational process, the tutors in the hospitals have an important role to play in acquiring professional skills. Students perform their activity in the hospital in accordance with the curriculum, in order to verify the practical applicability of the theoretical knowledge acquired in the school classes and also have the opportunity to acquire their skills in a real learning context. In clinical education, the student nurse learns in the middle of a guidance team which includes a practice tutor, who is a nurse that takes responsibility for the practical/clinical learning of the students in their field of activity. In achieving this objective, the tutor's abilities involve pedagogical knowledge, knowledge for the good of the individual and nursing theory, in order to be able to guide clinical practice in accordance with current requirements. The aim of this study is to find out the students’ confidence level in practice tutors in hospitals, the students’ degree of satisfaction in the pedagogical skills of the tutors and the practical applicability of the theoretical knowledge. In this study, we used as a method of investigation a student satisfaction questionnaire regarding the clinical practice in the hospital and the sample of the survey consisted of 100 students aged between 20 and 50 years, from the first, second and third year groups, with the General Nurse specialty (nurses responsible for general care), from 'Fundeni' Healthcare Post-Secondary School, Bucharest, Romania. Following the analysis of the data provided, we arrived the conclusion that the hospital tutor needs to improve his/her pedagogical skills, the knowledge of nursing diagnostics, and the implementation of the nursing plan, so that the applicability of the theoretical notions would be increased. Future plans include the pedagogical training of the medical staff, as well as updating the knowledge needed to implement the nursing process in order to meet current requirements.

Keywords: clinical training, nursing process, pedagogical skills, tutor

Procedia PDF Downloads 163
13561 Prioritization of Mutation Test Generation with Centrality Measure

Authors: Supachai Supmak, Yachai Limpiyakorn

Abstract:

Mutation testing can be applied for the quality assessment of test cases. Prioritization of mutation test generation has been a critical element of the industry practice that would contribute to the evaluation of test cases. The industry generally delivers the product under the condition of time to the market and thus, inevitably sacrifices software testing tasks, even though many test cases are required for software verification. This paper presents an approach of applying a social network centrality measure, PageRank, to prioritize mutation test generation. The source code with the highest values of PageRank will be focused first when developing their test cases as these modules are vulnerable to defects or anomalies which may cause the consequent defects in many other associated modules. Moreover, the approach would help identify the reducible test cases in the test suite, still maintaining the same criteria as the original number of test cases.

Keywords: software testing, mutation test, network centrality measure, test case prioritization

Procedia PDF Downloads 117
13560 Incorporating Anomaly Detection in a Digital Twin Scenario Using Symbolic Regression

Authors: Manuel Alves, Angelica Reis, Armindo Lobo, Valdemar Leiras

Abstract:

In industry 4.0, it is common to have a lot of sensor data. In this deluge of data, hints of possible problems are difficult to spot. The digital twin concept aims to help answer this problem, but it is mainly used as a monitoring tool to handle the visualisation of data. Failure detection is of paramount importance in any industry, and it consumes a lot of resources. Any improvement in this regard is of tangible value to the organisation. The aim of this paper is to add the ability to forecast test failures, curtailing detection times. To achieve this, several anomaly detection algorithms were compared with a symbolic regression approach. To this end, Isolation Forest, One-Class SVM and an auto-encoder have been explored. For the symbolic regression PySR library was used. The first results show that this approach is valid and can be added to the tools available in this context as a low resource anomaly detection method since, after training, the only requirement is the calculation of a polynomial, a useful feature in the digital twin context.

Keywords: anomaly detection, digital twin, industry 4.0, symbolic regression

Procedia PDF Downloads 125
13559 Zero-Knowledge Proof-of-Reserve: A Confidential Approach to Cryptocurrency Asset Verification

Authors: Sam Ng, Lewis Leighton, Sam Atkinson, Carson Yan, Landan Hu, Leslie Cheung, Brian Yap, Kent Lung, Ketat Sarakune

Abstract:

This paper introduces a method for verifying cryptocurrency reserves that balances the need for both transparency and data confidentiality. Our methodology employs cryptographic techniques, including Merkle Trees, Bulletproof, and zkSnark, to verify that total assets equal or exceed total liabilities, represented by customer funds. Importantly, this verification is achieved without disclosing sensitive information such as the total asset value, customer count, or cold wallet addresses. We delve into the construction and implementation of this methodology. While the system is robust and scalable, we also identify areas for potential enhancements to improve its efficiency and versatility. As the digital asset landscape continues to evolve, our approach provides a solid foundation for ensuring continued trust and security in digital asset platforms.

Keywords: cryptocurrency, crypto-currency, proof-of-reserve, por, zero-knowledge, ZKP

Procedia PDF Downloads 76
13558 Attention Treatment for People With Aphasia: Language-Specific vs. Domain-General Neurofeedback

Authors: Yael Neumann

Abstract:

Attention deficits are common in people with aphasia (PWA). Two treatment approaches address these deficits: domain-general methods like Play Attention, which focus on cognitive functioning, and domain-specific methods like Language-Specific Attention Treatment (L-SAT), which use linguistically based tasks. Research indicates that L-SAT can improve both attentional deficits and functional language skills, while Play Attention has shown success in enhancing attentional capabilities among school-aged children with attention issues compared to standard cognitive training. This study employed a randomized controlled cross-over single-subject design to evaluate the effectiveness of these two attention treatments over 25 weeks. Four PWA participated, undergoing a battery of eight standardized tests measuring language and cognitive skills. The treatments were counterbalanced. Play Attention used EEG sensors to detect brainwaves, enabling participants to manipulate items in a computer game while learning to suppress theta activity and increase beta activity. An algorithm tracked changes in the theta-to-beta ratio, allowing points to be earned during the games. L-SAT, on the other hand, involved hierarchical language tasks that increased in complexity, requiring greater attention from participants. Results showed that for language tests, Participant 1 (moderate aphasia) aligned with existing literature, showing L-SAT was more effective than Play Attention. However, Participants 2 (very severe) and 3 and 4 (mild) did not conform to this pattern; both treatments yielded similar outcomes. This may be due to the extremes of aphasia severity: the very severe participant faced significant overall deficits, making both approaches equally challenging, while the mild participant performed well initially, leaving limited room for improvement. In attention tests, Participants 1 and 4 exhibited results consistent with prior research, indicating Play Attention was superior to L-SAT. Participant 2, however, showed no significant improvement with either program, although L-SAT had a slight edge on the Visual Elevator task, measuring switching and mental flexibility. This advantage was not sustained at the one-month follow-up, likely due to the participant’s struggles with complex attention tasks. Participant 3's results similarly did not align with prior studies, revealing no difference between the two treatments, possibly due to the challenging nature of the attention measures used. Regarding participation and ecological tests, all participants showed similar mild improvements with both treatments. This limited progress could stem from the short study duration, with only five weeks allocated for each treatment, which may not have been enough time to achieve meaningful changes affecting life participation. In conclusion, the performance of participants appeared influenced by their level of aphasia severity. The moderate PWA’s results were most aligned with existing literature, indicating better attention improvement from the domain-general approach (Play Attention) and better language improvement from the domain-specific approach (L-SAT).

Keywords: attention, language, cognitive rehabilitation, neurofeedback

Procedia PDF Downloads 23
13557 Tax Criminal Case Settlement Through Obligative Justice Approach to Increase the State Revenue

Authors: Pujiyono, Reda Manthovani, Deny Tri Ardianto, Rabani Halawa, Isharyanto

Abstract:

This research has background that the taxpayer (defendant) who has paid off the tax payable and the tax penalty payable after the tax case file has been transferred to the court, while the legality of stopping the prosecution of tax cases on the grounds that in the interest of state revenue is not regulated in the provisions of Law Number 8 of 1981 concerning The Criminal Procedure Code and Law Number 28 of 2007 concerning the Third Amendment to Law Number 6 of 1983 concerning General Provisions and Tax Procedures as amended several times, most recently by Law Number 16 of 2009 concerning Stipulation of Government Regulation in Lieu of Law Number 5 of 2008 concerning Fourth Amendment to Law Number 6 0f 1983 concerning General Provisions and Tax Procedures to become Law, even though at the investigation stage it regulates the mechanism for stopping the investigation for the sake of the interest of acceptance ne this is because before the case file is transferred to the court where at the request of the Minister of Finance of The Republic of Indonesia can stop the investigation in the interest of state revenue so that based on this phenomenon a legal vacuum is found. Therefore, a non-penal policy is needed from the public prosecutor to resolve tax crime cases without going through litigation in court through the penal mediation method using the Plea Bargaining System which adheres to the principles of restorative justice and obligative justice based on the ultimum remedium principle and the principle of opportunity in order to realize the principle of fast, simple and low cost justice (content principle). This research is a normative legal research, using a statutory approach, conceptual approach, and comparative law approach. Regulations that is used in many countries, include America, The Netherlands and Singapore. The results of this study indicate that there is a reformulation of the tax criminal justice system which regulates the mechanism, qualifications and authority to terminate the prosecution of tax cases in the interest of state revenues in order to achieve legal goals which are not only for legal certainty but more that, namely providing benefits and legal justice for people seeking justice.

Keywords: obligative justice, regulation, state reveneus, tax criminal

Procedia PDF Downloads 87
13556 Personality Composition in Senior Management Teams: The Importance of Homogeneity in Dynamic Managerial Capabilities

Authors: Shelley Harrington

Abstract:

As a result of increasingly dynamic business environments, the creation and fostering of dynamic capabilities, [those capabilities that enable sustained competitive success despite of dynamism through the awareness and reconfiguration of internal and external competencies], supported by organisational learning [a dynamic capability] has gained increased and prevalent momentum in the research arena. Presenting findings funded by the Economic Social Research Council, this paper investigates the extent to which Senior Management Team (SMT) personality (at the trait and facet level) is associated with the creation of dynamic managerial capabilities at the team level, and effective organisational learning/knowledge sharing within the firm. In doing so, this research highlights the importance of micro-foundations in organisational psychology and specifically dynamic capabilities, a field which to date has largely ignored the importance of psychology in understanding these important and necessary capabilities. Using a direct measure of personality (NEO PI-3) at the trait and facet level across 32 high technology and finance firms in the UK, their CEOs (N=32) and their complete SMTs [N=212], a new measure of dynamic managerial capabilities at the team level was created and statistically validated for use within the work. A quantitative methodology was employed with regression and gap analysis being used to show the empirical foundations of personality being positioned as a micro-foundation of dynamic capabilities. The results of this study found that personality homogeneity within the SMT was required to strengthen the dynamic managerial capabilities of sensing, seizing and transforming, something which was required to reflect strong organisational learning at middle management level [N=533]. In particular, it was found that the greater the difference [t-score gaps] between the personality profiles of a Chief Executive Officer (CEO) and their complete, collective SMT, the lower the resulting self-reported nature of dynamic managerial capabilities. For example; the larger the difference between a CEOs level of dutifulness, a facet contributing to the definition of conscientiousness, and their SMT’s level of dutifulness, the lower the reported level of transforming, a capability fundamental to strategic change in a dynamic business environment. This in turn directly questions recent trends, particularly in upper echelons research highlighting the need for heterogeneity within teams. In doing so, it successfully positions personality as a micro-foundation of dynamic capabilities, thus contributing to recent discussions from within the strategic management field calling for the need to empirically explore dynamic capabilities at such a level.

Keywords: dynamic managerial capabilities, senior management teams, personality, dynamism

Procedia PDF Downloads 272
13555 Women Entrepreneurship as an Inventive Approach to Ensure a Sustainable Development in Anambra State

Authors: S. Muogbo Uju, U. Akpunonu Evan

Abstract:

The prevailing harsh environment factors coupled with high poverty rate and unemployment propels a high rate of entrepreneurial activities in developing economies. Women entrepreneurs operate with gender bias among other constraints that can constitute a threats or create opportunity for women entrepreneurs. This empirical paper investigates and critically examines women entrepreneurship as an inventive approach to ensure a sustainable development in Anambra state. The study used descriptive statistics (frequencies, mean, and percentages) to answer the three research questions posed. Hypotheses testing were done with Pearson product moment correlation and multiple regression were employed in data analysis. Consequently, the finding of this study portrayed a significant impact between women entrepreneurship activity, job creation and wealth creation.

Keywords: women entrepreneurs, skill acquisition, sustainability, wealth creation, job creation, economic development

Procedia PDF Downloads 450