Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30893

Search results for: data mining applications and discovery

25283 Novel NIR System for Detection of Internal Disorder and Quality of Apple Fruit

Authors: Eid Alharbi, Yaser Miaji

Abstract:

The importance of fruit quality and freshness is potential in today’s life. Most recent studies show and automatic online sorting system according to the internal disorder for fresh apple fruit has developed by using near infrared (NIR) spectroscopic technology. The automatic conveyer belts system along with sorting mechanism was constructed. To check the internal quality of the apple fruit, apple was exposed to the NIR radiations in the range 650-1300nm and the data were collected in form of absorption spectra. The collected data were compared to the reference (data of known sample) analyzed and an electronic signal was pass to the sorting system. The sorting system was separate the apple fruit samples according to electronic signal passed to the system. It is found that absorption of NIR radiation in the range 930-950nm was higher in the internally defected samples as compared to healthy samples. On the base of this high absorption of NIR radiation in 930-950nm region the online sorting system was constructed.

Keywords: mechatronics design, NIR, fruit quality, spectroscopic technology

Procedia PDF Downloads 388
25282 Sacred Echoes: The Shamanic Journey of Hushahu and the Empowerment of Indigenous Women

Authors: Nadia K. Thalji

Abstract:

The shamanic odyssey of Hushahu, a courageous indigenous woman from the Amazon, reverberates with profound significance, resonating far beyond the confines of her tribal boundaries. This abstract explores Hushahu's transformative journey, which serves as a beacon of empowerment for indigenous women across the Amazon region. Hushahu's narrative unfolds against the backdrop of entrenched gender norms and colonial legacies that have historically marginalized women from spiritual leadership and ritual practices. Despite societal expectations and entrenched traditions, Hushahu boldly embraces her calling as a shaman, defying cultural constraints and challenging prevailing gender norms. Her journey represents a symbolic uprising against centuries of patriarchal dominance, offering a glimpse into the resilience and strength of indigenous women. Drawing upon Jungian psychology, Hushahu's quest can be understood as a profound exploration of the symbolic dimensions of the psyche. Through Hushahu’s initiation rituals and visionary experiences, the initiate embarks on a transformative journey of self-discovery, encountering archetypal symbols and tapping into the collective unconscious. Symbolism permeates the path, guiding Hushahu through the depths of the rainforest and illuminating the hidden realms of consciousness. Central to Hushahu's narrative is the theme of empowerment—a theme that transcends individual experience to catalyze broader social change. As Hushahu finds a voice amidst the echoes of ancestral wisdom, the journey inspires a ripple effect of empowerment throughout indigenous communities. Other women within Hushahu's tribe and neighboring societies are emboldened to challenge traditional gender roles, stepping into leadership positions and reclaiming their rightful place in spiritual practices. The resonance of Hushahu's journey extends beyond the Amazon, reverberating across cultural boundaries and igniting conversations about gender equality and indigenous rights. Through courageous defiance of cultural norms, Hushahu emerges as a symbol of resilience and empowerment, offering hope and inspiration to marginalized women around the world. In conclusion, Hushahu's shamanic journey embodies the sacred echoes of empowerment, echoing across generations and landscapes. The story serves as a testament to the enduring power of the human spirit and the transformative potential of reclaiming one's voice in the face of adversity. As indigenous women continue to rise, Hushahu's legacy stands as a beacon of hope, illuminating the path towards a more equitable and inclusive world.

Keywords: shamanic leadership, indigenous empowerment, gender norms, cultural transformation

Procedia PDF Downloads 52
25281 High Speed Motion Tracking with Magnetometer in Nonuniform Magnetic Field

Authors: Jeronimo Cox, Tomonari Furukawa

Abstract:

Magnetometers have become more popular in inertial measurement units (IMU) for their ability to correct estimations using the earth's magnetic field. Accelerometer and gyroscope-based packages fail with dead-reckoning errors accumulated over time. Localization in robotic applications with magnetometer-inclusive IMUs has become popular as a way to track the odometry of slower-speed robots. With high-speed motions, the accumulated error increases over smaller periods of time, making them difficult to track with IMU. Tracking a high-speed motion is especially difficult with limited observability. Visual obstruction of motion leaves motion-tracking cameras unusable. When motions are too dynamic for estimation techniques reliant on the observability of the gravity vector, the use of magnetometers is further justified. As available magnetometer calibration methods are limited with the assumption that background magnetic fields are uniform, estimation in nonuniform magnetic fields is problematic. Hard iron distortion is a distortion of the magnetic field by other objects that produce magnetic fields. This kind of distortion is often observed as the offset from the origin of the center of data points when a magnetometer is rotated. The magnitude of hard iron distortion is dependent on proximity to distortion sources. Soft iron distortion is more related to the scaling of the axes of magnetometer sensors. Hard iron distortion is more of a contributor to the error of attitude estimation with magnetometers. Indoor environments or spaces inside ferrite-based structures, such as building reinforcements or a vehicle, often cause distortions with proximity. As positions correlate to areas of distortion, methods of magnetometer localization include the production of spatial mapping of magnetic field and collection of distortion signatures to better aid location tracking. The goal of this paper is to compare magnetometer methods that don't need pre-productions of magnetic field maps. Mapping the magnetic field in some spaces can be costly and inefficient. Dynamic measurement fusion is used to track the motion of a multi-link system with us. Conventional calibration by data collection of rotation at a static point, real-time estimation of calibration parameters each time step, and using two magnetometers for determining local hard iron distortion are compared to confirm the robustness and accuracy of each technique. With opposite-facing magnetometers, hard iron distortion can be accounted for regardless of position, Rather than assuming that hard iron distortion is constant regardless of positional change. The motion measured is a repeatable planar motion of a two-link system connected by revolute joints. The links are translated on a moving base to impulse rotation of the links. Equipping the joints with absolute encoders and recording the motion with cameras to enable ground truth comparison to each of the magnetometer methods. While the two-magnetometer method accounts for local hard iron distortion, the method fails where the magnetic field direction in space is inconsistent.

Keywords: motion tracking, sensor fusion, magnetometer, state estimation

Procedia PDF Downloads 89
25280 Active Features Determination: A Unified Framework

Authors: Meenal Badki

Abstract:

We address the issue of active feature determination, where the objective is to determine the set of examples on which additional data (such as lab tests) needs to be gathered, given a large number of examples with some features (such as demographics) and some examples with all the features (such as the complete Electronic Health Record). We note that certain features may be more costly, unique, or laborious to gather. Our proposal is a general active learning approach that is independent of classifiers and similarity metrics. It allows us to identify examples that differ from the full data set and obtain all the features for the examples that match. Our comprehensive evaluation shows the efficacy of this approach, which is driven by four authentic clinical tasks.

Keywords: feature determination, classification, active learning, sample-efficiency

Procedia PDF Downloads 80
25279 Efficient Hydrosilylation of Functionalized Alkenes via Heterogeneous Zinc Oxide Nanoparticle Catalysis

Authors: Ahlam Chennani, Nadia Anter, Abdelouahed Médaghri Alaoui, Abdellah Hannioui

Abstract:

Non-precious metals such as zinc, copper, iron, and nickel are promising hydrosilylation catalysts due to their abundance, affordability, and low toxicity. This study focuses on the preparation of zinc nanoparticles using a simple, scalable method. Advanced techniques such as X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to characterize these catalysts, revealing their crystal structure and morphology. ZnO nanoparticles demonstrate high efficiency and selectivity in hydrosilylation reactions, producing silylated products. These results highlight the potential of ZnO nanocatalysts for advanced chemical transformations and practical applications in various industrial fields.

Keywords: nanoparticles, hydrosilylation, catalysts, non-precious metal

Procedia PDF Downloads 34
25278 Hidden Markov Model for the Simulation Study of Neural States and Intentionality

Authors: R. B. Mishra

Abstract:

Hidden Markov Model (HMM) has been used in prediction and determination of states that generate different neural activations as well as mental working conditions. This paper addresses two applications of HMM; one to determine the optimal sequence of states for two neural states: Active (AC) and Inactive (IA) for the three emission (observations) which are for No Working (NW), Waiting (WT) and Working (W) conditions of human beings. Another is for the determination of optimal sequence of intentionality i.e. Believe (B), Desire (D), and Intention (I) as the states and three observational sequences: NW, WT and W. The computational results are encouraging and useful.

Keywords: hiden markov model, believe desire intention, neural activation, simulation

Procedia PDF Downloads 378
25277 Charter versus District Schools and Student Achievement: Implications for School Leaders

Authors: Kara Rosenblatt, Kevin Badgett, James Eldridge

Abstract:

There is a preponderance of information regarding the overall effectiveness of charter schools and their ability to increase academic achievement compared to traditional district schools. Most research on the topic is focused on comparing long and short-term outcomes, academic achievement in mathematics and reading, and locale (i.e., urban, v. Rural). While the lingering unanswered questions regarding effectiveness continue to loom for school leaders, data on charter schools suggests that enrollment increases by 10% annually and that charter schools educate more than 2 million U.S. students across 40 states each year. Given the increasing share of U.S. students educated in charter schools, it is important to better understand possible differences in student achievement defined in multiple ways for students in charter schools and for those in Independent School District (ISD) settings in the state of Texas. Data were retrieved from the Texas Education Agency’s (TEA) repository that includes data organized annually and available on the TEA website. Specific data points and definitions of achievement were based on characterizations of achievement found in the relevant literature. Specific data points include but were not limited to graduation rate, student performance on standardized testing, and teacher-related factors such as experience and longevity in the district. Initial findings indicate some similarities with the current literature on long-term student achievement in English/Language Arts; however, the findings differ substantially from other recent research related to long-term student achievement in social studies. There are a number of interesting findings also related to differences between achievement for students in charters and ISDs and within different types of charter schools in Texas. In addition to findings, implications for leadership in different settings will be explored.

Keywords: charter schools, ISDs, student achievement, implications for PK-12 school leadership

Procedia PDF Downloads 132
25276 A Review on Artificial Neural Networks in Image Processing

Authors: B. Afsharipoor, E. Nazemi

Abstract:

Artificial neural networks (ANNs) are powerful tool for prediction which can be trained based on a set of examples and thus, it would be useful for nonlinear image processing. The present paper reviews several paper regarding applications of ANN in image processing to shed the light on advantage and disadvantage of ANNs in this field. Different steps in the image processing chain including pre-processing, enhancement, segmentation, object recognition, image understanding and optimization by using ANN are summarized. Furthermore, results on using multi artificial neural networks are presented.

Keywords: neural networks, image processing, segmentation, object recognition, image understanding, optimization, MANN

Procedia PDF Downloads 414
25275 Characterization of the Ignitability and Flame Regression Behaviour of Flame Retarded Natural Fibre Composite Panel

Authors: Timine Suoware, Sylvester Edelugo, Charles Amgbari

Abstract:

Natural fibre composites (NFC) are becoming very attractive especially for automotive interior and non-structural building applications because they are biodegradable, low cost, lightweight and environmentally friendly. NFC are known to release high combustible products during exposure to heat atmosphere and this behaviour has raised concerns to end users. To improve on their fire response, flame retardants (FR) such as aluminium tri-hydroxide (ATH) and ammonium polyphosphate (APP) are incorporated during processing to delay the start and spread of fire. In this paper, APP was modified with Gum Arabic powder (GAP) and synergized with carbon black (CB) to form new FR species. Four FR species at 0, 12, 15 and 18% loading ratio were added to oil palm fibre polyester composite (OPFC) panels as follows; OPFC12%APP-GAP, OPFC15%APP-GAP/CB, OPFC18%ATH/APP-GAP and OPFC18%ATH/APPGAP/CB. The panels were produced using hand lay-up compression moulding and cured at room temperature. Specimens were cut from the panels and these were tested for ignition time (Tig), peak heat released rate (HRRp), average heat release rate (HRRavg), peak mass loss rate (MLRp), residual mass (Rm) and average smoke production rate (SPRavg) using cone calorimeter apparatus as well as the available flame energy (ɸ) in driving the flame using radiant panel flame spread apparatus. From the ignitability data obtained at 50 kW/m2 heat flux (HF), it shows that the hybrid FR modified with APP that is OPFC18%ATH/APP-GAP exhibited superior flame retardancy and the improvement was based on comparison with those without FR which stood at Tig = 20 s, HRRp = 86.6 kW/m2, HRRavg = 55.8 kW/m2, MLRp =0.131 g/s, Rm = 54.6% and SPRavg = 0.05 m2/s representing respectively 17.6%, 67.4%, 62.8%, 50.9%, 565% and 62.5% improvements less than those without FR (OPFC0%). In terms of flame spread, the least flame energy (ɸ) of 0.49 kW2/s3 for OPFC18%ATH/APP-GAP caused early flame regression. This was less than 39.6 kW2/s3 compared to those without FR (OPFC0%). It can be concluded that hybrid FR modified with APP could be useful in the automotive and building industries to delay the start and spread of fire.

Keywords: flame retardant, flame regression, oil palm fibre, composite panel

Procedia PDF Downloads 132
25274 Orphan Node Inclusion Protocol for Wireless Sensor Network

Authors: Sandeep Singh Waraich

Abstract:

Wireless sensor network (WSN ) consists of a large number of sensor nodes. The disparity in their energy consumption usually lead to the loss of equilibrium in wireless sensor network which may further results in an energy hole problem in wireless network. In this paper, we have considered the inclusion of orphan nodes which usually remain unutilized as intermediate nodes in multi-hop routing. The Orphan Node Inclusion (ONI) Protocol lets the cluster member to bring the orphan nodes into their clusters, thereby saving important resources and increasing network lifetime in critical applications of WSN.

Keywords: wireless sensor network, orphan node, clustering, ONI protocol

Procedia PDF Downloads 424
25273 Study and Experimental Analysis of a Photovoltaic Pumping System under Three Operating Modes

Authors: Rekioua D., Mohammedi A., Rekioua T., Mehleb Z.

Abstract:

Photovoltaic water pumping systems is considered as one of the most promising areas in photovoltaic applications, the economy and reliability of solar electric power made it an excellent choice for remote water pumping. Two conventional techniques are currently in use; the first is the directly coupled technique and the second is the battery buffered photovoltaic pumping system. In this paper, we present different performances of a three operation modes of photovoltaic pumping system. The aim of this work is to determine the effect of different parameters influencing the photovoltaic pumping system performances, such as pumping head, System configuration and climatic conditions. The obtained results are presented and discussed.

Keywords: batteries charge mode, photovoltaic pumping system, pumping head, submersible pump

Procedia PDF Downloads 513
25272 Next-Generation Laser-Based Transponder and 3D Switch for Free Space Optics in Nanosatellite

Authors: Nadir Atayev, Mehman Hasanov

Abstract:

Future spacecraft will require a structural change in the way data is transmitted due to the increase in the volume of data required for space communication. Current radio frequency communication systems are already facing a bottleneck in the volume of data sent to the ground segment due to their technological and regulatory characteristics. To overcome these issues, free space optics communication plays an important role in the integrated terrestrial space network due to its advantages such as significantly improved data rate compared to traditional RF technology, low cost, improved security, and inter-satellite free space communication, as well as uses a laser beam, which is an optical signal carrier to establish satellite-ground & ground-to-satellite links. In this approach, there is a need for high-speed and energy-efficient systems as a base platform for sending high-volume video & audio data. Nano Satellite and its branch CubeSat platforms have more technical functionality than large satellites, wheres cover an important part of the space sector, with their Low-Earth-Orbit application area with low-cost design and technical functionality for building networks using different communication topologies. Along the research theme developed in this regard, the output parameter indicators for the FSO of the optical communication transceiver subsystem on the existing CubeSat platforms, and in the direction of improving the mentioned parameters of this communication methodology, 3D optical switch and laser beam controlled optical transponder with 2U CubeSat structural subsystems and application in the Low Earth Orbit satellite network topology, as well as its functional performance and structural parameters, has been studied accordingly.

Keywords: cubesat, free space optics, nano satellite, optical laser communication.

Procedia PDF Downloads 94
25271 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 144
25270 Guidance and Control of a Torpedo Autonomous Underwater Vehicle

Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade

Abstract:

Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.

Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)

Procedia PDF Downloads 473
25269 Orientation of Rotating Platforms on Mobile Vehicles by GNNS

Authors: H. İmrek, O. Corumluoglu, B. Akdemir, I. Sanlioglu

Abstract:

It is important to be able to determine the heading direction of a moving vehicle with respect to a distant location. Additionally, it is important to be able to direct a rotating platform on a moving vehicle towards a distant position or location on the earth surface, especially for applications such as determination of the Kaaba direction for daily Muslim prayers. GNNS offers some reasonable solutions. In this study, a functional model of such a directing system supported by GNNS is discussed, and an appropriate system is designed for these purposes. An application for directing system is done by using RTK and DGNSS. Accuracy estimations are given for this system.

Keywords: GNNS, orientation of rotating platform, vehicle orientation, prayer aid device

Procedia PDF Downloads 398
25268 Transmission Performance Analysis for Live Broadcasting over IPTV Service in Telemedicine Applications

Authors: Jenny K. Ubaque, Edward P. Guillen, Juan S. Solórzano, Leonardo J. Ramírez

Abstract:

The health care must be a right for people around the world, but in order to guarantee the access to all, it is necessary to overcome geographical barriers. Telemedicine take advantage of Information Communication Technologies to deploy health care services around the world. To achieve those goals, it is necessary to use existing last mile solution to create access for home users, which is why is necessary to establish the channel characteristics for those kinds of services. This paper presents an analysis of network performance of last mile solution for the use of IPTV broadcasting with the application of streaming for telemedicine apps.

Keywords: telemedicine, IPTV, GPON, ADSL2+, coaxial, jumbogram

Procedia PDF Downloads 374
25267 Wind Velocity Climate Zonation Based on Observation Data in Indonesia Using Cluster and Principal Component Analysis

Authors: I Dewa Gede Arya Putra

Abstract:

Principal Component Analysis (PCA) is a mathematical procedure that uses orthogonal transformation techniques to change a set of data with components that may be related become components that are not related to each other. This can have an impact on clustering wind speed characteristics in Indonesia. This study uses data daily wind speed observations of the Site Meteorological Station network for 30 years. Multicollinearity tests were also performed on all of these data before doing clustering with PCA. The results show that the four main components have a total diversity of above 80% which will be used for clusters. Division of clusters using Ward's method obtained 3 types of clusters. Cluster 1 covers the central part of Sumatra Island, northern Kalimantan, northern Sulawesi, and northern Maluku with the climatological pattern of wind speed that does not have an annual cycle and a weak speed throughout the year with a low-speed ranging from 0 to 1,5 m/s². Cluster 2 covers the northern part of Sumatra Island, South Sulawesi, Bali, northern Papua with the climatological pattern conditions of wind speed that have annual cycle variations with low speeds ranging from 1 to 3 m/s². Cluster 3 covers the eastern part of Java Island, the Southeast Nusa Islands, and the southern Maluku Islands with the climatological pattern of wind speed conditions that have annual cycle variations with high speeds ranging from 1 to 4.5 m/s².

Keywords: PCA, cluster, Ward's method, wind speed

Procedia PDF Downloads 201
25266 Capturing Public Voices: The Role of Social Media in Heritage Management

Authors: Mahda Foroughi, Bruno de Anderade, Ana Pereira Roders

Abstract:

Social media platforms have been increasingly used by locals and tourists to express their opinions about buildings, cities, and built heritage in particular. Most recently, scholars have been using social media to conduct innovative research on built heritage and heritage management. Still, the application of artificial intelligence (AI) methods to analyze social media data for heritage management is seldom explored. This paper investigates the potential of short texts (sentences and hashtags) shared through social media as a data source and artificial intelligence methods for data analysis for revealing the cultural significance (values and attributes) of built heritage. The city of Yazd, Iran, was taken as a case study, with a particular focus on windcatchers, key attributes conveying outstanding universal values, as inscribed on the UNESCO World Heritage List. This paper has three subsequent phases: 1) state of the art on the intersection of public participation in heritage management and social media research; 2) methodology of data collection and data analysis related to coding people's voices from Instagram and Twitter into values of windcatchers over the last ten-years; 3) preliminary findings on the comparison between opinions of locals and tourists, sentiment analysis, and its association with the values and attributes of windcatchers. Results indicate that the age value is recognized as the most important value by all interest groups, while the political value is the least acknowledged. Besides, the negative sentiments are scarcely reflected (e.g., critiques) in social media. Results confirm the potential of social media for heritage management in terms of (de)coding and measuring the cultural significance of built heritage for windcatchers in Yazd. The methodology developed in this paper can be applied to other attributes in Yazd and also to other case studies.

Keywords: social media, artificial intelligence, public participation, cultural significance, heritage, sentiment analysis

Procedia PDF Downloads 121
25265 Relationship between Gender and Performance with Respect to a Basic Math Skills Quiz in Statistics Courses in Lebanon

Authors: Hiba Naccache

Abstract:

The present research investigated whether gender differences affect performance in a simple math quiz in statistics course. Participants of this study comprised a sample of 567 statistics students in two different universities in Lebanon. Data were collected through a simple math quiz. Analysis of quantitative data indicated that there wasn’t a significant difference in math performance between males and females. The results suggest that improvements in student performance may depend on improved mastery of basic algebra especially for females. The implications of these findings and further recommendations were discussed.

Keywords: gender, education, math, statistics

Procedia PDF Downloads 380
25264 Photoinduced Energy and Charge Transfer in InP Quantum Dots-Polymer/Metal Composites for Optoelectronic Devices

Authors: Akanksha Singh, Mahesh Kumar, Shailesh N. Sharma

Abstract:

Semiconductor quantum dots (QDs) such as CdSe, CdS, InP, etc. have gained significant interest in the recent years due to its application in various fields such as LEDs, solar cells, lasers, biological markers, etc. The interesting feature of the QDs is their tunable band gap. The size of the QDs can be easily varied by varying the synthesis parameters which change the band gap. One of the limitations with II-VI semiconductor QDs is their biological application. The use of cadmium makes them unsuitable for biological applications. III-V QD such as InP overcomes this problem as they are structurally robust because of the covalent bonds which do not allow the ions to leak. Also, InP QDs has large Bohr radii which increase the window for the quantum confinement effect. The synthesis of InP QDs is difficult and time consuming. Authors have synthesized InP using a novel, quick synthesis method which utilizes trioctylphosphine as a source of phosphorus. In this work, authors have made InP composites with P3HT(Poly(3-hexylthiophene-2,5-diyl))polymer(organic-inorganic hybrid material) and gold nanoparticles(metal-semiconductor composites). InP-P3HT shows FRET phenomenon whereas InP-Au shows charge transfer mechanism. The synthesized InP QDs has an absorption band at 397 nm and PL peak position at 491 nm. The band gap of the InP QDs is 2.46 eV as compared to the bulk band gap of InP i.e. 1.35 eV. The average size of the QDs is around 3-4 nm. In order to protect the InP core, a shell of wide band gap material i.e. ZnS is coated on the top of InP core. InP-P3HT composites were made in order to study the charge transfer/energy transfer phenomenon between them. On adding aliquots of P3HT to InP QDs solution, the P3HT PL increases which can be attributed to the dominance of Förster energy transfer between InP QDs (donor) P3HT polymer (acceptor). There is a significant spectral overlap between the PL spectra of InP QDs and absorbance spectra of P3HT. But in the case of InP-Au nanocomposites, significant charge transfer was seen from InP QDs to Au NPs. When aliquots of Au NPs were added to InP QDs, a decrease in the PL of the InP QDs was observed. This is due to the charge transfer from the InP QDs to the Au NPs. In the case of metal semiconductor composites, the enhancement and quenching of QDs depend on the size of the QD and the distance between the QD and the metal NP. These two composites have different phenomenon between donor and acceptor and hence can be utilized for two different applications. The InP-P3HT composite can be utilized for LED devices due to enhancement in the PL emission (FRET). The InP-Au can be utilized efficiently for photovoltaic application owing to the successful charge transfer between InP-Au NPs.

Keywords: charge transfer, FRET, gold nanoparticles, InP quantum dots

Procedia PDF Downloads 152
25263 INCIPIT-CRIS: A Research Information System Combining Linked Data Ontologies and Persistent Identifiers

Authors: David Nogueiras Blanco, Amir Alwash, Arnaud Gaudinat, René Schneider

Abstract:

At a time when the access to and the sharing of information are crucial in the world of research, the use of technologies such as persistent identifiers (PIDs), Current Research Information Systems (CRIS), and ontologies may create platforms for information sharing if they respond to the need of disambiguation of their data by assuring interoperability inside and between other systems. INCIPIT-CRIS is a continuation of the former INCIPIT project, whose goal was to set up an infrastructure for a low-cost attribution of PIDs with high granularity based on Archival Resource Keys (ARKs). INCIPIT-CRIS can be interpreted as a logical consequence and propose a research information management system developed from scratch. The system has been created on and around the Schema.org ontology with a further articulation of the use of ARKs. It is thus built upon the infrastructure previously implemented (i.e., INCIPIT) in order to enhance the persistence of URIs. As a consequence, INCIPIT-CRIS aims to be the hinge between previously separated aspects such as CRIS, ontologies and PIDs in order to produce a powerful system allowing the resolution of disambiguation problems using a combination of an ontology such as Schema.org and unique persistent identifiers such as ARK, allowing the sharing of information through a dedicated platform, but also the interoperability of the system by representing the entirety of the data as RDF triplets. This paper aims to present the implemented solution as well as its simulation in real life. We will describe the underlying ideas and inspirations while going through the logic and the different functionalities implemented and their links with ARKs and Schema.org. Finally, we will discuss the tests performed with our project partner, the Swiss Institute of Bioinformatics (SIB), by the use of large and real-world data sets.

Keywords: current research information systems, linked data, ontologies, persistent identifier, schema.org, semantic web

Procedia PDF Downloads 141
25262 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 114
25261 MIMIC: A Multi Input Micro-Influencers Classifier

Authors: Simone Leonardi, Luca Ardito

Abstract:

Micro-influencers are effective elements in the marketing strategies of companies and institutions because of their capability to create an hyper-engaged audience around a specific topic of interest. In recent years, many scientific approaches and commercial tools have handled the task of detecting this type of social media users. These strategies adopt solutions ranging from rule based machine learning models to deep neural networks and graph analysis on text, images, and account information. This work compares the existing solutions and proposes an ensemble method to generalize them with different input data and social media platforms. The deployed solution combines deep learning models on unstructured data with statistical machine learning models on structured data. We retrieve both social media accounts information and multimedia posts on Twitter and Instagram. These data are mapped into feature vectors for an eXtreme Gradient Boosting (XGBoost) classifier. Sixty different topics have been analyzed to build a rule based gold standard dataset and to compare the performances of our approach against baseline classifiers. We prove the effectiveness of our work by comparing the accuracy, precision, recall, and f1 score of our model with different configurations and architectures. We obtained an accuracy of 0.91 with our best performing model.

Keywords: deep learning, gradient boosting, image processing, micro-influencers, NLP, social media

Procedia PDF Downloads 187
25260 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 52
25259 Difficulties in Teaching and Learning English Pronunciation in Sindh Province, Pakistan

Authors: Majno Ajbani

Abstract:

Difficulties in teaching and learning English pronunciation in Sindh province, Pakistan Abstract Sindhi language is widely spoken in Sindh province, and it is one of the difficult languages of the world. Sindhi language has fifty-two alphabets which have caused a serious issue in learning and teaching of English pronunciation for teachers and students of Colleges and Universities. This study focuses on teachers’ and students’ need for extensive training in the pronunciation that articulates the real pronunciation of actual words. The study is set to contribute in the sociolinguistic studies of English learning communities in this region. Data from 200 English teachers and students was collected by already tested structured questionnaire. The data was analysed using SPSS 20 software. The data analysis clearly demonstrates the higher range of inappropriate pronunciations towards English learning and teaching. The anthropogenic responses indicate 87 percentages teachers and students had an improper pronunciation. This indicates the substantial negative effects on academic and sociolinguistic aspects. It is suggested an improper speaking of English, based on rapid changes in geopolitical and sociocultural surroundings.

Keywords: alphabets, pronunciation, sociolinguistic, anthropogenic, imprudent, malapropos

Procedia PDF Downloads 400
25258 Emotions in Human-Machine Interaction

Authors: Joanna Maj

Abstract:

Awe inspiring is the idea that emotions could be present in human-machine interactions, both on the human side as well as the machine side. Human factors present intriguing components and are examined in detail while discussing this controversial topic. Mood, attention, memory, performance, assessment, causes of emotion, and neurological responses are analyzed as components of the interaction. Problems in computer-based technology, revenge of the system on its users and design, and applications comprise a major part of all descriptions and examples throughout this paper. It also allows for critical thinking while challenging intriguing questions regarding future directions in research, dealing with emotion in human-machine interactions.

Keywords: biocomputing, biomedical engineering, emotions, human-machine interaction, interfaces

Procedia PDF Downloads 135
25257 Impact Location From Instrumented Mouthguard Kinematic Data In Rugby

Authors: Jazim Sohail, Filipe Teixeira-Dias

Abstract:

Mild traumatic brain injury (mTBI) within non-helmeted contact sports is a growing concern due to the serious risk of potential injury. Extensive research is being conducted looking into head kinematics in non-helmeted contact sports utilizing instrumented mouthguards that allow researchers to record accelerations and velocities of the head during and after an impact. This does not, however, allow the location of the impact on the head, and its magnitude and orientation, to be determined. This research proposes and validates two methods to quantify impact locations from instrumented mouthguard kinematic data, one using rigid body dynamics, the other utilizing machine learning. The rigid body dynamics technique focuses on establishing and matching moments from Euler’s and torque equations in order to find the impact location on the head. The methodology is validated with impact data collected from a lab test with the dummy head fitted with an instrumented mouthguard. Additionally, a Hybrid III Dummy head finite element model was utilized to create synthetic kinematic data sets for impacts from varying locations to validate the impact location algorithm. The algorithm calculates accurate impact locations; however, it will require preprocessing of live data, which is currently being done by cross-referencing data timestamps to video footage. The machine learning technique focuses on eliminating the preprocessing aspect by establishing trends within time-series signals from instrumented mouthguards to determine the impact location on the head. An unsupervised learning technique is used to cluster together impacts within similar regions from an entire time-series signal. The kinematic signals established from mouthguards are converted to the frequency domain before using a clustering algorithm to cluster together similar signals within a time series that may span the length of a game. Impacts are clustered within predetermined location bins. The same Hybrid III Dummy finite element model is used to create impacts that closely replicate on-field impacts in order to create synthetic time-series datasets consisting of impacts in varying locations. These time-series data sets are used to validate the machine learning technique. The rigid body dynamics technique provides a good method to establish accurate impact location of impact signals that have already been labeled as true impacts and filtered out of the entire time series. However, the machine learning technique provides a method that can be implemented with long time series signal data but will provide impact location within predetermined regions on the head. Additionally, the machine learning technique can be used to eliminate false impacts captured by sensors saving additional time for data scientists using instrumented mouthguard kinematic data as validating true impacts with video footage would not be required.

Keywords: head impacts, impact location, instrumented mouthguard, machine learning, mTBI

Procedia PDF Downloads 219
25256 Using Mixed Methods in Studying Classroom Social Network Dynamics

Authors: Nashrawan Naser Taha, Andrew M. Cox

Abstract:

In a multi-cultural learning context, where ties are weak and dynamic, combining qualitative with quantitative research methods may be more effective. Such a combination may also allow us to answer different types of question, such as about people’s perception of the network. In this study the use of observation, interviews and photos were explored as ways of enhancing data from social network questionnaires. Integrating all of these methods was found to enhance the quality of data collected and its accuracy, also providing a richer story of the network dynamics and the factors that shaped these changes over time.

Keywords: mixed methods, social network analysis, multi-cultural learning, social network dynamics

Procedia PDF Downloads 515
25255 Methodology for Temporary Analysis of Production and Logistic Systems on the Basis of Distance Data

Authors: M. Mueller, M. Kuehn, M. Voelker

Abstract:

In small and medium-sized enterprises (SMEs), the challenge is to create a well-grounded and reliable basis for process analysis, optimization and planning due to a lack of data. SMEs have limited access to methods with which they can effectively and efficiently analyse processes and identify cause-and-effect relationships in order to generate the necessary database and derive optimization potential from it. The implementation of digitalization within the framework of Industry 4.0 thus becomes a particular necessity for SMEs. For these reasons, the abstract presents an analysis methodology that is subject to the objective of developing an SME-appropriate methodology for efficient, temporarily feasible data collection and evaluation in flexible production and logistics systems as a basis for process analysis and optimization. The overall methodology focuses on retrospective, event-based tracing and analysis of material flow objects. The technological basis consists of Bluetooth low energy (BLE)-based transmitters, so-called beacons, and smart mobile devices (SMD), e.g. smartphones as receivers, between which distance data can be measured and derived motion profiles. The distance is determined using the Received Signal Strength Indicator (RSSI), which is a measure of signal field strength between transmitter and receiver. The focus is the development of a software-based methodology for interpretation of relative movements of transmitters and receivers based on distance data. The main research is on selection and implementation of pattern recognition methods for automatic process recognition as well as methods for the visualization of relative distance data. Due to an existing categorization of the database regarding process types, classification methods (e.g. Support Vector Machine) from the field of supervised learning are used. The necessary data quality requires selection of suitable methods as well as filters for smoothing occurring signal variations of the RSSI, the integration of methods for determination of correction factors depending on possible signal interference sources (columns, pallets) as well as the configuration of the used technology. The parameter settings on which respective algorithms are based have a further significant influence on result quality of the classification methods, correction models and methods for visualizing the position profiles used. The accuracy of classification algorithms can be improved up to 30% by selected parameter variation; this has already been proven in studies. Similar potentials can be observed with parameter variation of methods and filters for signal smoothing. Thus, there is increased interest in obtaining detailed results on the influence of parameter and factor combinations on data quality in this area. The overall methodology is realized with a modular software architecture consisting of independently modules for data acquisition, data preparation and data storage. The demonstrator for initialization and data acquisition is available as mobile Java-based application. The data preparation, including methods for signal smoothing, are Python-based with the possibility to vary parameter settings and to store them in the database (SQLite). The evaluation is divided into two separate software modules with database connection: the achievement of an automated assignment of defined process classes to distance data using selected classification algorithms and the visualization as well as reporting in terms of a graphical user interface (GUI).

Keywords: event-based tracing, machine learning, process classification, parameter settings, RSSI, signal smoothing

Procedia PDF Downloads 138
25254 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 139