Search results for: energy behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13952

Search results for: energy behavior

13442 Investigation on the Acoustical Transmission Path of Additive Printed Metals

Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing

Abstract:

In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.

Keywords: 3D-printed, acoustics, dynamics, impedance

Procedia PDF Downloads 203
13441 Heating Demand Reduction in Single Family Houses Community through Home Energy Management: Putting Users in Charge

Authors: Omar Shafqat, Jaime Arias, Cristian Bogdan, Björn Palm

Abstract:

Heating constitutes a major part of the overall energy consumption in Sweden. In 2013 heating and hot water accounted for about 55% of the total energy use in the housing sector. Historically, the end users have not been able to make a significant impact on their consumption on account of traditional control systems that do not facilitate interaction and control of the heating systems. However, in recent years internet connected home energy management systems have become increasingly available which allow users to visualize the indoor temperatures as well as control the heating system. However, the adoption of these systems is still in its nascent stages. This paper presents the outcome of a study carried out in a community of single-family houses in Stockholm. Heating in the area is provided through district heating, and the neighbourhood is connected through a local micro thermal grid, which is owned and operated by the local community. Heating in the houses is accomplished through a hydronic system equipped with radiators. The system installed offers the households to control the indoor temperature through a mobile application as well as through a physical thermostat. It was also possible to program the system to, for instance, lower the temperatures during night time and when the users were away. The users could also monitor the indoor temperatures through the application. It was additionally possible to create different zones in the house with their own individual programming. The historical heating data (in the form of billing data) was available for several previous years and has been used to perform quantitative analysis for the study after necessary normalization for weather variations. The experiment involved 30 households out of a community of 178 houses. The area was selected due to uniform construction profile in the area. It was observed that despite similar design and construction period there was a large variation in the heating energy consumption in the area which can for a large part be attributed to user behaviour. The paper also presents qualitative analysis done through survey questions as well as a focus group carried out with the participants. Overall, considerable energy savings were accomplished during the trial, however, there was a considerable variation between the participating households. The paper additionally presents recommendations to improve the impact of home energy management systems for heating in terms of improving user engagement and hence the energy impact.

Keywords: energy efficiency in buildings, energy behavior, heating control system, home energy management system

Procedia PDF Downloads 169
13440 Cultural and Legal Aspects of the Fight against Corruption in the World

Authors: Mustafina-Bredikhina Diana, Kuznetsova Olga

Abstract:

Corruption as a social phenomenon is obviously a serious barrier to the development of a prosperous society and the economic development of the country as a whole. It is extremely important to analyze the influence of culture on the level of corruption in different countries and assesses the influence of culture, religion, and mentality on corrupt behavior and their perception in society. Corruption should be considered in relation to the public consciousness, which is formed in certain socio-historical conditions and cultural traditions. Often, society, formally condemning corruption, reproduces obvious corrupt behavior at the personal level of its individual members. Based on a brief analysis of the major corruption scandals and the corruption counting system of countries, the authors conclude that culture, mentality, and religion, while playing an important role in the formation of public consciousness of the concept of "corrupt behavior" are not decisive. It is more important to build a dialogue between the authorities and society, creating a uniform rejection of corrupt behavior.

Keywords: corruption, culture, corrupt behavior, perception of corruption, religion

Procedia PDF Downloads 92
13439 Calculation Of Energy Gap Of (Ga,Mn)As Diluted Magnetic Semiconductor From The Eight-Band k.p Model

Authors: Khawlh A. Alzubaidi, Khadijah B. Alziyadi, Amor M. Alsayari

Abstract:

Now a days (Ga, Mn) is one of the most extensively studied and best understood diluted magnetic semiconductors. Also, the study of (Ga, Mn)As is a fervent research area since it allows to explore of a variety of novel functionalities and spintronics concepts that could be implemented in the future. In this work, we will calculate the energy gap of (Ga, Mn)As using the eight-band model. In the Hamiltonian, the effects of spin-orbit, spin-splitting, and strain will be considered. The dependence of the energy gap on Mn content, and the effect of the strain, which is varied continuously from tensile to compressive, will be studied. Finally, analytical expressions for the (Ga, Mn)As energy band gap, taking into account both parameters (Mn concentration and strain), will be provided.

Keywords: energy gap, diluted magnetic semiconductors, k.p method, strain

Procedia PDF Downloads 117
13438 The Relationship between Self-Injury Behavior and Social Skills among Children with Mild Intellectual Disability in the State of Kuwait

Authors: Farah Al-Shatti, Elsayed El-Khamisi, Nabel Suleiman

Abstract:

The study aimed at identifying the relationship between self-injury behavior and social skills among children with mild intellectual disability (ID) in the state of Kuwait. The sample of the study consisted of 65 males and females with ID; their ages ranged between 8 to 12 years. The study used a measure for rating self-injury behavior designed by the researcher; and a measure for rating social skills was designed. The results of the study showed that there was an increase in the percentages of the two dimensions of the self-injury behavior for children with ID; the self-injury behavior by child’s own body was higher than the self-injury behavior by environmental tools, additionally the results showed that there were statistically significant differences between males and females on the dimensions and total scorer of self-injury scale favor the males, and there were statistically significant differences between them on the dimensions of the social skills and total score favor the females, It also indicated that there was statistically significant negative relationship between the dimensions of the self-injury and the dimensions of the social skills for children with intellectual disability.

Keywords: mild intellectual disability, self injury behavior, social skills, state of Kuwait

Procedia PDF Downloads 347
13437 Energy Matrices of Partially Covered Photovoltaic Thermal Flat Plate Water Collectors

Authors: Shyam, G. N. Tiwari

Abstract:

Energy matrices of flate plate water collectors partially covered by PV module have been estimated in the present study. Photovoltaic thermal (PVT) water collector assembly is consisting of 5 water collectors having 2 m^2 area which are partially covered by photovoltaic module at its lower portion (inlet) and connected in series. The annual overall thermal energy and exergy are computed by using climatic data of New Delhi provided by Indian Meteorological Department (IMD) Pune, India. The Energy payback time on overall thermal and exergy basis are found to be 1.6 years and 17.8 years respectively. For 25 years of life time of system the energy production factor and life cycle conversion efficiency are estimated to be 15.8 and 0.04 respectively on overall thermal energy basis whereas for the same life time the energy production factor and life cycle conversion efficiency on exergy basis are obtained as 1.4 and 0.001.

Keywords: overall thermal energy, exergy, energy payback time, PVT water collectors

Procedia PDF Downloads 370
13436 Adopting Cloud-Based Techniques to Reduce Energy Consumption: Toward a Greener Cloud

Authors: Sandesh Achar

Abstract:

The cloud computing industry has set new goals for better service delivery and deployment, so anyone can access services such as computation, application, and storage anytime. Cloud computing promises new possibilities for approaching sustainable solutions to deploy and advance their services in this distributed environment. This work explores energy-efficient approaches and how cloud-based architecture can reduce energy consumption levels amongst enterprises leveraging cloud computing services. Adopting cloud-based networking, database, and server machines provide a comprehensive means of achieving the potential gains in energy efficiency that cloud computing offers. In energy-efficient cloud computing, virtualization is one aspect that can integrate several technologies to achieve consolidation and better resource utilization. Moreover, the Green Cloud Architecture for cloud data centers is discussed in terms of cost, performance, and energy consumption, and appropriate solutions for various application areas are provided.

Keywords: greener cloud, cloud computing, energy efficiency, energy consumption, metadata tags, green cloud advisor

Procedia PDF Downloads 81
13435 Spiking Behavior in Memristors with Shared Top Electrode Configuration

Authors: B. Manoj Kumar, C. Malavika, E. S. Kannan

Abstract:

The objective of this study is to investigate the switching behavior of two vertically aligned memristors connected by a shared top electrode, a configuration that significantly deviates from the conventional single oxide layer sandwiched between two electrodes. The device is fabricated by bridging copper electrodes with mechanically exfoliated van der Waals metal (specifically tantalum disulfide and tantalum diselenide). The device demonstrates threshold-switching behavior in its I-V characteristics. When the input voltage signal is ramped with voltages below the threshold, the output current shows spiking behavior, resembling integrated and firing actions without extra circuitry. We also investigated the self-reset behavior of the device. Using a continuous constant voltage bias, we activated the device to the firing state. After removing the bias and reapplying it shortly afterward, the current returned to its initial state. This indicates that the device can spontaneously return to its resting state. The outcome of this investigation offers a fresh perspective on memristor-based device design and an efficient method to construct hardware for neuromorphic computing systems.

Keywords: integrated and firing, memristor, spiking behavior, threshold switching

Procedia PDF Downloads 57
13434 A Structural Model to Examine Hotel Image and Overall Satisfaction on Future Behavior of Customers

Authors: Nimit Soonsan

Abstract:

Hotel image is a key business issue in today’s hotel market and has been increasingly been recognized as a valuable and inimitable source of competitive advantage by many hotel. The current study attempted to develop and test a relationship of hotel image, overall satisfaction, and future behavior. Based on the above concepts, this paper hypothesizes the correlations among four constructs, namely, hotel image and overall satisfaction as antecedents of future behavior that positive word-of-mouth and intention to revisit. This study surveyed for a sample of 244 international customers staying budget hotel in Phuket, Thailand and using a structural equation modeling identified relationship between hotel image, overall satisfaction and future behavior. The major finding of structural equation modeling indicates that hotel image directly affects overall satisfaction and indirectly affects future behavior that positive word-of-mouth and intention to revisit. In addition, overall satisfaction had significant influence on future behavior that positive word-of-mouth and intention to revisit, and the mediating role of overall satisfaction is also confirmed in this study. Managerial implications are provided, limitations noted, and future research directions suggested.

Keywords: hotel image, satisfaction, word-of-mouth, revisit

Procedia PDF Downloads 235
13433 Experimental and Numerical Investigations on Flexural Behavior of Macro-Synthetic FRC

Authors: Ashkan Shafee, Ahamd Fahimifar, Sajjad V. Maghvan

Abstract:

Promotion of the Fiber Reinforced Concrete (FRC) as a construction material for civil engineering projects has invoked numerous researchers to investigate their mechanical behavior. Even though there is satisfactory information about the effects of fiber type and length, concrete mixture, casting type and other variables on the strength and deformability parameters of FRC, the numerical modeling of such materials still needs research attention. The focus of this study is to investigate the feasibility of Concrete Damaged Plasticity (CDP) model in prediction of Macro-synthetic FRC structures behavior. CDP model requires the tensile behavior of concrete to be well characterized. For this purpose, a series of uniaxial direct tension and four point bending tests were conducted on the notched specimens to define bilinear tension softening (post-peak tension stress-strain) behavior. With these parameters obtained, the flexural behavior of macro-synthetic FRC beams were modeled and the results showed a good agreement with the experimental measurements.

Keywords: concrete damaged plasticity, fiber reinforced concrete, finite element modeling, macro-synthetic fibers, uniaxial tensile test

Procedia PDF Downloads 414
13432 A Multicriteria Framework for Assessing Energy Audit Software for Low-Income Households

Authors: Charles Amoo, Joshua New, Bill Eckman

Abstract:

Buildings in the United States account for a significant proportion of energy consumption and greenhouse gas (GHG) emissions, and this trend is expected to continue as well as rise in the near future. Low-income households, in particular, bear a disproportionate burden of high building energy consumption and spending due to high energy costs. Energy efficiency improvements need to reach an average of 4% per year in this decade in order to meet global net zero emissions target by 2050, but less than 1 % of U.S. buildings are improved each year. The government has recognized the importance of technology in addressing this issue, and energy efficiency programs have been developed to tackle the problem. The Weatherization Assistance Program (WAP), the largest residential whole-house energy efficiency program in the U.S., is specifically designed to reduce energy costs for low-income households. Under the WAP, energy auditors must follow specific audit procedures and use Department of Energy (DOE) approved energy audit tools or software. This article proposes an expanded framework of factors that should be considered in energy audit software that is approved for use in energy efficiency programs, particularly for low-income households. The framework includes more than 50 factors organized under 14 assessment criteria and can be used to qualitatively and quantitatively score different energy audit software to determine their suitability for specific energy efficiency programs. While the tool can be useful for developers to build new tools and improve existing software, as well as for energy efficiency program administrators to approve or certify tools for use, there are limitations to the model, such as the lack of flexibility that allows continuous scoring to accommodate variability and subjectivity. These limitations can be addressed by using aggregate scores of each criterion as weights that could be combined with value function and direct rating scores in a multicriteria decision analysis for a more flexible scoring.

Keywords: buildings, energy efficiency, energy audit, software

Procedia PDF Downloads 74
13431 Energy Performance Gaps in Residences: An Analysis of the Variables That Cause Energy Gaps and Their Impact

Authors: Amrutha Kishor

Abstract:

Today, with the rising global warming and depletion of resources every industry is moving toward sustainability and energy efficiency. As part of this movement, it is nowadays obligatory for architects to play their part by creating energy predictions for their designs. But in a lot of cases, these predictions do not reflect the real quantities of energy in newly built buildings when operating. These can be described as ‘Energy Performance Gaps’. This study aims to determine the underlying reasons for these gaps. Seven houses designed by Allan Joyce Architects, UK from 1998 until 2019 were considered for this study. The data from the residents’ energy bills were cross-referenced with the predictions made with the software SefairaPro and from energy reports. Results indicated that the predictions did not match the actual energy usage. An account of how energy was used in these seven houses was made by means of personal interviews. The main factors considered in the study were occupancy patterns, heating systems and usage, lighting profile and usage, and appliances’ profile and usage. The study found that the main reasons for the creation of energy gaps were the discrepancies in occupant usage and patterns of energy consumption that are predicted as opposed to the actual ones. This study is particularly useful for energy-conscious architectural firms to fine-tune the approach to designing houses and analysing their energy performance. As the findings reveal that energy usage in homes varies based on the way residents use the space, it helps deduce the most efficient technological combinations. This information can be used to set guidelines for future policies and regulations related to energy consumption in homes. This study can also be used by the developers of simulation software to understand how architects use their product and drive improvements in its future versions.

Keywords: architectural simulation, energy efficient design, energy performance gaps, environmental design

Procedia PDF Downloads 113
13430 Impacts of Building Design Factors on Auckland School Energy Consumptions

Authors: Bin Su

Abstract:

This study focuses on the impact of school building design factors on winter extra energy consumption which mainly includes space heating, water heating and other appliances related to winter indoor thermal conditions. A number of Auckland schools were randomly selected for the study which introduces a method of using real monthly energy consumption data for a year to calculate winter extra energy data of school buildings. The study seeks to identify the relationships between winter extra energy data related to school building design data related to the main architectural features, building envelope and elements of the sample schools. The relationships can be used to estimate the approximate saving in winter extra energy consumption which would result from a changed design datum for future school development, and identify any major energy-efficient design problems. The relationships are also valuable for developing passive design guides for school energy efficiency.

Keywords: building energy efficiency, building thermal design, building thermal performance, school building design

Procedia PDF Downloads 438
13429 Efficient Energy Management: A Novel Technique for Prolonged and Persistent Automotive Engine

Authors: Chakshu Baweja, Ishaan Prakash, Deepak Giri, Prithwish Mukherjee, Herambraj Ashok Nalawade

Abstract:

The need to prevent and control rampant and indiscriminate usage of energy in present-day realm on earth has motivated active research efforts aimed at understanding of controlling mechanisms leading to sustained energy. Although much has been done but complexity of the problem has prevented a complete understanding due to nonlinear interaction between flow, heat and mass transfer in terrestrial environment. Therefore, there is need for a systematic study to clearly understand mechanisms controlling energy-spreading phenomena to increase a system’s efficiency. The present work addresses the issue of sustaining energy and proposes a devoted technique of optimizing energy in the automotive domain. The proposed method focus on utilization of the mechanical and thermal energy of an automobile IC engine by converting and storing energy due to motion of a piston in form of electrical energy. The suggested technique utilizes piston motion of the engine to generate high potential difference capable of working as a secondary power source. This is achieved by the use of a gear mechanism and a flywheel.

Keywords: internal combustion engine, energy, electromagnetic induction, efficiency, gear ratio, hybrid vehicle, engine shaft

Procedia PDF Downloads 471
13428 Tunneling Current Switching in the Coupled Quantum Dots by Means of External Field

Authors: Vladimir Mantsevich, Natalya Maslova, Petr Arseyev

Abstract:

We investigated the tunneling current peculiarities in the system of two coupled by means of the external field quantum dots (QDs) weakly connected to the electrodes in the presence of Coulomb correlations between localized electrons by means of Heisenberg equations for pseudo operators with constraint. Special role of multi-electronic states was demonstrated. Various single-electron levels location relative to the sample Fermi level and to the applied bias value in symmetric tunneling contact were investigated. Rabi frequency tuning results in the single-electron energy levels spacing. We revealed the appearance of negative tunneling conductivity and demonstrated multiple switching "on" and "off" of the tunneling current depending on the Coulomb correlations value, Rabi frequency amplitude and energy levels spacing. We proved that Coulomb correlations strongly influence the system behavior. We demonstrated the presence of multi-stability in the coupled QDs with Coulomb correlations when single value of the tunneling current amplitude corresponds to the two values of Rabi frequency in the case when both single-electron energy levels are located slightly above eV and are close to each other. This effect disappears when the single-electron energy levels spacing increases.

Keywords: Coulomb correlations, negative tunneling conductivity, quantum dots, rabi frequency

Procedia PDF Downloads 448
13427 QoS-CBMG: A Model for e-Commerce Customer Behavior

Authors: Hoda Ghavamipoor, S. Alireza Hashemi Golpayegani

Abstract:

An approach to model the customer interaction with e-commerce websites is presented. Considering the service quality level as a predictive feature, we offer an improved method based on the Customer Behavior Model Graph (CBMG), a state-transition graph model. To derive the Quality of Service sensitive-CBMG (QoS-CBMG) model, process-mining techniques is applied to pre-processed website server logs which are categorized as ‘buy’ or ‘visit’. Experimental results on an e-commerce website data confirmed that the proposed method outperforms CBMG based method.

Keywords: customer behavior model, electronic commerce, quality of service, customer behavior model graph, process mining

Procedia PDF Downloads 408
13426 Energy Efficiency Index Applied to Reactive Systems

Authors: P. Góes, J. Manzi

Abstract:

This paper focuses on the development of an energy efficiency index that will be applied to reactive systems, which is based in the First and Second Law of Thermodynamics, by giving particular consideration to the concept of maximum entropy. Among the requirements of such energy efficiency index, the practical feasibility must be essential. To illustrate the performance of the proposed index, such an index was used as decisive factor of evaluation for the optimization process of an industrial reactor. The results allow the conclusion to be drawn that the energy efficiency index applied to the reactive system is consistent because it extracts the information expected of an efficient indicator, and that it is useful as an analytical tool besides being feasible from a practical standpoint. Furthermore, it has proved to be much simpler to use than tools based on traditional methodologies.

Keywords: energy, efficiency, entropy, reactive

Procedia PDF Downloads 406
13425 The Study on Energy Saving in Clarification Process for Water Treatment Plant

Authors: Wiwat Onnakklum

Abstract:

Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.

Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy

Procedia PDF Downloads 318
13424 The Study on Mechanical Properties of Graphene Using Molecular Mechanics

Authors: I-Ling Chang, Jer-An Chen

Abstract:

The elastic properties and fracture of two-dimensional graphene were calculated purely from the atomic bonding (stretching and bending) based on molecular mechanics method. Considering the representative unit cell of graphene under various loading conditions, the deformations of carbon bonds and the variations of the interlayer distance could be realized numerically under the geometry constraints and minimum energy assumption. In elastic region, it was found that graphene was in-plane isotropic. Meanwhile, the in-plane deformation of the representative unit cell is not uniform along armchair direction due to the discrete and non-uniform distributions of the atoms. The fracture of graphene could be predicted using fracture criteria based on the critical bond length, over which the bond would break. It was noticed that the fracture behavior were directional dependent, which was consistent with molecular dynamics simulation results.

Keywords: energy minimization, fracture, graphene, molecular mechanics

Procedia PDF Downloads 399
13423 Financial Inclusion and Modernization: Secure Energy Performance in Shanghai Cooperation Organization

Authors: Shama Urooj

Abstract:

The present work investigates the relationship among financial inclusion, modernization, and energy performance in SCO member countries during the years 2011–2021. PCA is used to create composite indexes of financial inclusion, modernization, and energy performance. We used panel regression models that are both reliable and heteroscedasticity-consistent to look at the relationship among variables. The findings indicate that financial inclusion (FI) and modernization, along with the increased FDI, all appear to contribute to the energy performance in the SCO member countries. However, per capita GDP has a negative impact on energy performance. These results are unbiased and consistent with the robust results obtained by applying different econometric models. Feasible Generalized Least Square (FGLS) estimation is also used for checking the uniformity of the main model results. This research work concludes that there has been no policy coherence in SCO member countries regarding the coordination of growing financial inclusion and modernization for energy sustainability in recent years. In order to improve energy performance with modern development, policies regarding financial inclusion and modernization need be integrated both at national as well as international levels.

Keywords: financial inclusion, energy performance, modernization, technological development, SCO.

Procedia PDF Downloads 71
13422 Evaluating the Effect of Modern Technologies and Technics to Supply Energy of Buildings Using New Energies

Authors: Ali Reza Ghaffari, Hassan Saghi

Abstract:

Given the limitation of fossil resources to supply energy to buildings, recent years have seen a revival of interest in new technologies that produce the energy using new forms of energy in many developed countries. In this research, first the potentials of new energies in Iran are discussed and then based on case studies undertaken in a building in Tehran, the effects of utilizing new solar energy technology for supplying the energy of buildings are investigated. Then, by analyzing the data recorded over a four-year period, the technical performance of this system is investigated. According to the experimental operation plan, this system requires an auxiliary heating circuit for continuous operation over a year. Also, in the economic analysis, real conditions are considered and the results are recorded based on long-term data. Considering the purchase and commissioning building, supplementary energy consumption, etc. a comparison is drawn between the costs of using a solar water heater in a residential unit with the energy costs of a similar unit equipped with a conventional gas water heater. Given the current price of energy, using a solar water heater in the country will not economical, but considering the global energy prices, this system will have a return on investment after 4.5 years. It also produces 81% less pollution and saves about $21.5 on environmental pollution cleanup.

Keywords: energy supply, new energies, new technologies, buildings

Procedia PDF Downloads 159
13421 The Prospective Assessment of Zero-Energy Dwellings

Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic

Abstract:

The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.

Keywords: benefits, energy demands, passive houses, sustainable development

Procedia PDF Downloads 331
13420 Advancement of Oscillating Water Column Wave Energy Technologies through Integrated Applications and Alternative Systems

Authors: S. Doyle, G. A. Aggidis

Abstract:

Wave energy converter technologies continue to show good progress in worldwide research. One of the most researched technologies, the Oscillating Water Column (OWC), is arguably one of the most popular categories within the converter technologies due to its robustness, simplicity and versatility. However, the versatility of the OWC is still largely untapped with most deployments following similar trends with respect to applications and operating systems. As the competitiveness of the energy market continues to increase, the demand for wave energy technologies to be innovative also increases. For existing wave energy technologies, this requires identifying areas to diversify for lower costs of energy with respect to applications and synergies or integrated systems. This paper provides a review of all OWCs systems integrated into alternative applications in the past and present. The aspects and variation in their design, deployment and system operation are discussed. Particular focus is given to the Multi-OWCs (M-OWCs) and their great potential to increase capture on a larger scale, especially in synergy applications. It is made clear that these steps need to be taken in order to make wave energy a competitive and viable option in the renewable energy mix as progression to date shows that stand alone single function devices are not economical. Findings reveal that the trend of development is moving toward these integrated applications in order to reduce the Levelised Cost of Energy (LCOE) and will ultimately continue in this direction in efforts to make wave energy a competitive option in the renewable energy mix.

Keywords: wave energy converter, oscillating water column, ocean energy, renewable energy

Procedia PDF Downloads 130
13419 The Effect of Mathematical Modeling of Damping on the Seismic Energy Demands

Authors: Selamawit Dires, Solomon Tesfamariam, Thomas Tannert

Abstract:

Modern earthquake engineering and design encompass performance-based design philosophy. The main objective in performance-based design is to achieve a system performing precisely to meet the design objectives so to reduce unintended seismic risks and associated losses. Energy-based earthquake-resistant design is one of the design methodologies that can be implemented in performance-based earthquake engineering. In energy-based design, the seismic demand is usually described as the ratio of the hysteretic to input energy. Once the hysteretic energy is known as a percentage of the input energy, it is distributed among energy-dissipating components of a structure. The hysteretic to input energy ratio is highly dependent on the inherent damping of a structural system. In numerical analysis, damping can be modeled as stiffness-proportional, mass-proportional, or a linear combination of stiffness and mass. In this study, the effect of mathematical modeling of damping on the estimation of seismic energy demands is investigated by considering elastic-perfectly-plastic single-degree-of-freedom systems representing short to long period structures. Furthermore, the seismicity of Vancouver, Canada, is used in the nonlinear time history analysis. According to the preliminary results, the input energy demand is not sensitive to the type of damping models deployed. Hence, consistent results are achieved regardless of the damping models utilized in the numerical analyses. On the other hand, the hysteretic to input energy ratios vary significantly for the different damping models.

Keywords: damping, energy-based seismic design, hysteretic energy, input energy

Procedia PDF Downloads 164
13418 Matlab/Simulink Simulation of Solar Energy Storage System

Authors: Mustafa A. Al-Refai

Abstract:

This paper investigates the energy storage technologies that can potentially enhance the use of solar energy. Water electrolysis systems are seen as the principal means of producing a large amount of hydrogen in the future. Starting from the analysis of the models of the system components, a complete simulation model was realized in the Matlab-Simulink environment. Results of the numerical simulations are provided. The operation of electrolysis and photovoltaic array combination is verified at various insulation levels. It is pointed out that solar cell arrays and electrolysers are producing the expected results with solar energy inputs that are continuously varying.

Keywords: electrolyzer, simulink, solar energy, storage system

Procedia PDF Downloads 423
13417 Energy Efficiency in Hot Arid Climates Code Compliance and Enforcement for Residential Buildings

Authors: Mohamed Edesy, Carlo Cecere

Abstract:

This paper is a part of an ongoing research that proposes energy strategies for residential buildings in hot arid climates. In Egypt, the residential sector is dominated by increase in consumption rates annually. A building energy efficiency code was introduced by the government in 2005; it indicates minimum design and application requirements for residential buildings. Submission is mandatory and should lead to about 20% energy savings with an increase in comfort levels. However, compliance is almost nonexistent, electricity is subsidized and incentives to adopt energy efficient patterns are very low. This work presents an overview of the code and analyzes the impact of its introduction on different sectors. It analyses compliance barriers and indicates challenges that stand in the way of a realistic enforcement. It proposes an action plan for immediate code enforcement, updating current code to include retrofit, and development of rating systems for buildings. This work presents a broad national plan for energy efficiency empowerment in the residential sector.

Keywords: energy efficiency, housing, energy policies, code enforcement

Procedia PDF Downloads 343
13416 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 308
13415 Breeding for Hygienic Behavior in Honey Bees

Authors: Michael Eickermann, Juergen Junk

Abstract:

The Western honey (Apis mellifera) is threatened by a number of parasites, especially the devastating Varroa mite (Varroa destructor) is responsible for a high level of mortality over winter, e.g., in Europe and USA. While the use of synthetic pesticides or organic acids has been preferred so far to control this parasite, breeding strategies for less susceptible honey bees are in early stages. Hygienic behavior can be an important tool for controlling Varroa destructor. Worker bees with a high level of this behavior are able to detect infested brood in the cells under the wax lid during pupation and remove them out of the hive. The underlying processes of this behavior are only partly investigated, but it is for sure that hygienic behavior is heritable and therefore, can be integrated into commercial breeding lines. In a first step, breeding lines with a high level of phenotypic hygienic behavior have been identified by using a bioassay for accurate assessment of this trait in a long-term national breeding program in Luxembourg since 2015. Based on the artificial infestation of nucleus colonies with 150 phoretic Varroa destructor mites, the level of phenotypic hygienic behavior was detected by counting the number of mites in all stages, twelve days after infestation. A nucleus with a high level of hygienic behavior was overwintered and used for breeding activities in the following years. Artificial insemination was used to combine different breeding lines. Buckfast lines, as well as Carnica lines, were used. While Carnica lines offered only a low increase of hygienic behavior up to maximum 62.5%, Buckfast lines performed much better with mean levels of more than 87.5%. Some mating ends up with a level of 100%. But even with a level of 82.5% Varroa mites are not able to reproduce in the colony anymore. In a final step, a nucleus with a high level of hygienic behavior were build up to full colonies and located at two places in Luxembourg to build up a drone congregation area. Local beekeepers can bring their nucleus to this location for mating the queens with drones offering a high level of hygienic behavior.

Keywords: agiculture, artificial insemination, honey bee, varroa destructor

Procedia PDF Downloads 131
13414 Solar Technology: A Review of Government-Sponsored Green Energy

Authors: Christopher Battle

Abstract:

The pursuit of a sustainable future is dependent on the ability of governments from the national to municipal level. The politics of energy and the development of state-sponsored photovoltaic cell expansion can nebulize in several ways based on a state or nation's physical and human geography. This study conducts a comparative analysis of the energy and solar program of Turkey, Pennsylvania, and Philadelphia. The study aims to assess the city of Philadelphia's solar policies in contrast with both its political history and the photovoltaic programs of Turkey, a world leader in solar system development, and Pennsylvania's history of energy regulation. This comparative study found that after hundreds of bills and regulations over decades, sustainable energy development in affordable housing and new construction is the next phase of State-Sponsored Green energy for the city of Philadelphia.

Keywords: Turkey, solar power, Philadelphia, affordable energy development

Procedia PDF Downloads 93
13413 Energy Consumption in Biodiesel Production at Various Kinetic Reaction of Transesterification

Authors: Sariah Abang, S. M. Anisuzzaman, Awang Bono, D. Krishnaiah, S. Rasmih

Abstract:

Biodiesel is a potential renewable energy due to biodegradable and non-toxic. The challenge of its commercialization is associated with high production cost due to its feedstock also useful in various food products. Non-competitive feedstock such as waste cooking oils normally contains a large amount of free fatty acids (FFAs). Large amount of fatty acid degrades the alkaline catalyst in the biodiesel production, thereby decreasing the biodiesel production rate. Generally, biodiesel production processes including esterification and trans-esterification are conducting in a mixed system, in which the hydrodynamic effect on the reaction could not be completely defined. The aim of this study was to investigate the effect of variation rate constant and activation energy on energy consumption of biodiesel production. Usually, the changes of rate constant and activation energy depend on the operating temperature and the degradation of catalyst. By varying the activation energy and kinetic rate constant, the effects can be seen on the energy consumption of biodiesel production. The result showed that the energy consumption of biodiesel is dependent on the changes of rate constant and activation energy. Furthermore, this study was simulated using Aspen HYSYS.

Keywords: methanol, palm oil, simulation, transesterification, triolein

Procedia PDF Downloads 316