Search results for: IR tracking algorithm
3855 Tank Barrel Surface Damage Detection Algorithm
Authors: Tomáš Dyk, Stanislav Procházka, Martin Drahanský
Abstract:
The article proposes a new algorithm for detecting damaged areas of the tank barrel based on the image of the inner surface of the tank barrel. Damage position is calculated using image processing techniques such as edge detection, discrete wavelet transformation and image segmentation for accurate contour detection. The algorithm can detect surface damage in smoothbore and even in rifled tank barrels. The algorithm also calculates the volume of the detected damage from the depth map generated, for example, from the distance measurement unit. The proposed method was tested on data obtained by a tank barrel scanning device, which generates both surface image data and depth map. The article also discusses tank barrel scanning devices and how damaged surface impacts material resistance.Keywords: barrel, barrel diagnostic, image processing, surface damage detection, tank
Procedia PDF Downloads 1373854 DCT and Stream Ciphers for Improved Image Encryption Mechanism
Authors: T. R. Sharika, Ashwini Kumar, Kamal Bijlani
Abstract:
Encryption is the process of converting crucial information’s unreadable to unauthorized persons. Image security is an important type of encryption that secures all type of images from cryptanalysis. A stream cipher is a fast symmetric key algorithm which is used to convert plaintext to cipher text. In this paper we are proposing an image encryption algorithm with Discrete Cosine Transform and Stream Ciphers that can improve compression of images and enhanced security. The paper also explains the use of a shuffling algorithm for enhancing securing.Keywords: decryption, DCT, encryption, RC4 cipher, stream cipher
Procedia PDF Downloads 3613853 Dual-Channel Multi-Band Spectral Subtraction Algorithm Dedicated to a Bilateral Cochlear Implant
Authors: Fathi Kallel, Ahmed Ben Hamida, Christian Berger-Vachon
Abstract:
In this paper, a Speech Enhancement Algorithm based on Multi-Band Spectral Subtraction (MBSS) principle is evaluated for Bilateral Cochlear Implant (BCI) users. Specifically, dual-channel noise power spectral estimation algorithm using Power Spectral Densities (PSD) and Cross Power Spectral Densities (CPSD) of the observed signals is studied. The enhanced speech signal is obtained using Dual-Channel Multi-Band Spectral Subtraction ‘DC-MBSS’ algorithm. For performance evaluation, objective speech assessment test relying on Perceptual Evaluation of Speech Quality (PESQ) score is performed to fix the optimal number of frequency bands needed in DC-MBSS algorithm. In order to evaluate the speech intelligibility, subjective listening tests are assessed with 3 deafened BCI patients. Experimental results obtained using French Lafon database corrupted by an additive babble noise at different Signal-to-Noise Ratios (SNR) showed that DC-MBSS algorithm improves speech understanding for single and multiple interfering noise sources.Keywords: speech enhancement, spectral substracion, noise estimation, cochlear impalnt
Procedia PDF Downloads 5493852 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3343851 Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 5633850 Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator with Active Disturbance Rejection Control
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using matlab simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 4993849 Reliability Improvement of Power System Networks Using Adaptive Genetic Algorithm
Authors: Alireza Alesaadi
Abstract:
Reliability analysis is a powerful method for determining the weak points of the electrical networks. In designing of electrical network, it is tried to design the most reliable network with minimal system shutting down, but it is usually associated with increasing the cost. In this paper, using adaptive genetic algorithm, a method was presented that provides the most reliable system with a certain economical cost. Finally, the proposed method is applied to a sample network and results will be analyzed.Keywords: reliability, adaptive genetic algorithm, electrical network, communication engineering
Procedia PDF Downloads 5083848 The Effect of Physical Guidance on Learning a Tracking Task in Children with Cerebral Palsy
Authors: Elham Azimzadeh, Hamidollah Hassanlouei, Hadi Nobari, Georgian Badicu, Jorge Pérez-Gómez, Luca Paolo Ardigò
Abstract:
Children with cerebral palsy (CP) have weak physical abilities and their limitations may have an effect on performing everyday motor activities. One of the most important and common debilitating factors in CP is the malfunction in the upper extremities to perform motor skills and there is strong evidence that task-specific training may lead to improve general upper limb function among this population. However, augmented feedback enhances the acquisition and learning of a motor task. Practice conditions may alter the difficulty, e.g., the reduced frequency of PG could be more challenging for this population to learn a motor task. So, the purpose of this study was to investigate the effect of physical guidance (PG) on learning a tracking task in children with cerebral palsy (CP). Twenty-five independently ambulant children with spastic hemiplegic CP aged 7-15 years were assigned randomly to five groups. After the pre-test, experimental groups participated in an intervention for eight sessions, 12 trials during each session. The 0% PG group received no PG; the 25% PG group received PG for three trials; the 50% PG group received PG for six trials; the 75% PG group received PG for nine trials; and the 100% PG group, received PG for all 12 trials. PG consisted of placing the experimenter's hand around the children's hand, guiding them to stay on track and complete the task. Learning was inferred by acquisition and delayed retention tests. The tests involved two blocks of 12 trials of the tracking task without any PG being performed by all participants. They were asked to make the movement as accurate as possible (i.e., fewer errors) and the number of total touches (errors) in 24 trials was calculated as the scores of the tests. The results showed that the higher frequency of PG led to more accurate performance during the practice phase. However, the group that received 75% PG had significantly better performance compared to the other groups in the retention phase. It is concluded that the optimal frequency of PG played a critical role in learning a tracking task in children with CP and likely this population may benefit from an optimal level of PG to get the appropriate amount of information confirming the challenge point framework (CPF), which state that too much or too little information will retard learning a motor skill. Therefore, an optimum level of PG may help these children to identify appropriate patterns of motor skill using extrinsic information they receive through PG and improve learning by activating the intrinsic feedback mechanisms.Keywords: cerebral palsy, challenge point framework, motor learning, physical guidance, tracking task
Procedia PDF Downloads 703847 Design Data Sorter Circuit Using Insertion Sorting Algorithm
Authors: Hoda Abugharsa
Abstract:
In this paper we propose to design a sorter circuit using insertion sorting algorithm. The circuit will be designed using Algorithmic State Machines (ASM) method. That means converting the insertion sorting flowchart into an ASM chart. Then the ASM chart will be used to design the sorter circuit and the control unit.Keywords: insert sorting algorithm, ASM chart, sorter circuit, state machine, control unit
Procedia PDF Downloads 4453846 Product Development in Company
Authors: Giorgi Methodishvili, Iuliia Methodishvili
Abstract:
In this paper product development algorithm is used to determine the optimal management of financial resources in company. Aspects of financial management considered include put initial investment, examine all possible ways to solve the problem and the optimal rotation length of profit. The software of given problems is based using greedy algorithm. The obtained model and program maintenance enable us to define the optimal version of management of proper financial flows by using visual diagram on each level of investment.Keywords: management, software, optimal, greedy algorithm, graph-diagram
Procedia PDF Downloads 563845 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4783844 Autonomous Control of Ultrasonic Transducer Drive System
Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim
Abstract:
In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm
Procedia PDF Downloads 3603843 Detect Circles in Image: Using Statistical Image Analysis
Authors: Fathi M. O. Hamed, Salma F. Elkofhaifee
Abstract:
The aim of this work is to detect geometrical shape objects in an image. In this paper, the object is considered to be as a circle shape. The identification requires find three characteristics, which are number, size, and location of the object. To achieve the goal of this work, this paper presents an algorithm that combines from some of statistical approaches and image analysis techniques. This algorithm has been implemented to arrive at the major objectives in this paper. The algorithm has been evaluated by using simulated data, and yields good results, and then it has been applied to real data.Keywords: image processing, median filter, projection, scale-space, segmentation, threshold
Procedia PDF Downloads 4323842 The Presence of Investor Overconfidence in the South African Exchange Traded Fund Market
Authors: Damien Kunjal, Faeezah Peerbhai
Abstract:
Despite the increasing popularity of exchange-traded funds (ETFs), ETF investment choices may not always be rational. Excess trading volume, misevaluations of securities, and excess return volatility present in financial markets can be attributed to the influence of the overconfidence bias. Whilst previous research has explored the overconfidence bias in stock markets; this study focuses on trading in ETF markets. Therefore, the objective of this study is to investigate the presence of investor overconfidence in the South African ETF market. Using vector autoregressive models, the lead-lag relationship between market turnover and the market return is examined for the market of South African ETFs tracking domestic benchmarks and for the market of South African ETFs tracking international benchmarks over the period November 2000 till August 2019. Consistent with the overconfidence hypothesis, a positive relationship between current market turnover and lagged market return is found for both markets, even after controlling for market volatility and cross-sectional dispersion. This relationship holds for both market and individual ETF turnover suggesting that investors are overconfident when trading in South African ETFs tracking domestic benchmarks and South African ETFs tracking international benchmarks since trading activity depends on past market returns. Additionally, using the global recession as a structural break, this study finds that investor overconfidence is more pronounced after the global recession suggesting that investors perceive ETFs as risk-reducing assets due to their diversification benefits. Overall, the results of this study indicate that the overconfidence bias has a significant influence on ETF investment choices, therefore, suggesting that the South African ETF market is inefficient since investors’ decisions are based on their biases. As a result, the effect of investor overconfidence can account for the difference between the fair value of ETFs and its current market price. This finding has implications for policymakers whose responsibility is to promote the efficiency of the South African ETF market as well as ETF investors and traders who trade in the South African ETF market.Keywords: exchange-traded fund, market return, market turnover, overconfidence, trading activity
Procedia PDF Downloads 1643841 A Linear Active Disturbance Rejection Control for Maximization of Generated Power from Wind Energy Conversion Systems Using a Doubly Fed Induction Generator
Authors: Tamou Nasser, Ahmed Essadki, Ali Boukhriss
Abstract:
This paper presents the control of doubly fed induction generator (DFIG) used in the wind energy conversion systems. Maximum power point tracking (MPPT) strategy is used to extract the maximum of power during the conversion and taking care that the system does not exceed the operating limits. This is done by acting on the pitch angle to control the orientation of the turbine's blades. Having regard to its robustness and performance, active disturbance rejection control (ADRC) based on the extended state observer (ESO) is employed to achieve the control of both rotor and grid side converters. Simulations are carried out using MATLAB simulink.Keywords: active disturbance rejection control, extended state observer, doubly fed induction generator, maximum power point tracking
Procedia PDF Downloads 5243840 Using Self Organizing Feature Maps for Automatic Prostate Segmentation in TRUS Images
Authors: Ahad Salimi, Hassan Masoumi
Abstract:
Prostate cancer is one of the most common recognized cancers in men, and, is one of the most important mortality factors of cancer in this group. Determining of prostate’s boundary in TRUS (Transrectal Ultra Sound) images is very necessary for prostate cancer treatments. The weakness edges and speckle noise make the ultrasound images inherently to segment. In this paper a new automatic algorithm for prostate segmentation in TRUS images proposed that include three main stages. At first morphological smoothing and sticks filtering are used for noise removing. In second step, for finding a point in prostate region, SOFM algorithm is enlisted and in the last step, the boundary of prostate extracting accompanying active contour is employed. For validation of proposed method, a number of experiments are conducted. The results obtained by our algorithm show the promise of the proposed algorithm.Keywords: SOFM, preprocessing, GVF contour, segmentation
Procedia PDF Downloads 3293839 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 1553838 Improving Temporal Correlations in Empirical Orthogonal Function Expansions for Data Interpolating Empirical Orthogonal Function Algorithm
Authors: Ping Bo, Meng Yunshan
Abstract:
Satellite-derived sea surface temperature (SST) is a key parameter for many operational and scientific applications. However, the disadvantage of SST data is a high percentage of missing data which is mainly caused by cloud coverage. Data Interpolating Empirical Orthogonal Function (DINEOF) algorithm is an EOF-based technique for reconstructing the missing data and has been widely used in oceanographic field. The reconstruction of SST images within a long time series using DINEOF can cause large discontinuities and one solution for this problem is to filter the temporal covariance matrix to reduce the spurious variability. Based on the previous researches, an algorithm is presented in this paper to improve the temporal correlations in EOF expansion. Similar with the previous researches, a filter, such as Laplacian filter, is implemented on the temporal covariance matrix, but the temporal relationship between two consecutive images which is used in the filter is considered in the presented algorithm, for example, two images in the same season are more likely correlated than those in the different seasons, hence the latter one is less weighted in the filter. The presented approach is tested for the monthly nighttime 4-km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder SST for the long-term period spanning from 1989 to 2006. The results obtained from the presented algorithm are compared to those from the original DINEOF algorithm without filtering and from the DINEOF algorithm with filtering but without taking temporal relationship into account.Keywords: data interpolating empirical orthogonal function, image reconstruction, sea surface temperature, temporal filter
Procedia PDF Downloads 3243837 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement
Authors: Brittany Richardson, Ying Wang
Abstract:
For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments
Procedia PDF Downloads 1343836 User Experience in Relation to Eye Tracking Behaviour in VR Gallery
Authors: Veslava Osinska, Adam Szalach, Dominik Piotrowski
Abstract:
Contemporary VR technologies allow users to explore virtual 3D spaces where they can work, socialize, learn, and play. User's interaction with GUI and the pictures displayed implicate perceptual and also cognitive processes which can be monitored due to neuroadaptive technologies. These modalities provide valuable information about the users' intentions, situational interpretations, and emotional states, to adapt an application or interface accordingly. Virtual galleries outfitted by specialized assets have been designed using the Unity engine BITSCOPE project in the frame of CHIST-ERA IV program. Users interaction with gallery objects implies the questions about his/her visual interests in art works and styles. Moreover, an attention, curiosity, and other emotional states are possible to be monitored and analyzed. Natural gaze behavior data and eye position were recorded by built-in eye-tracking module within HTC Vive headset gogle for VR. Eye gaze results are grouped due to various users’ behavior schemes and the appropriate perpetual-cognitive styles are recognized. Parallelly usability tests and surveys were adapted to identify the basic features of a user-centered interface for the virtual environments across most of the timeline of the project. A total of sixty participants were selected from the distinct faculties of University and secondary schools. Users’ primary knowledge about art and was evaluated during pretest and this way the level of art sensitivity was described. Data were collected during two months. Each participant gave written informed consent before participation. In data analysis reducing the high-dimensional data into a relatively low-dimensional subspace ta non linear algorithms were used such as multidimensional scaling and novel technique technique t-Stochastic Neighbor Embedding. This way it can classify digital art objects by multi modal time characteristics of eye tracking measures and reveal signatures describing selected artworks. Current research establishes the optimal place on aesthetic-utility scale because contemporary interfaces of most applications require to be designed in both functional and aesthetical ways. The study concerns also an analysis of visual experience for subsamples of visitors, differentiated, e.g., in terms of frequency of museum visits, cultural interests. Eye tracking data may also show how to better allocate artefacts and paintings or increase their visibility when possible.Keywords: eye tracking, VR, UX, visual art, virtual gallery, visual communication
Procedia PDF Downloads 423835 Multi-Level Priority Based Task Scheduling Algorithm for Workflows in Cloud Environment
Authors: Anju Bala, Inderveer Chana
Abstract:
Task scheduling is the key concern for the execution of performance-driven workflow applications. As efficient scheduling can have major impact on the performance of the system, task scheduling is often chosen for assigning the request to resources in an efficient way based on cloud resource characteristics. In this paper, priority based task scheduling algorithm has been proposed that prioritizes the tasks based on the length of the instructions. The proposed scheduling approach prioritize the tasks of Cloud applications according to the limits set by six sigma control charts based on dynamic threshold values. Further, the proposed algorithm has been validated through the CloudSim toolkit. The experimental results demonstrate that the proposed algorithm is effective for handling multiple task lists from workflows and in considerably reducing Makespan and Execution time.Keywords: cloud computing, priority based scheduling, task scheduling, VM allocation
Procedia PDF Downloads 5173834 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator
Authors: M. Tawfik, X. Tonnellier, C. Sansom
Abstract:
The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking
Procedia PDF Downloads 2163833 A Coordinate-Based Heuristic Route Search Algorithm for Delivery Truck Routing Problem
Authors: Ahmed Tarek, Ahmed Alveed
Abstract:
Vehicle routing problem is a well-known re-search avenue in computing. Modern vehicle routing is more focused with the GPS-based coordinate system, as the state-of-the-art vehicle, and trucking systems are equipped with digital navigation. In this paper, a new two dimensional coordinate-based algorithm for addressing the vehicle routing problem for a supply chain network is proposed and explored, and the algorithm is compared with other available, and recently devised heuristics. For the algorithms discussed, which includes the pro-posed coordinate-based search heuristic as well, the advantages and the disadvantages associated with the heuristics are explored. The proposed algorithm is studied from the stand point of a small supermarket chain delivery network that supplies to its stores in four different states around the East Coast area, and is trying to optimize its trucking delivery cost. Minimizing the delivery cost for the supply network of a supermarket chain is important to ensure its business success.Keywords: coordinate-based optimal routing, Hamiltonian Circuit, heuristic algorithm, traveling salesman problem, vehicle routing problem
Procedia PDF Downloads 1473832 Comparative Methods for Speech Enhancement and the Effects on Text-Independent Speaker Identification Performance
Authors: R. Ajgou, S. Sbaa, S. Ghendir, A. Chemsa, A. Taleb-Ahmed
Abstract:
The speech enhancement algorithm is to improve speech quality. In this paper, we review some speech enhancement methods and we evaluated their performance based on Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862). All method was evaluated in presence of different kind of noise using TIMIT database and NOIZEUS noisy speech corpus.. The noise was taken from the AURORA database and includes suburban train noise, babble, car, exhibition hall, restaurant, street, airport and train station noise. Simulation results showed improved performance of speech enhancement for Tracking of non-stationary noise approach in comparison with various methods in terms of PESQ measure. Moreover, we have evaluated the effects of the speech enhancement technique on Speaker Identification system based on autoregressive (AR) model and Mel-frequency Cepstral coefficients (MFCC).Keywords: speech enhancement, pesq, speaker recognition, MFCC
Procedia PDF Downloads 4243831 Investigating Visual Statistical Learning during Aging Using the Eye-Tracking Method
Authors: Zahra Kazemi Saleh, Bénédicte Poulin-Charronnat, Annie Vinter
Abstract:
This study examines the effects of aging on visual statistical learning, using eye-tracking techniques to investigate this cognitive phenomenon. Visual statistical learning is a fundamental brain function that enables the automatic and implicit recognition, processing, and internalization of environmental patterns over time. Some previous research has suggested the robustness of this learning mechanism throughout the aging process, underscoring its importance in the context of education and rehabilitation for the elderly. The study included three distinct groups of participants, including 21 young adults (Mage: 19.73), 20 young-old adults (Mage: 67.22), and 17 old-old adults (Mage: 79.34). Participants were exposed to a series of 12 arbitrary black shapes organized into 6 pairs, each with different spatial configurations and orientations (horizontal, vertical, and oblique). These pairs were not explicitly revealed to the participants, who were instructed to passively observe 144 grids presented sequentially on the screen for a total duration of 7 min. In the subsequent test phase, participants performed a two-alternative forced-choice task in which they had to identify the most familiar pair from 48 trials, each consisting of a base pair and a non-base pair. Behavioral analysis using t-tests revealed notable findings. The mean score for the first group was significantly above chance, indicating the presence of visual statistical learning. Similarly, the second group also performed significantly above chance, confirming the persistence of visual statistical learning in young-old adults. Conversely, the third group, consisting of old-old adults, showed a mean score that was not significantly above chance. This lack of statistical learning in the old-old adult group suggests a decline in this cognitive ability with age. Preliminary eye-tracking results showed a decrease in the number and duration of fixations during the exposure phase for all groups. The main difference was that older participants focused more often on empty cases than younger participants, likely due to a decline in the ability to ignore irrelevant information, resulting in a decrease in statistical learning performance.Keywords: aging, eye tracking, implicit learning, visual statistical learning
Procedia PDF Downloads 773830 Modeling and Tracking of Deformable Structures in Medical Images
Authors: Said Ettaieb, Kamel Hamrouni, Su Ruan
Abstract:
This paper presents a new method based both on Active Shape Model and a priori knowledge about the spatio-temporal shape variation for tracking deformable structures in medical imaging. The main idea is to exploit the a priori knowledge of shape that exists in ASM and introduce new knowledge about the shape variation over time. The aim is to define a new more stable method, allowing the reliable detection of structures whose shape changes considerably in time. This method can also be used for the three-dimensional segmentation by replacing the temporal component by the third spatial axis (z). The proposed method is applied for the functional and morphological study of the heart pump. The functional aspect was studied through temporal sequences of scintigraphic images and morphology was studied through MRI volumes. The obtained results are encouraging and show the performance of the proposed method.Keywords: active shape model, a priori knowledge, spatiotemporal shape variation, deformable structures, medical images
Procedia PDF Downloads 3423829 A Weighted K-Medoids Clustering Algorithm for Effective Stability in Vehicular Ad Hoc Networks
Authors: Rejab Hajlaoui, Tarek Moulahi, Hervé Guyennet
Abstract:
In a highway scenario, the vehicle speed can exceed 120 kmph. Therefore, any vehicle can enter or leave the network within a very short time. This mobility adversely affects the network connectivity and decreases the life time of all established links. To ensure an effective stability in vehicular ad hoc networks with minimum broadcasting storm, we have developed a weighted algorithm based on the k-medoids clustering algorithm (WKCA). Indeed, the number of clusters and the initial cluster heads will not be selected randomly as usual, but considering the available transmission range and the environment size. Then, to ensure optimal assignment of nodes to clusters in both k-medoids phases, the combined weight of any node will be computed according to additional metrics including direction, relative speed and proximity. Empirical results prove that in addition to the convergence speed that characterizes the k-medoids algorithm, our proposed model performs well both AODV-Clustering and OLSR-Clustering protocols under different densities and velocities in term of end-to-end delay, packet delivery ratio, and throughput.Keywords: communication, clustering algorithm, k-medoids, sensor, vehicular ad hoc network
Procedia PDF Downloads 2383828 Sweepline Algorithm for Voronoi Diagram of Polygonal Sites
Authors: Dmitry A. Koptelov, Leonid M. Mestetskiy
Abstract:
Voronoi Diagram (VD) of finite set of disjoint simple polygons, called sites, is a partition of plane into loci (for each site at the locus) – regions, consisting of points that are closer to a given site than to all other. Set of polygons is a universal model for many applications in engineering, geoinformatics, design, computer vision, and graphics. VD of polygons construction usually done with a reduction to task of constructing VD of segments, for which there are effective O(n log n) algorithms for n segments. Preprocessing – constructing segments from polygons’ sides, and postprocessing – polygon’s loci construction by merging the loci of the sides of each polygon are also included in reduction. This approach doesn’t take into account two specific properties of the resulting segment sites. Firstly, all this segments are connected in pairs in the vertices of the polygons. Secondly, on the one side of each segment lies the interior of the polygon. The polygon is obviously included in its locus. Using this properties in the algorithm for VD construction is a resource to reduce computations. The article proposes an algorithm for the direct construction of VD of polygonal sites. Algorithm is based on sweepline paradigm, allowing to effectively take into account these properties. The solution is performed based on reduction. Preprocessing is the constructing of set of sites from vertices and edges of polygons. Each site has an orientation such that the interior of the polygon lies to the left of it. Proposed algorithm constructs VD for set of oriented sites with sweepline paradigm. Postprocessing is a selecting of edges of this VD formed by the centers of empty circles touching different polygons. Improving the efficiency of the proposed sweepline algorithm in comparison with the general Fortune algorithm is achieved due to the following fundamental solutions: 1. Algorithm constructs only such VD edges, which are on the outside of polygons. Concept of oriented sites allowed to avoid construction of VD edges located inside the polygons. 2. The list of events in sweepline algorithm has a special property: the majority of events are connected with “medium” polygon vertices, where one incident polygon side lies behind the sweepline and the other in front of it. The proposed algorithm processes such events in constant time and not in logarithmic time, as in the general Fortune algorithm. The proposed algorithm is fully implemented and tested on a large number of examples. The high reliability and efficiency of the algorithm is also confirmed by computational experiments with complex sets of several thousand polygons. It should be noted that, despite the considerable time that has passed since the publication of Fortune's algorithm in 1986, a full-scale implementation of this algorithm for an arbitrary set of segment sites has not been made. The proposed algorithm fills this gap for an important special case - a set of sites formed by polygons.Keywords: voronoi diagram, sweepline, polygon sites, fortunes' algorithm, segment sites
Procedia PDF Downloads 1773827 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.Keywords: the agricultural robot, autonomous control, path-tracking control, tracked mobile robot
Procedia PDF Downloads 1723826 Real Time Video Based Smoke Detection Using Double Optical Flow Estimation
Authors: Anton Stadler, Thorsten Ike
Abstract:
In this paper, we present a video based smoke detection algorithm based on TVL1 optical flow estimation. The main part of the algorithm is an accumulating system for motion angles and upward motion speed of the flow field. We optimized the usage of TVL1 flow estimation for the detection of smoke with very low smoke density. Therefore, we use adapted flow parameters and estimate the flow field on difference images. We show in theory and in evaluation that this improves the performance of smoke detection significantly. We evaluate the smoke algorithm using videos with different smoke densities and different backgrounds. We show that smoke detection is very reliable in varying scenarios. Further we verify that our algorithm is very robust towards crowded scenes disturbance videos.Keywords: low density, optical flow, upward smoke motion, video based smoke detection
Procedia PDF Downloads 355