Search results for: teacher learning
2866 An Evaluation of the Artificial Neural Network and Adaptive Neuro Fuzzy Inference System Predictive Models for the Remediation of Crude Oil-Contaminated Soil Using Vermicompost
Authors: Precious Ehiomogue, Ifechukwude Israel Ahuchaogu, Isiguzo Edwin Ahaneku
Abstract:
Vermicompost is the product of the decomposition process using various species of worms, to create a mixture of decomposing vegetable or food waste, bedding materials, and vemicast. This process is called vermicomposting, while the rearing of worms for this purpose is called vermiculture. Several works have verified the adsorption of toxic metals using vermicompost but the application is still scarce for the retention of organic compounds. This research brings to knowledge the effectiveness of earthworm waste (vermicompost) for the remediation of crude oil contaminated soils. The remediation methods adopted in this study were two soil washing methods namely, batch and column process which represent laboratory and in-situ remediation. Characterization of the vermicompost and crude oil contaminated soil were performed before and after the soil washing using Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray fluorescence (XRF), X-ray diffraction (XRD) and Atomic adsorption spectrometry (AAS). The optimization of washing parameters, using response surface methodology (RSM) based on Box-Behnken Design was performed on the response from the laboratory experimental results. This study also investigated the application of machine learning models [Artificial neural network (ANN), Adaptive neuro fuzzy inference system (ANFIS). ANN and ANFIS were evaluated using the coefficient of determination (R²) and mean square error (MSE)]. Removal efficiency obtained from the Box-Behnken design experiment ranged from 29% to 98.9% for batch process remediation. Optimization of the experimental factors carried out using numerical optimization techniques by applying desirability function method of the response surface methodology (RSM) produce the highest removal efficiency of 98.9% at absorbent dosage of 34.53 grams, adsorbate concentration of 69.11 (g/ml), contact time of 25.96 (min), and pH value of 7.71, respectively. Removal efficiency obtained from the multilevel general factorial design experiment ranged from 56% to 92% for column process remediation. The coefficient of determination (R²) for ANN was (0.9974) and (0.9852) for batch and column process, respectively, showing the agreement between experimental and predicted results. For batch and column precess, respectively, the coefficient of determination (R²) for RSM was (0.9712) and (0.9614), which also demonstrates agreement between experimental and projected findings. For the batch and column processes, the ANFIS coefficient of determination was (0.7115) and (0.9978), respectively. It can be concluded that machine learning models can predict the removal of crude oil from polluted soil using vermicompost. Therefore, it is recommended to use machines learning models to predict the removal of crude oil from contaminated soil using vermicompost.Keywords: ANFIS, ANN, crude-oil, contaminated soil, remediation and vermicompost
Procedia PDF Downloads 1112865 Implementation of Research Papers and Industry Related Experiments by Undergraduate Students in the Field of Automation
Authors: Veena N. Hegde, S. R. Desai
Abstract:
Motivating a heterogeneous group of students towards engagement in research related activities is a challenging task in engineering education. An effort is being made at the Department of Electronics and Instrumentation Engineering, where two courses are taken up on a pilot basis to kindle research interests in students at the undergraduate level. The courses, namely algorithm and system design (ASD) and automation in process control (APC), are selected for experimentation purposes. The task is being accomplished by providing scope for implementation of research papers and proposing solutions for the current industrial problems by the student teams. The course instructors have proposed an alternative assessment tool to evaluate the undergraduate students that involve activities beyond the curriculum. The method was tested for the aforementioned two courses in a particular academic year, and as per the observations, there is a considerable improvement in the number of student engagement towards research in the subsequent years of their undergraduate course. The student groups from the third-year engineering were made to read, implement the research papers, and they were also instructed to develop simulation modules for certain processes aiming towards automation. The target audience being students, were common for both the courses and the students' strength was 30. Around 50% of successful students were given the continued tasks in the subsequent two semesters, and out of 15 students who continued from sixth semesters were able to follow the research methodology well in the seventh and eighth semesters. Further, around 30% of the students out of 15 ended up carrying out project work with a research component involved and were successful in producing four conference papers. The methodology adopted is justified using a sample data set, and the outcomes are highlighted. The quantitative and qualitative results obtained through this study prove that such practices will enhance learning experiences substantially at the undergraduate level.Keywords: industrial problems, learning experiences, research related activities, student engagement
Procedia PDF Downloads 1652864 Social and Educational AI for Diversity: Research on Democratic Values to Develop Artificial Intelligence Tools to Guarantee Access for all to Educational Tools and Public Services
Authors: Roberto Feltrero, Sara Osuna-Acedo
Abstract:
Responsible Research and Innovation have to accomplish one fundamental aim: everybody has to participate in the benefits of innovation, but also innovation has to be democratic; that is to say, everybody may have the possibility to participate in the decisions in the innovation process. Particularly, a democratic and inclusive model of social participation and innovation includes persons with disabilities and people at risk of discrimination. Innovations on Artificial Intelligence for social development have to accomplish the same dual goal: improving equality for accessing fields of public interest like education, training and public services, as well as improving civic and democratic participation in the process of developing such innovations for all. This research aims to develop innovations, policies and policy recommendations to apply and disseminate such artificial intelligence and social model for making educational and administrative processes more accessible. First, designing a citizen participation process to engage citizens in the designing and use of artificial intelligence tools for public services. This will result in improving trust in democratic institutions contributing to enhancing the transparency, effectiveness, accountability and legitimacy of public policy-making and allowing people to participate in the development of ethical standards for the use of such technologies. Second, improving educational tools for lifelong learning with AI models to improve accountability and educational data management. Dissemination, education and social participation will be integrated, measured and evaluated in innovative educational processes to make accessible all the educational technologies and content developed on AI about responsible and social innovation. A particular case will be presented regarding access for all to educational tools and public services. This accessibility requires cognitive adaptability because, many times, legal or administrative language is very complex. Not only for people with cognitive disabilities but also for old people or citizens at risk of educational or social discrimination. Artificial Intelligence natural language processing technologies can provide tools to translate legal, administrative, or educational texts to a more simple language that can be accessible to everybody. Despite technological advances in language processing and machine learning, this becomes a huge project if we really want to respect ethical and legal consequences because that kinds of consequences can only be achieved with civil and democratic engagement in two realms: 1) to democratically select texts that need and can be translated and 2) to involved citizens, experts and nonexperts, to produce and validate real examples of legal texts with cognitive adaptations to feed artificial intelligence algorithms for learning how to translate those texts to a more simple and accessible language, adapted to any kind of population.Keywords: responsible research and innovation, AI social innovations, cognitive accessibility, public participation
Procedia PDF Downloads 932863 Reflective Portfolio to Bridge the Gap in Clinical Training
Authors: Keenoo Bibi Sumera, Alsheikh Mona, Mubarak Jan Beebee Zeba Mahetaab
Abstract:
Background: Due to the busy schedule of the practicing clinicians at the hospitals, students may not always be attended to, which is to their detriment. The clinicians at the hospitals are also not always acquainted with teaching and/or supervising students on their placements. Additionally, there is a high student-patient ratio. Since they are the prospective clinical doctors under training, they need to reach the competence levels in clinical decision-making skills to be able to serve the healthcare system of the country and to be safe doctors. Aims and Objectives: A reflective portfolio was used to provide a means for students to learn by reflecting on their experiences and obtaining continuous feedback. This practice is an attempt to compensate for the scarcity of lack of resources, that is, clinical placement supervisors and patients. It is also anticipated that it will provide learners with a continuous monitoring and learning gap analysis tool for their clinical skills. Methodology: A hardcopy reflective portfolio was designed and validated. The portfolio incorporated a mini clinical evaluation exercise (mini-CEX), direct observation of procedural skills and reflection sections. Workshops were organized for the stakeholders, that is the management, faculty and students, separately. The rationale of reflection was emphasized. Students were given samples of reflective writing. The portfolio was then implemented amongst the undergraduate medical students of years four, five and six during clinical clerkship. After 16 weeks of implementation of the portfolio, a survey questionnaire was introduced to explore how undergraduate students perceive the educational value of the reflective portfolio and its impact on their deep information processing. Results: The majority of the respondents are in MD Year 5. Out of 52 respondents, 57.7% were doing the internal medicine clinical placement rotation, and 42.3% were in Otorhinolaryngology clinical placement rotation. The respondents believe that the implementation of a reflective portfolio helped them identify their weaknesses, gain professional development in terms of helping them to identify areas where the knowledge is good, increase the learning value if it is used as a formative assessment, try to relate to different courses and in improving their professional skills. However, it is not necessary that the portfolio will improve the self-esteem of respondents or help in developing their critical thinking, The portfolio takes time to complete, and the supervisors are not useful. They had to chase supervisors for feedback. 53.8% of the respondents followed the Gibbs reflective model to write the reflection, whilst the others did not follow any guidelines to write the reflection 48.1% said that the feedback was helpful, 17.3% preferred the use of written feedback, whilst 11.5% preferred oral feedback. Most of them suggested more frequent feedback. 59.6% of respondents found the current portfolio user-friendly, and 28.8% thought it was too bulky. 27.5% have mentioned that for a mobile application. Conclusion: The reflective portfolio, through the reflection of their work and regular feedback from supervisors, has an overall positive impact on the learning process of undergraduate medical students during their clinical clerkship.Keywords: Portfolio, Reflection, Feedback, Clinical Placement, Undergraduate Medical Education
Procedia PDF Downloads 862862 Curriculum Transformation: Multidisciplinary Perspectives on ‘Decolonisation’ and ‘Africanisation’ of the Curriculum in South Africa’s Higher Education
Authors: Andre Bechuke
Abstract:
The years of 2015-2017 witnessed a huge campaign, and in some instances, violent protests in South Africa by students and some groups of academics advocating the decolonisation of the curriculum of universities. These protests have forced through high expectations for universities to teach a curriculum relevant to the country, and the continent as well as enabled South Africa to participate in the globalised world. To realise this purpose, most universities are currently undertaking steps to transform and decolonise their curriculum. However, the transformation process is challenged and delayed by lack of a collective understanding of the concepts ‘decolonisation’ and ‘africanisation’ that should guide its application. Even more challenging is lack of a contextual understanding of these concepts across different university disciplines. Against this background, and underpinned in a qualitative research paradigm, the perspectives of these concepts as applied by different university disciplines were examined in order to understand and establish their implementation in the curriculum transformation agenda. Data were collected by reviewing the teaching and learning plans of 8 faculties of an institution of higher learning in South Africa and analysed through content and textual analysis. The findings revealed varied understanding and use of these concepts in the transformation of the curriculum across faculties. Decolonisation, according to the faculties of Law and Humanities, is perceived as the eradication of the Eurocentric positioning in curriculum content and the constitutive rules and norms that control thinking. This is not done by ignoring other knowledge traditions but does call for an affirmation and validation of African views of the world and systems of thought, mixing it with current knowledge. For the Faculty of Natural and Agricultural Sciences, decolonisation is seen as making the content of the curriculum relevant to students, fulfilling the needs of industry and equipping students for job opportunities. This means the use of teaching strategies and methods that are inclusive of students from diverse cultures, and to structure the learning experience in ways that are not alien to the cultures of the students. For the Health Sciences, decolonisation of the curriculum refers to the need for a shift in Western thinking towards being more sensitive to all cultural beliefs and thoughts. Collectively, decolonisation of education thus entails that a nation must become independent with regard to the acquisition of knowledge, skills, values, beliefs, and habits. Based on the findings, for universities to successfully transform their curriculum and integrate the concepts of decolonisation and Africanisation, there is a need to contextually determine the meaning of the concepts generally and narrow them down to what they should mean to specific disciplines. Universities should refrain from considering an umbrella approach to these concepts. Decolonisation should be seen as a means and not an end. A decolonised curriculum should equally be developed based on the finest knowledge skills, values, beliefs and habits around the world and not limited to one country or continent.Keywords: Africanisation, curriculum, transformation, decolonisation, multidisciplinary perspectives, South Africa’s higher education
Procedia PDF Downloads 1642861 A Framework for Teaching the Intracranial Pressure Measurement through an Experimental Model
Authors: Christina Klippel, Lucia Pezzi, Silvio Neto, Rafael Bertani, Priscila Mendes, Flavio Machado, Aline Szeliga, Maria Cosendey, Adilson Mariz, Raquel Santos, Lys Bendett, Pedro Velasco, Thalita Rolleigh, Bruna Bellote, Daria Coelho, Bruna Martins, Julia Almeida, Juliana Cerqueira
Abstract:
This project presents a framework for teaching intracranial pressure monitoring (ICP) concepts using a low-cost experimental model in a neurointensive care education program. Data concerning ICP monitoring contribute to the patient's clinical assessment and may dictate the course of action of a health team (nursing, medical staff) and influence decisions to determine the appropriate intervention. This study aims to present a safe method for teaching ICP monitoring to medical students in a Simulation Center. Methodology: Medical school teachers, along with students from the 4th year, built an experimental model for teaching ICP measurement. The model consists of a mannequin's head with a plastic bag inside simulating the cerebral ventricle and an inserted ventricular catheter connected to the ICP monitoring system. The bag simulating the ventricle can also be changed for others containing bloody or infected simulated cerebrospinal fluid. On the mannequin's ear, there is a blue point indicating the right place to set the "zero point" for accurate pressure reading. The educational program includes four steps: 1st - Students receive a script on ICP measurement for reading before training; 2nd - Students watch a video about the subject created in the Simulation Center demonstrating each step of the ICP monitoring and the proper care, such as: correct positioning of the patient, anatomical structures to establish the zero point for ICP measurement and a secure range of ICP; 3rd - Students train the procedure in the model. Teachers help students during training; 4th - Student assessment based on a checklist form. Feedback and correction of wrong actions. Results: Students expressed interest in learning ICP monitoring. Tests concerning the hit rate are still being performed. ICP's final results and video will be shown at the event. Conclusion: The study of intracranial pressure measurement based on an experimental model consists of an effective and controlled method of learning and research, more appropriate for teaching neurointensive care practices. Assessment based on a checklist form helps teachers keep track of student learning progress. This project offers medical students a safe method to develop intensive neurological monitoring skills for clinical assessment of patients with neurological disorders.Keywords: neurology, intracranial pressure, medical education, simulation
Procedia PDF Downloads 1722860 Rights, Differences and Inclusion: The Role of Transdisciplinary Approach in the Education for Diversity
Authors: Ana Campina, Maria Manuela Magalhaes, Eusebio André Machado, Cristina Costa-Lobo
Abstract:
Inclusive school advocates respect for differences, for equal opportunities and for a quality education for all, including for students with special educational needs. In the pursuit of educational equity, guaranteeing equality in access and results, it becomes the responsibility of the school to recognize students' needs, adapting to the various styles and rhythms of learning, ensuring the adequacy of curricula, strategies and resources, materials and humans. This paper presents a set of theoretical reflections in the disciplinary interface between legal and education sciences, school administration and management, with the aim of understand the real inclusion characteristics in a balance with the inclusion policies and the need(s) of an education for Human Rights, especially for diversity. Considering the actual social complexity but the important education instruments and strategies, mostly patented in the policies, this paper aims expose the existing contexts opposed to the laws, policies and inclusion educational needs. More than a single study, this research aims to develop a map of the reality and the guidelines to implement the action. The results point to the usefulness and pertinence of a school in which educational managers, teachers, parents, and students, are involved in the creation, implementation and monitoring of flexible curricula and adapted to the educational needs of students, promoting a collaborative work among teachers. We are then faced with a scenario that points to the need to reflect on the legislation and curricular management of inclusive classes and to operationalize the processes of elaboration of curricular adaptations and differentiation in the classroom. The transdisciplinary is a pedagogic and social education perfect approach using the Human Rights binomio – teaching and learning – supported by the inclusion laws according to the realistic needs for an effective successful society construction.Keywords: rights, transdisciplinary, inclusion policies, education for diversity
Procedia PDF Downloads 3892859 IoT Continuous Monitoring Biochemical Oxygen Demand Wastewater Effluent Quality: Machine Learning Algorithms
Authors: Sergio Celaschi, Henrique Canavarro de Alencar, Claaudecir Biazoli
Abstract:
Effluent quality is of the highest priority for compliance with the permit limits of environmental protection agencies and ensures the protection of their local water system. Of the pollutants monitored, the biochemical oxygen demand (BOD) posed one of the greatest challenges. This work presents a solution for wastewater treatment plants - WWTP’s ability to react to different situations and meet treatment goals. Delayed BOD5 results from the lab take 7 to 8 analysis days, hindered the WWTP’s ability to react to different situations and meet treatment goals. Reducing BOD turnaround time from days to hours is our quest. Such a solution is based on a system of two BOD bioreactors associated with Digital Twin (DT) and Machine Learning (ML) methodologies via an Internet of Things (IoT) platform to monitor and control a WWTP to support decision making. DT is a virtual and dynamic replica of a production process. DT requires the ability to collect and store real-time sensor data related to the operating environment. Furthermore, it integrates and organizes the data on a digital platform and applies analytical models allowing a deeper understanding of the real process to catch sooner anomalies. In our system of continuous time monitoring of the BOD suppressed by the effluent treatment process, the DT algorithm for analyzing the data uses ML on a chemical kinetic parameterized model. The continuous BOD monitoring system, capable of providing results in a fraction of the time required by BOD5 analysis, is composed of two thermally isolated batch bioreactors. Each bioreactor contains input/output access to wastewater sample (influent and effluent), hydraulic conduction tubes, pumps, and valves for batch sample and dilution water, air supply for dissolved oxygen (DO) saturation, cooler/heater for sample thermal stability, optical ODO sensor based on fluorescence quenching, pH, ORP, temperature, and atmospheric pressure sensors, local PLC/CPU for TCP/IP data transmission interface. The dynamic BOD system monitoring range covers 2 mg/L < BOD < 2,000 mg/L. In addition to the BOD monitoring system, there are many other operational WWTP sensors. The CPU data is transmitted/received to/from the digital platform, which in turn performs analyses at periodic intervals, aiming to feed the learning process. BOD bulletins and their credibility intervals are made available in 12-hour intervals to web users. The chemical kinetics ML algorithm is composed of a coupled system of four first-order ordinary differential equations for the molar masses of DO, organic material present in the sample, biomass, and products (CO₂ and H₂O) of the reaction. This system is solved numerically linked to its initial conditions: DO (saturated) and initial products of the kinetic oxidation process; CO₂ = H₂0 = 0. The initial values for organic matter and biomass are estimated by the method of minimization of the mean square deviations. A real case of continuous monitoring of BOD wastewater effluent quality is being conducted by deploying an IoT application on a large wastewater purification system located in S. Paulo, Brazil.Keywords: effluent treatment, biochemical oxygen demand, continuous monitoring, IoT, machine learning
Procedia PDF Downloads 732858 Webster´s Spelling Book: A Product of Language-in-Education Policies in the United States in the Early 1800s
Authors: Virginia Andrea Garrido Meirelles
Abstract:
Noah Webster was a lexicographer and a language reformer and is considered the ‘Father of American Scholarship and Education’ because of the exceptional contributions he made as a teacher and grammarian. The goal of this study is to show that the success of his plan can be explained by the fact that it matched the language-in-education policies of his time. To accomplish that goal the present study analyzes the Massachusetts School Laws of 1642, 1647 and 1648 and compares them to the preface of the first edition of The Grammatical Institute of the English Language. The referred laws were three legislative acts enacted in the Massachusetts Colony and replicated almost identically in the other New England colonies. The purpose of those laws was to eradicate pauperism and poverty, on the one side, and to disseminate the idea of right citizenship, on the other. However, until the Declaration of Independence in 1776, all the primers used in the colony were printed in Britain. In 1783, Noah Webster published the first part of his Grammatical Institute of the English Language. In this book, the author states that his goal is to promote the republican principles that guide the civil rights of that time. The material included many texts taken from the Bible to inspire aversion to inadequate behavior and preference for service and good manners. In addition, its goal was to present ‘a new plan of reducing the pronunciation of our language to an easy standard,’ and in that way, create a unified language to abolish ignorance and language corruption. The comparison between the laws and Webster’s Spelling Book shows that the book is the result of the historical and political situation when it was conceived and it satisfied the requirements of the language-in-education policies of the time.Keywords: American English, language policy, the Massachusetts school laws, webster's spelling book
Procedia PDF Downloads 2102857 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3162856 A Perspective on Education to Support Industry 4.0: An Exploratory Study in the UK
Authors: Sin Ying Tan, Mohammed Alloghani, A. J. Aljaaf, Abir Hussain, Jamila Mustafina
Abstract:
Industry 4.0 is a term frequently used to describe the new upcoming industry era. Higher education institutions aim to prepare students to fulfil the future industry needs. Advancement of digital technology has paved the way for the evolution of education and technology. Evolution of education has proven its conservative nature and a high level of resistance to changes and transformation. The gap between the industry's needs and competencies offered generally by education is revealing the increasing need to find new educational models to face the future. The aim of this study was to identify the main issues faced by both universities and students in preparing the future workforce. From December 2018 to April 2019, a regional qualitative study was undertaken in Liverpool, United Kingdom (UK). Interviews were conducted with employers, faculty members and undergraduate students, and the results were analyzed using the open coding method. Four main issues had been identified, which are the characteristics of the future workforce, student's readiness to work, expectations on different roles played at the tertiary education level and awareness of the latest trends. The finding of this paper concluded that the employers and academic practitioners agree that their expectations on each other’s roles are different and in order to face the rapidly changing technology era, students should not only have the right skills, but they should also have the right attitude in learning. Therefore, the authors address this issue by proposing a learning framework known as 'ASK SUMA' framework as a guideline to support the students, academicians and employers in meeting the needs of 'Industry 4.0'. Furthermore, this technology era requires the employers, academic practitioners and students to work together in order to face the upcoming challenges and fast-changing technologies. It is also suggested that an interactive system should be provided as a platform to support the three different parties to play their roles.Keywords: attitude, expectations, industry needs, knowledge, skills
Procedia PDF Downloads 1252855 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1302854 Harnessing the Benefits and Mitigating the Challenges of Neurosensitivity for Learners: A Mixed Methods Study
Authors: Kaaryn Cater
Abstract:
People vary in how they perceive, process, and react to internal, external, social, and emotional environmental factors; some are more sensitive than others. Compassionate people have a highly reactive nervous system and are more impacted by positive and negative environmental conditions (Differential Susceptibility). Further, some sensitive individuals are disproportionately able to benefit from positive and supportive environments without necessarily suffering negative impacts in less supportive environments (Vantage Sensitivity). Environmental sensitivity is underpinned by physiological, genetic, and personality/temperamental factors, and the phenotypic expression of high sensitivity is Sensory Processing Sensitivity. The hallmarks of Sensory Processing Sensitivity are deep cognitive processing, emotional reactivity, high levels of empathy, noticing environmental subtleties, a tendency to observe new and novel situations, and a propensity to become overwhelmed when over-stimulated. Several educational advantages associated with high sensitivity include creativity, enhanced memory, divergent thinking, giftedness, and metacognitive monitoring. High sensitivity can also lead to some educational challenges, particularly managing multiple conflicting demands and negotiating low sensory thresholds. A mixed methods study was undertaken. In the first quantitative study, participants completed the Perceived Success in Study Survey (PSISS) and the Highly Sensitive Person Scale (HSPS-12). Inclusion criteria were current or previous postsecondary education experience. The survey was presented on social media, and snowball recruitment was employed (n=365). The Excel spreadsheets were uploaded to the statistical package for the social sciences (SPSS)26, and descriptive statistics found normal distribution. T-tests and analysis of variance (ANOVA) calculations found no difference in the responses of demographic groups, and Principal Components Analysis and the posthoc Tukey calculations identified positive associations between high sensitivity and three of the five PSISS factors. Further ANOVA calculations found positive associations between the PSISS and two of the three sensitivity subscales. This study included a response field to register interest in further research. Respondents who scored in the 70th percentile on the HSPS-12 were invited to participate in a semi-structured interview. Thirteen interviews were conducted remotely (12 female). Reflexive inductive thematic analysis was employed to analyse data, and a descriptive approach was employed to present data reflective of participant experience. The results of this study found that compassionate students prioritize work-life balance; employ a range of practical metacognitive study and self-care strategies; value independent learning; connect with learning that is meaningful; and are bothered by aspects of the physical learning environment, including lighting, noise, and indoor environmental pollutants. There is a dearth of research investigating sensitivity in the educational context, and these studies highlight the need to promote widespread education sector awareness of environmental sensitivity, and the need to include sensitivity in sector and institutional diversity and inclusion initiatives.Keywords: differential susceptibility, highly sensitive person, learning, neurosensitivity, sensory processing sensitivity, vantage sensitivity
Procedia PDF Downloads 662853 Adult Health Outcomes of Childhood Self-Control and Social Disadvantage in the United Kingdom
Authors: Michael Daly
Abstract:
Background/Aims: The interplay of childhood self-control and early life social background in predicting adult health is currently unclear. We drew on rich data from two large nationally representative cohort studies to test whether individual differences in childhood self-control may: (i) buffer the health impact of social disadvantage, (ii) act as a mediating pathway underlying the emergence of health disparities, or (iii) compensate for the health consequences of socioeconomic disadvantage across the lifespan. Methods: We examined data from over 25,000 participants from the British Cohort Study (BCS) and the National Child Development Study (NCDS). Child self-control was teacher-rated at age 10 in the BCS and ages 7/11 in the NCDS. The Early life social disadvantage was indexed using measures of parental education, occupational prestige, and housing characteristics (i.e. housing tenure, home crowding). A range of health outcomes was examined: the presence of chronic conditions, whether illnesses were limiting, physiological dysregulation (gauged by clinical indicators), mortality, and perceptions of pain, psychological distress, and general health. Results: Childhood self-control and social disadvantage predicted each measure of adult health, with similar strength on average. An examination of mediating factors showed that adult smoking, obesity, and socioeconomic status explained the majority of these linkages. There was no systematic evidence that self-control moderated the health consequences of early social disadvantage and limited evidence that self-control acted as a key pathway from disadvantage to later health. Conclusions: Childhood self-control predicts adult health and may compensate for early life social disadvantage by shaping adult health behaviour and social status.Keywords: personality and health, social disadvantage, health psychology, life-course development
Procedia PDF Downloads 2202852 Bringing Feminist Critical Pedagogy to the ESP Higher Education Classes: Feasibility and Challenges
Authors: Samira Essabari
Abstract:
What, unfortunately, governs the Moroccan educational philosophy and policy today is a concerning neoliberal discourse with its obsession with market logics and individualism. Critical education has been advocated to resist the neoliberal hegemony since it holds the promise to reclaim the social function of education. Significantly, the mounting forms of sexism and discrimination against women combined with hegemonic educational practices are jeopardizing the social function of teaching and learning, hence the relevance of feminist critical pedagogy. A substantial body of research worldwide has explored the ways in which feminist pedagogy can develop feminist consciousness and examine power relations in different educational contexts. In Morocco, however, the feasibility of feminist pedagogy has not been researched despite the overwhelming interest in gender issues in different educational settings. The research on critical pedagogies in Morocco remains very promising. Yet, most studies were conducted in contexts which are already engaged with issues of theory, discourse, and discourse analysis. The field of ESP ( English for Specific Purposes) is pragmatic by nature, and priority in research has been given to questions that adhere to the mainstream concerns of need analysis and study skills and ignore issues of power, gender power relations, and intersectional forms of oppression. To address these gaps in the existing literature, this participatory action research seeks to investigate the feasibility of Feminist pedagogy in ESP higher education and how it can foster feminist critical consciousness among ESP students without compromising their language learning needs. The findings of this research will contribute to research on critical applied linguistics and critical ESP more specifically and add to the practice of critical pedagogies in Moroccan higher education by providing in-depth insights into the enablers and barriers to the implementation of feminist critical pedagogy, which is still feeling its way into the educational scene in Morocco.Keywords: feminist pedagogy, critical pedagogy, power relations, gender, ESP, intersectionality
Procedia PDF Downloads 1302851 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series
Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold
Abstract:
To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network
Procedia PDF Downloads 1412850 Overcoming Reading Barriers in an Inclusive Mathematics Classroom with Linguistic and Visual Support
Authors: A. Noll, J. Roth, M. Scholz
Abstract:
The importance of written language in a democratic society is non-controversial. Students with physical, learning, cognitive or developmental disabilities often have difficulties in understanding information which is presented in written language only. These students suffer from obstacles in diverse domains. In order to reduce such barriers in educational as well as in out-of-school areas, access to written information must be facilitated. Readability can be enhanced by linguistic simplifications like the application of easy-to-read language. Easy-to-read language shall help people with disabilities to participate socially and politically in society. The authors state, for example, that only short simple words should be used, whereas the occurrence of complex sentences should be avoided. So far, these guidelines were not empirically proved. Another way to reduce reading barriers is the use of visual support, for example, symbols. A symbol conveys, in contrast to a photo, a single idea or concept. Little empirical data about the use of symbols to foster the readability of texts exist. Nevertheless, a positive influence can be assumed, e.g., because of the multimedia principle. It indicates that people learn better from words and pictures than from words alone. A qualitative Interview and Eye-Tracking-Study, which was conducted by the authors, gives cause for the assumption that besides the illustration of single words, the visualization of complete sentences may be helpful. Thus, the effect of photos, which illustrate the content of complete sentences, is also investigated in this study. This leads us to the main research question which was focused on: Does the use of easy-to-read language and/or enriching text with symbols or photos facilitate pupils’ comprehension of learning tasks? The sample consisted of students with learning difficulties (N = 144) and students without SEN (N = 159). The students worked on the tasks, which dealt with introducing fractions, individually. While experimental group 1 received a linguistically simplified version of the tasks, experimental group 2 worked with a variation which was linguistically simplified and furthermore, the keywords of the tasks were visualized by symbols. Experimental group 3 worked on exercises which were simplified by easy-to-read-language and the content of the whole sentences was illustrated by photos. Experimental group 4 received a not simplified version. The participants’ reading ability and their IQ was elevated beforehand to build four comparable groups. There is a significant effect of the different setting on the students’ results F(3,140) = 2,932; p = 0,036*. A post-hoc-analyses with multiple comparisons shows that this significance results from the difference between experimental group 3 and 4. The students in the group easy-to-read language plus photos worked on the exercises significantly more successfully than the students who worked in the group with no simplifications. Further results which refer, among others, to the influence of the students reading ability will be presented at the ICERI 2018.Keywords: inclusive education, mathematics education, easy-to-read language, photos, symbols, special educational needs
Procedia PDF Downloads 1552849 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5152848 Teachers' Knowledge, Perceptions, and Attitudes towards Renewable Energy Policy in Malaysia
Authors: Kazi Enamul Hoque
Abstract:
Initiatives on sustainable development are currently aggressively pursued throughout the world. The Malaysian government has developed key policies and strategies for over 30 years to achieve the nation’s policy objectives which are designed to mitigate the issues of security, energy efficiency and environmental impact to meet the rising energy demand. Malaysia’s current focus is on developing effective policies on renewable energy (RE) in order to reduce dependency on fossil fuel and contribute towards mitigating the effects of climate change. In this light mass awareness should be considered as the highest priority to protect the environment and to escape disaster due to climate change. Schools can be the reliable and effective foundation to prepare students to get familiar with environmental issues such as renewable and non-renewable energy sources. Teachers can play a vital role to create awareness among students about the advantages and disadvantages of using different renewable and nonrenewable energy resources. Thus, this study aims to investigate teachers’ knowledge, perceptions and attitudes towards renewable energy through a survey aiming a sustainable energy future. Five hundred sets of questionnaires were distributed to the school teachers in Malaysia. Total 420 questionnaires were returned of which 410 were complete to analyze. Finding shows that teachers are very familiar with the renewable energy like solar, wind and also geothermal. Most teachers were not sure about the Photovoltaics and biodiesel. Furthermore, teachers are also aware that primary energy in Malaysia is imported fossil fuels. Most teachers heard about the renewable energy in Malaysia and only few claims that they did not hear of such things and the others said that they never heard of it. The outcomes of the study will assist the energy policy makers to use teachers to create mass awareness of energy usages for future planning.Keywords: Malaysia, non-renewable energy, renewable energy, school teacher
Procedia PDF Downloads 4392847 Perceptions and Experiences of Students and Their Instructors on Online versus Face-To-Face Classrooms
Authors: Rahime Filiz Kiremit
Abstract:
This study involves investigating the comparisons of both online and face-to-face classes, along with providing their respective differences. The research project contains information pertaining to the two courses, provided with testimony from students and instructors alike. There were a total of 37 participants involved within the study from San Jacinto College; 35 students and the two instructors of their respective courses. The online instructor has a total of four years of teaching experience, while the face-to-face instructor has accrued 11 years of instructional education. The both instructors were interviewed and the samples were collected from three different classes - TECA 1311-702 (Educating Young Children 13 week distance learning), TECA 1311-705 (Educating Young Children 13 week distance learning) and TECA 1354 (Child Growth and Development). Among all three classes, 13 of the 29 students enrolled in either of the online courses considered participation within the survey, while 22 of the 28 students enrolled in the face-to-face course elected to do the same thing. With regards to the students’ prior class enrollment, 25 students had taken online classes previously, 9 students had taken early-childhood courses, 4 students had taken general classes, 11 students had taken both types of classes, 10 students had not yet taken online classes, and only 1 of them had taken a hybrid course. 10 of the participants professed that they like face-to-face classes, because they find that they can interact with their classmates and teachers. They find that online classes have more work to do, because they need to read the chapters and instructions on their own time. They said that during the face-to-face instruction, they could take notes and converse concerns with professors and fellow peers. They can have hands-on activities during face-to-face classes, and, as a result, improve their abilities to retain what they have learned within that particular time. Some of the students even mentioned that they are supposed to discipline themselves, because the online classes require more work. According to the remaining six students, online classes are easier than face-to-face classes. Most of them believe that the easiness of a course is dependent on the types of classes, the instructors, and the respective subjects of which they teach. With considerations of all 35 students, almost 63% of the students agreed that they interact more with their classmates in face-to-face classes.Keywords: distance education, face-to-face education, online classroom, students' perceptions
Procedia PDF Downloads 2802846 Cybersecurity Engineering BS Degree Curricula Design Framework and Assessment
Authors: Atma Sahu
Abstract:
After 9/11, there will only be cyberwars. The cyberwars increase in intensity the country's cybersecurity workforce's hiring and retention issues. Currently, many organizations have unfilled cybersecurity positions, and to a lesser degree, their cybersecurity teams are understaffed. Therefore, there is a critical need to develop a new program to help meet the market demand for cybersecurity engineers (CYSE) and personnel. Coppin State University in the United States was responsible for developing a cybersecurity engineering BS degree program. The CYSE curriculum design methodology consisted of three parts. First, the ACM Cross-Cutting Concepts standard's pervasive framework helped curriculum designers and students explore connections among the core courses' knowledge areas and reinforce the security mindset conveyed in them. Second, the core course context was created to assist students in resolving security issues in authentic cyber situations involving cyber security systems in various aspects of industrial work while adhering to the NIST standards framework. The last part of the CYSE curriculum design aspect was the institutional student learning outcomes (SLOs) integrated and aligned in content courses, representing more detailed outcomes and emphasizing what learners can do over merely what they know. The CYSE program's core courses express competencies and learning outcomes using action verbs from Bloom's Revised Taxonomy. This aspect of the CYSE BS degree program's design is based on these three pillars: the ACM, NIST, and SLO standards, which all CYSE curriculum designers should know. This unique CYSE curriculum design methodology will address how students and the CYSE program will be assessed and evaluated. It is also critical that educators, program managers, and students understand the importance of staying current in this fast-paced CYSE field.Keywords: cyber security, cybersecurity engineering, systems engineering, NIST standards, physical systems
Procedia PDF Downloads 962845 Protocol for Consumer Research in Academia for Community Marketing Campaigns
Authors: Agnes J. Otjen, Sarah Keller
Abstract:
A Montana university has used applied consumer research in experiential learning with non-profit clients for over a decade. Through trial and error, a successful protocol has been established from problem statement through formative research to integrated marketing campaign execution. In this paper, we describe the protocol and its applications. Analysis was completed to determine the effectiveness of the campaigns and the results of how pre- and post-consumer research mark societal change because of media.Keywords: consumer, research, marketing, communications
Procedia PDF Downloads 1392844 A Reflection on the Professional Development Journey of Science Educators
Authors: M. Shaheed Hartley
Abstract:
Science and mathematics are regarded as gateway subjects in South Africa as they are the perceived route to careers in science, engineering, technology and mathematics (STEM). One of the biggest challenges that the country faces is the poor achievement of learners in these two learning areas in the external high school exit examination. To compound the problem many national and international benchmark tests paint a bleak picture of the state of science and mathematics in the country. In an attempt to address this challenge, the education department of the Eastern Cape Province invited the Science Learning Centre of the University of the Western Cape to provide training to their science teachers in the form of a structured course conducted on a part-time basis in 2010 and 2011. The course was directed at improving teachers’ content knowledge, pedagogical strategies and practical and experimental skills. A total of 41 of the original 50 science teachers completed the course and received their certificates in 2012. As part of their continuous professional development, 31 science teachers enrolled for BEd Hons in science education in 2013 and 28 of them completed the course in 2014. These students graduated in 2015. Of the 28 BEd Hons students who completed the course 23 registered in 2015 for Masters in Science Education and were joined by an additional 3 students. This paper provides a reflection by science educators on the training, supervision and mentorship provided to them as students of science education. The growth and development of students through their own reflection and understanding as well as through the eyes of the lecturers and supervisors that took part in the training provide the evaluation of the professional development process over the past few years. This study attempts to identify the merits, challenges and limitations of this project and the lessons to be learnt on such projects. It also documents some of the useful performance indicators with a view to developing a framework for good practice for such programmes.Keywords: reflection, science education, professional development, rural schools
Procedia PDF Downloads 1952843 IRIS An Interactive Video Game for Children with Long-Term Illness in Hospitals
Authors: Ganetsou Evanthia, Koutsikos Emmanouil, Austin Anna Maria
Abstract:
Information technology has long served the needs of individuals for learning and entertainment, but much less for children in sickness. The aim of the proposed online video game is to provide immersive learning opportunities as well as essential social and emotional scenarios for hospital-bound children with long-term illness. Online self-paced courses on chosen school subjects, including specialised software and multisensory assessments, aim at enhancing children’s academic achievement and sense of inclusion, while doctor minigames familiarise and educate young patients on their medical conditions. Online ethical dilemmas will offer children opportunities to contemplate on the importance of medical procedures and following assigned medication, often challenging for young patients; they will therefore reflect on their condition, reevaluate their perceptions about hospitalisation, and assume greater personal responsibility for their progress. Children’s emotional and psychosocial needs are addressed by engaging in social conventions, such as interactive, daily, collaborative mini games with other hospitalised peers, like virtual competitive sports games, weekly group psychodrama sessions, and online birthday parties or sleepovers. Social bonding is also fostered by having a virtual pet to interact with and take care of, as well as a virtual nurse to discuss and reflect on the mood of the day, engage in constructive dialogue and perspective taking, and offer reminders. Access to the platform will be available throughout the day depending on the patient’s health status. The program is designed to minimise escapism and feelings of exclusion, and can flexibly be adapted to offer post-treatment and a support online system at home.Keywords: long-term illness, children, hospital, interactive games, cognitive, socioemotional development
Procedia PDF Downloads 752842 Combating Corruption to Enhance Learner Academic Achievement: A Qualitative Study of Zimbabwean Public Secondary Schools
Authors: Onesmus Nyaude
Abstract:
The aim of the study was to investigate participants’ views on how corruption can be combated to enhance learner academic achievement. The study was undertaken on three select public secondary institutions in Zimbabwe. This study also focuses on exploring the various views of educators; parents and the learners on the role played by corruption in perpetuating the seemingly existing learner academic achievement disparities in various educational institutions. The study further interrogates and examines the nexus between the prevalence of corruption in schools and the subsequent influence on the academic achievement of learners. Corruption is considered a form of social injustice; hence in Zimbabwe, the general consensus is that it is perceived rife to the extent that it is overtaking the traditional factors that contributed to the poor academic achievement of learners. Coupled to this, have been the issue of gross abuse of power and some malpractices emanating from concealment of essential and official transactions in the conduct of business. Through proposing robust anti-corruption mechanisms, teaching and learning resources poured in schools would be put into good use. This would prevent the unlawful diversion and misappropriation of the resources in question which has always been the culture. This study is of paramount significance to curriculum planners, teachers, parents, and learners. The study was informed by the interpretive paradigm; thus qualitative research approaches were used. Both probability and non-probability sampling techniques were adopted in ‘site and participants’ selection. A representative sample of (150) participants was used. The study found that the majority of the participants perceived corruption as a social problem and a human right threat affecting the quality of teaching and learning processes in the education sector. It was established that corruption prevalence within institutions is as a result of the perpetual weakening of ethical values and other variables linked to upholding of ‘Ubuntu’ among general citizenry. It was further established that greediness and weak systems are major causes of rampant corruption within institutions of higher learning and are manifesting through abuse of power, bribery, misappropriation and embezzlement of material and financial resources. Therefore, there is great need to collectively address the problem of corruption in educational institutions and society at large. The study additionally concludes that successful combating of corruption will promote successful moral development of students as well as safeguarding their human rights entitlements. The study recommends the adoption of principles of good corporate governance within educational institutions in order to successfully curb corruption. The study further recommends the intensification of interventionist strategies and strengthening of systems in educational institutions as well as regular audits to overcome the problem associated with rampant corruption cases.Keywords: academic achievement, combating, corruption, good corporate governance, qualitative study
Procedia PDF Downloads 2442841 Learning and Rethinking Language through Gendered Experiences
Authors: Neha Narayanan
Abstract:
The paper tries to explore the role of language in determining spaces occupied by women in everyday lives. It is inspired from an ongoing action research work which employs ‘immersion’- arriving at a research problematic through community research, as a methodology in a Kondh adivasi village, Kirkalpadu located in Rayagada district of the Indian state of Odisha. In the dominant development discourse, language is associated with either preservation or conservation of endangered language or empowerment through language. Beyond these, is the discourse of language as a structure, with the hegemonic quality to organise lifeworld in a specific manner. This rigid structure leads to an experience of constriction of space for women. In Kirkalpadu, the action research work is with young and unmarried women of the age 15-25. During daytime, these women are either in the agricultural field or in the bari -the backyard of the house whose rooms are linearly arranged one after the other ending with the kitchen followed by an open space called bari (in Odia) which is an intimate and gendered space- where they are not easily visible. They justify the experience of restriction in mobility and fear of moving out of the village alone by the argument that the place and the men are nihi-aaeh (not good). These women, who have dropped out of school early to contribute to the (surplus) labour requirement in the household, want to learn English to be able to read signboards when they are on the road, to be able to fill forms at a bank and use mobile phones to communicate with their romantic partner(s). But the incapacity to have within one’s grasp the province of language and the incapacity to take the mobile phone to the kind of requirements marked by the above mentioned impossible transactions with space restricts them to the bari of the house. The paper concludes by seeking to explore the possibilities of learning and rethinking languages which takes into cognizance the gendered experience of women and the desire of women to cross the borders and occupy spaces restricted to them.Keywords: action research, gendered experience, language, space
Procedia PDF Downloads 1712840 Digital Portfolio as Mediation to Enhance Willingness to Communicate in English
Authors: Saeko Toyoshima
Abstract:
This research will discuss if performance tasks with technology would enhance students' willingness to communicate. The present study investigated how Japanese learners of English would change their attitude to communication in their target language by experiencing a performance task, called 'digital portfolio', in the classroom, applying the concepts of action research. The study adapted questionnaires including four-Likert and open-end questions as mixed-methods research. There were 28 students in the class. Many of Japanese university students with low proficiency (A1 in Common European Framework of References in Language Learning and Teaching) have difficulty in communicating in English due to the low proficiency and the lack of practice in and outside of the classroom at secondary education. They should need to mediate between themselves in the world of L1 and L2 with completing a performance task for communication. This paper will introduce the practice of CALL class where A1 level students have made their 'digital portfolio' related to the topics of TED® (Technology, Entertainment, Design) Talk materials. The students had 'Portfolio Session' twice in one term, once in the middle, and once at the end of the course, where they introduced their portfolio to their classmates and international students in English. The present study asked the students to answer a questionnaire about willingness to communicate twice, once at the end of the first term and once at the end of the second term. The four-Likert questions were statistically analyzed with a t-test, and the answers to open-end questions were analyzed to clarify the difference between them. They showed that the students had a more positive attitude to communication in English and enhanced their willingness to communicate through the experiences of the task. It will be the implication of this paper that making and presenting portfolio as a performance task would lead them to construct themselves in English and enable them to communicate with the others enjoyably and autonomously.Keywords: action research, digital portfoliio, computer-assisted language learning, ELT with CALL system, mixed methods research, Japanese English learners, willingness to communicate
Procedia PDF Downloads 1192839 Hybrid GNN Based Machine Learning Forecasting Model For Industrial IoT Applications
Authors: Atish Bagchi, Siva Chandrasekaran
Abstract:
Background: According to World Bank national accounts data, the estimated global manufacturing value-added output in 2020 was 13.74 trillion USD. These manufacturing processes are monitored, modelled, and controlled by advanced, real-time, computer-based systems, e.g., Industrial IoT, PLC, SCADA, etc. These systems measure and manipulate a set of physical variables, e.g., temperature, pressure, etc. Despite the use of IoT, SCADA etc., in manufacturing, studies suggest that unplanned downtime leads to economic losses of approximately 864 billion USD each year. Therefore, real-time, accurate detection, classification and prediction of machine behaviour are needed to minimise financial losses. Although vast literature exists on time-series data processing using machine learning, the challenges faced by the industries that lead to unplanned downtimes are: The current algorithms do not efficiently handle the high-volume streaming data from industrial IoTsensors and were tested on static and simulated datasets. While the existing algorithms can detect significant 'point' outliers, most do not handle contextual outliers (e.g., values within normal range but happening at an unexpected time of day) or subtle changes in machine behaviour. Machines are revamped periodically as part of planned maintenance programmes, which change the assumptions on which original AI models were created and trained. Aim: This research study aims to deliver a Graph Neural Network(GNN)based hybrid forecasting model that interfaces with the real-time machine control systemand can detect, predict machine behaviour and behavioural changes (anomalies) in real-time. This research will help manufacturing industries and utilities, e.g., water, electricity etc., reduce unplanned downtimes and consequential financial losses. Method: The data stored within a process control system, e.g., Industrial-IoT, Data Historian, is generally sampled during data acquisition from the sensor (source) and whenpersistingin the Data Historian to optimise storage and query performance. The sampling may inadvertently discard values that might contain subtle aspects of behavioural changes in machines. This research proposed a hybrid forecasting and classification model which combines the expressive and extrapolation capability of GNN enhanced with the estimates of entropy and spectral changes in the sampled data and additional temporal contexts to reconstruct the likely temporal trajectory of machine behavioural changes. The proposed real-time model belongs to the Deep Learning category of machine learning and interfaces with the sensors directly or through 'Process Data Historian', SCADA etc., to perform forecasting and classification tasks. Results: The model was interfaced with a Data Historianholding time-series data from 4flow sensors within a water treatment plantfor45 days. The recorded sampling interval for a sensor varied from 10 sec to 30 min. Approximately 65% of the available data was used for training the model, 20% for validation, and the rest for testing. The model identified the anomalies within the water treatment plant and predicted the plant's performance. These results were compared with the data reported by the plant SCADA-Historian system and the official data reported by the plant authorities. The model's accuracy was much higher (20%) than that reported by the SCADA-Historian system and matched the validated results declared by the plant auditors. Conclusions: The research demonstrates that a hybrid GNN based approach enhanced with entropy calculation and spectral information can effectively detect and predict a machine's behavioural changes. The model can interface with a plant's 'process control system' in real-time to perform forecasting and classification tasks to aid the asset management engineers to operate their machines more efficiently and reduce unplanned downtimes. A series of trialsare planned for this model in the future in other manufacturing industries.Keywords: GNN, Entropy, anomaly detection, industrial time-series, AI, IoT, Industry 4.0, Machine Learning
Procedia PDF Downloads 1502838 Stable Diffusion, Context-to-Motion Model to Augmenting Dexterity of Prosthetic Limbs
Authors: André Augusto Ceballos Melo
Abstract:
Design to facilitate the recognition of congruent prosthetic movements, context-to-motion translations guided by image, verbal prompt, users nonverbal communication such as facial expressions, gestures, paralinguistics, scene context, and object recognition contributes to this process though it can also be applied to other tasks, such as walking, Prosthetic limbs as assistive technology through gestures, sound codes, signs, facial, body expressions, and scene context The context-to-motion model is a machine learning approach that is designed to improve the control and dexterity of prosthetic limbs. It works by using sensory input from the prosthetic limb to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. This can help to improve the performance of the prosthetic limb and make it easier for the user to perform a wide range of tasks. There are several key benefits to using the context-to-motion model for prosthetic limb control. First, it can help to improve the naturalness and smoothness of prosthetic limb movements, which can make them more comfortable and easier to use for the user. Second, it can help to improve the accuracy and precision of prosthetic limb movements, which can be particularly useful for tasks that require fine motor control. Finally, the context-to-motion model can be trained using a variety of different sensory inputs, which makes it adaptable to a wide range of prosthetic limb designs and environments. Stable diffusion is a machine learning method that can be used to improve the control and stability of movements in robotic and prosthetic systems. It works by using sensory feedback to learn about the dynamics of the environment and then using this information to generate smooth, stable movements. One key aspect of stable diffusion is that it is designed to be robust to noise and uncertainty in the sensory feedback. This means that it can continue to produce stable, smooth movements even when the sensory data is noisy or unreliable. To implement stable diffusion in a robotic or prosthetic system, it is typically necessary to first collect a dataset of examples of the desired movements. This dataset can then be used to train a machine learning model to predict the appropriate control inputs for a given set of sensory observations. Once the model has been trained, it can be used to control the robotic or prosthetic system in real-time. The model receives sensory input from the system and uses it to generate control signals that drive the motors or actuators responsible for moving the system. Overall, the use of the context-to-motion model has the potential to significantly improve the dexterity and performance of prosthetic limbs, making them more useful and effective for a wide range of users Hand Gesture Body Language Influence Communication to social interaction, offering a possibility for users to maximize their quality of life, social interaction, and gesture communication.Keywords: stable diffusion, neural interface, smart prosthetic, augmenting
Procedia PDF Downloads 1022837 Classifying Affective States in Virtual Reality Environments Using Physiological Signals
Authors: Apostolos Kalatzis, Ashish Teotia, Vishnunarayan Girishan Prabhu, Laura Stanley
Abstract:
Emotions are functional behaviors influenced by thoughts, stimuli, and other factors that induce neurophysiological changes in the human body. Understanding and classifying emotions are challenging as individuals have varying perceptions of their environments. Therefore, it is crucial that there are publicly available databases and virtual reality (VR) based environments that have been scientifically validated for assessing emotional classification. This study utilized two commercially available VR applications (Guided Meditation VR™ and Richie’s Plank Experience™) to induce acute stress and calm state among participants. Subjective and objective measures were collected to create a validated multimodal dataset and classification scheme for affective state classification. Participants’ subjective measures included the use of the Self-Assessment Manikin, emotional cards and 9 point Visual Analogue Scale for perceived stress, collected using a Virtual Reality Assessment Tool developed by our team. Participants’ objective measures included Electrocardiogram and Respiration data that were collected from 25 participants (15 M, 10 F, Mean = 22.28 4.92). The features extracted from these data included heart rate variability components and respiration rate, both of which were used to train two machine learning models. Subjective responses validated the efficacy of the VR applications in eliciting the two desired affective states; for classifying the affective states, a logistic regression (LR) and a support vector machine (SVM) with a linear kernel algorithm were developed. The LR outperformed the SVM and achieved 93.8%, 96.2%, 93.8% leave one subject out cross-validation accuracy, precision and recall, respectively. The VR assessment tool and data collected in this study are publicly available for other researchers.Keywords: affective computing, biosignals, machine learning, stress database
Procedia PDF Downloads 143