Search results for: sequential confidence estimation
2947 A Diagnostic Comparative Analysis of on Simultaneous Localization and Mapping (SLAM) Models for Indoor and Outdoor Route Planning and Obstacle Avoidance
Authors: Seyed Esmail Seyedi Bariran, Khairul Salleh Mohamed Sahari
Abstract:
In robotics literature, the simultaneous localization and mapping (SLAM) is commonly associated with a priori-posteriori problem. The autonomous vehicle needs a neutral map to spontaneously track its local position, i.e., “localization” while at the same time a precise path estimation of the environment state is required for effective route planning and obstacle avoidance. On the other hand, the environmental noise factors can significantly intensify the inherent uncertainties in using odometry information and measurements obtained from the robot’s exteroceptive sensor which in return directly affect the overall performance of the corresponding SLAM. Therefore, the current work is primarily dedicated to provide a diagnostic analysis of six SLAM algorithms including FastSLAM, L-SLAM, GraphSLAM, Grid SLAM and DP-SLAM. A SLAM simulated environment consisting of two sets of landmark locations and robot waypoints was set based on modified EKF and UKF in MATLAB using two separate maps for indoor and outdoor route planning subject to natural and artificial obstacles. The simulation results are expected to provide an unbiased platform to compare the estimation performances of the five SLAM models as well as on the reliability of each SLAM model for indoor and outdoor applications.Keywords: route planning, obstacle, estimation performance, FastSLAM, L-SLAM, GraphSLAM, Grid SLAM, DP-SLAM
Procedia PDF Downloads 4442946 The Cost and Benefit on the Investment in Safety and Health of the Enterprises in Thailand
Authors: Charawee Butbumrung
Abstract:
The purpose of this study is to evaluate the monetary worthiness of investment and the usefulness of risk estimation as a tool employed by a production section of an electronic factory. This study employed the case study of accidents occurring in production areas. Data is collected from interviews with six production of safety coordinators and collect the information from the relevant section. The study will present the ratio of benefits compared with the operation costs for investment. The result showed that it is worthwhile for investment with the safety measures. In addition, the organizations must be able to analyze the causes of accidents about the benefits of investing in protective working process. They also need to quickly provide the manual for the staff to learn how to protect themselves from accidents and how to use all of the safety equipment.Keywords: cost and benefit, enterprises in Thailand, investment in safety and health, risk estimation
Procedia PDF Downloads 2652945 The Relationship between Representational Conflicts, Generalization, and Encoding Requirements in an Instance Memory Network
Authors: Mathew Wakefield, Matthew Mitchell, Lisa Wise, Christopher McCarthy
Abstract:
The properties of memory representations in artificial neural networks have cognitive implications. Distributed representations that encode instances as a pattern of activity across layers of nodes afford memory compression and enforce the selection of a single point in instance space. These encoding schemes also appear to distort the representational space, as well as trading off the ability to validate that input information is within the bounds of past experience. In contrast, a localist representation which encodes some meaningful information into individual nodes in a network layer affords less memory compression while retaining the integrity of the representational space. This allows the validity of an input to be determined. The validity (or familiarity) of input along with the capacity of localist representation for multiple instance selections affords a memory sampling approach that dynamically balances the bias-variance trade-off. When the input is familiar, bias may be high by referring only to the most similar instances in memory. When the input is less familiar, variance can be increased by referring to more instances that capture a broader range of features. Using this approach in a localist instance memory network, an experiment demonstrates a relationship between representational conflict, generalization performance, and memorization demand. Relatively small sampling ranges produce the best performance on a classic machine learning dataset of visual objects. Combining memory validity with conflict detection produces a reliable confidence judgement that can separate responses with high and low error rates. Confidence can also be used to signal the need for supervisory input. Using this judgement, the need for supervised learning as well as memory encoding can be substantially reduced with only a trivial detriment to classification performance.Keywords: artificial neural networks, representation, memory, conflict monitoring, confidence
Procedia PDF Downloads 1272944 Estimation of Population Mean under Random Non-Response in Two-Occasion Successive Sampling
Authors: M. Khalid, G. N. Singh
Abstract:
In this paper, we have considered the problems of estimation for the population mean on current (second) occasion in two-occasion successive sampling under random non-response situations. Some modified exponential type estimators have been proposed and their properties are studied under the assumptions that the number of sampling unit follows a discrete distribution due to random non-response situations. The performances of the proposed estimators are compared with linear combinations of two estimators, (a) sample mean estimator for fresh sample and (b) ratio estimator for matched sample under the complete response situations. Results are demonstrated through empirical studies which present the effectiveness of the proposed estimators. Suitable recommendations have been made to the survey practitioners.Keywords: modified exponential estimator, successive sampling, random non-response, auxiliary variable, bias, mean square error
Procedia PDF Downloads 3492943 Study on Acoustic Source Detection Performance Improvement of Microphone Array Installed on Drones Using Blind Source Separation
Authors: Youngsun Moon, Yeong-Ju Go, Jong-Soo Choi
Abstract:
Most drones that currently have surveillance/reconnaissance missions are basically equipped with optical equipment, but we also need to use a microphone array to estimate the location of the acoustic source. This can provide additional information in the absence of optical equipment. The purpose of this study is to estimate Direction of Arrival (DOA) based on Time Difference of Arrival (TDOA) estimation of the acoustic source in the drone. The problem is that it is impossible to measure the clear target acoustic source because of the drone noise. To overcome this problem is to separate the drone noise and the target acoustic source using Blind Source Separation(BSS) based on Independent Component Analysis(ICA). ICA can be performed assuming that the drone noise and target acoustic source are independent and each signal has non-gaussianity. For maximized non-gaussianity each signal, we use Negentropy and Kurtosis based on probability theory. As a result, we can improve TDOA estimation and DOA estimation of the target source in the noisy environment. We simulated the performance of the DOA algorithm applying BSS algorithm, and demonstrated the simulation through experiment at the anechoic wind tunnel.Keywords: aeroacoustics, acoustic source detection, time difference of arrival, direction of arrival, blind source separation, independent component analysis, drone
Procedia PDF Downloads 1622942 Ultra-Tightly Coupled GNSS/INS Based on High Degree Cubature Kalman Filtering
Authors: Hamza Benzerrouk, Alexander Nebylov
Abstract:
In classical GNSS/INS integration designs, the loosely coupled approach uses the GNSS derived position and the velocity as the measurements vector. This design is suboptimal from the standpoint of preventing GNSSoutliers/outages. The tightly coupled GPS/INS navigation filter mixes the GNSS pseudo range and inertial measurements and obtains the vehicle navigation state as the final navigation solution. The ultra‐tightly coupled GNSS/INS design combines the I (inphase) and Q(quadrature) accumulator outputs in the GNSS receiver signal tracking loops and the INS navigation filter function intoa single Kalman filter variant (EKF, UKF, SPKF, CKF and HCKF). As mentioned, EKF and UKF are the most used nonlinear filters in the literature and are well adapted to inertial navigation state estimation when integrated with GNSS signal outputs. In this paper, it is proposed to move a step forward with more accurate filters and modern approaches called Cubature and High Degree cubature Kalman Filtering methods, on the basis of previous results solving the state estimation based on INS/GNSS integration, Cubature Kalman Filter (CKF) and High Degree Cubature Kalman Filter with (HCKF) are the references for the recent developed generalized Cubature rule based Kalman Filter (GCKF). High degree cubature rules are the kernel of the new solution for more accurate estimation with less computational complexity compared with the Gauss-Hermite Quadrature (GHQKF). Gauss-Hermite Kalman Filter GHKF which is not selected in this work because of its limited real-time implementation in high-dimensional state-spaces. In ultra tightly or a deeply coupled GNSS/INS system is dynamics EKF is used with transition matrix factorization together with GNSS block processing which is well described in the paper and assumes available the intermediary frequency IF by using a correlator samples with a rate of 500 Hz in the presented approach. GNSS (GPS+GLONASS) measurements are assumed available and modern SPKF with Cubature Kalman Filter (CKF) are compared with new versions of CKF called high order CKF based on Spherical-radial cubature rules developed at the fifth order in this work. Estimation accuracy of the high degree CKF is supposed to be comparative to GHKF, results of state estimation are then observed and discussed for different initialization parameters. Results show more accurate navigation state estimation and more robust GNSS receiver when Ultra Tightly Coupled approach applied based on High Degree Cubature Kalman Filter.Keywords: GNSS, INS, Kalman filtering, ultra tight integration
Procedia PDF Downloads 2802941 Performance Analysis of Search Medical Imaging Service on Cloud Storage Using Decision Trees
Authors: González A. Julio, Ramírez L. Leonardo, Puerta A. Gabriel
Abstract:
Telemedicine services use a large amount of data, most of which are diagnostic images in Digital Imaging and Communications in Medicine (DICOM) and Health Level Seven (HL7) formats. Metadata is generated from each related image to support their identification. This study presents the use of decision trees for the optimization of information search processes for diagnostic images, hosted on the cloud server. To analyze the performance in the server, the following quality of service (QoS) metrics are evaluated: delay, bandwidth, jitter, latency and throughput in five test scenarios for a total of 26 experiments during the loading and downloading of DICOM images, hosted by the telemedicine group server of the Universidad Militar Nueva Granada, Bogotá, Colombia. By applying decision trees as a data mining technique and comparing it with the sequential search, it was possible to evaluate the search times of diagnostic images in the server. The results show that by using the metadata in decision trees, the search times are substantially improved, the computational resources are optimized and the request management of the telemedicine image service is improved. Based on the experiments carried out, search efficiency increased by 45% in relation to the sequential search, given that, when downloading a diagnostic image, false positives are avoided in management and acquisition processes of said information. It is concluded that, for the diagnostic images services in telemedicine, the technique of decision trees guarantees the accessibility and robustness in the acquisition and manipulation of medical images, in improvement of the diagnoses and medical procedures in patients.Keywords: cloud storage, decision trees, diagnostic image, search, telemedicine
Procedia PDF Downloads 2042940 The Impact of Diversification Strategy on Leverage and Accrual-Based Earnings Management
Authors: Safa Lazzem, Faouzi Jilani
Abstract:
The aim of this research is to investigate the impact of diversification strategy on the nature of the relationship between leverage and accrual-based earnings management through panel-estimation techniques based on a sample of 162 nonfinancial French firms indexed in CAC All-Tradable during the period from 2006 to 2012. The empirical results show that leverage increases encourage managers to manipulate earnings management. Our findings prove that the diversification strategy provides the needed context for this accounting practice to be possible in highly diversified firms. In addition, the results indicate that diversification moderates the relationship between leverage and accrual-based earnings management by changing the nature and the sign of this relationship.Keywords: diversification, earnings management, leverage, panel-estimation techniques
Procedia PDF Downloads 1502939 Interactive Virtual Patient Simulation Enhances Pharmacology Education and Clinical Practice
Authors: Lyndsee Baumann-Birkbeck, Sohil A. Khan, Shailendra Anoopkumar-Dukie, Gary D. Grant
Abstract:
Technology-enhanced education tools are being rapidly integrated into health programs globally. These tools provide an interactive platform for students and can be used to deliver topics in various modes including games and simulations. Simulations are of particular interest to healthcare education, where they are employed to enhance clinical knowledge and help to bridge the gap between theory and practice. Simulations will often assess competencies for practical tasks, yet limited research examines the effects of simulation on student perceptions of their learning. The aim of this study was to determine the effects of an interactive virtual patient simulation for pharmacology education and clinical practice on student knowledge, skills and confidence. Ethics approval for the study was obtained from Griffith University Research Ethics Committee (PHM/11/14/HREC). The simulation was intended to replicate the pharmacy environment and patient interaction. The content was designed to enhance knowledge of proton-pump inhibitor pharmacology, role in therapeutics and safe supply to patients. The tool was deployed into a third-year clinical pharmacology and therapeutics course. A number of core practice areas were examined including the competency domains of questioning, counselling, referral and product provision. Baseline measures of student self-reported knowledge, skills and confidence were taken prior to the simulation using a specifically designed questionnaire. A more extensive questionnaire was deployed following the virtual patient simulation, which also included measures of student engagement with the activity. A quiz assessing student factual and conceptual knowledge of proton-pump inhibitor pharmacology and related counselling information was also included in both questionnaires. Sixty-one students (response rate >95%) from two cohorts (2014 and 2015) participated in the study. Chi-square analyses were performed and data analysed using Fishers exact test. Results demonstrate that student knowledge, skills and confidence within the competency domains of questioning, counselling, referral and product provision, show improvement following the implementation of the virtual patient simulation. Statistically significant (p<0.05) improvement occurred in ten of the possible twelve self-reported measurement areas. Greatest magnitude of improvement occurred in the area of counselling (student confidence p<0.0001). Student confidence in all domains (questioning, counselling, referral and product provision) showed a marked increase. Student performance in the quiz also improved, demonstrating a 10% improvement overall for pharmacology knowledge and clinical practice following the simulation. Overall, 85% of students reported the simulation to be engaging and 93% of students felt the virtual patient simulation enhanced learning. The data suggests that the interactive virtual patient simulation developed for clinical pharmacology and therapeutics education enhanced students knowledge, skill and confidence, with respect to the competency domains of questioning, counselling, referral and product provision. These self-reported measures appear to translate to learning outcomes, as demonstrated by the improved student performance in the quiz assessment item. Future research of education using virtual simulation should seek to incorporate modern quantitative measures of student learning and engagement, such as eye tracking.Keywords: clinical simulation, education, pharmacology, simulation, virtual learning
Procedia PDF Downloads 3382938 Stochastic Default Risk Estimation Evidence from the South African Financial Market
Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer
Abstract:
The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering
Procedia PDF Downloads 1112937 Computational Models for Accurate Estimation of Joint Forces
Authors: Ibrahim Elnour Abdelrahman Eltayeb
Abstract:
Computational modelling is a method used to investigate joint forces during a movement. It can get high accuracy in the joint forces via subject-specific models. However, the construction of subject-specific models remains time-consuming and expensive. The purpose of this paper was to identify what alterations we can make to generic computational models to get a better estimation of the joint forces. It appraised the impact of these alterations on the accuracy of the estimated joint forces. It found different strategies of alterations: joint model, muscle model, and an optimisation problem. All these alterations affected joint contact force accuracy, so showing the potential for improving the model predictions without involving costly and time-consuming medical images.Keywords: joint force, joint model, optimisation problem, validation
Procedia PDF Downloads 1702936 Application of ANN for Estimation of Power Demand of Villages in Sulaymaniyah Governorate
Abstract:
Before designing an electrical system, the estimation of load is necessary for unit sizing and demand-generation balancing. The system could be a stand-alone system for a village or grid connected or integrated renewable energy to grid connection, especially as there are non–electrified villages in developing countries. In the classical model, the energy demand was found by estimating the household appliances multiplied with the amount of their rating and the duration of their operation, but in this paper, information exists for electrified villages could be used to predict the demand, as villages almost have the same life style. This paper describes a method used to predict the average energy consumed in each two months for every consumer living in a village by Artificial Neural Network (ANN). The input data are collected using a regional survey for samples of consumers representing typical types of different living, household appliances and energy consumption by a list of information, and the output data are collected from administration office of Piramagrun for each corresponding consumer. The result of this study shows that the average demand for different consumers from four villages in different months throughout the year is approximately 12 kWh/day, this model estimates the average demand/day for every consumer with a mean absolute percent error of 11.8%, and MathWorks software package MATLAB version 7.6.0 that contains and facilitate Neural Network Toolbox was used.Keywords: artificial neural network, load estimation, regional survey, rural electrification
Procedia PDF Downloads 1232935 Software Defect Analysis- Eclipse Dataset
Authors: Amrane Meriem, Oukid Salyha
Abstract:
The presence of defects or bugs in software can lead to costly setbacks, operational inefficiencies, and compromised user experiences. The integration of Machine Learning(ML) techniques has emerged to predict and preemptively address software defects. ML represents a proactive strategy aimed at identifying potential anomalies, errors, or vulnerabilities within code before they manifest as operational issues. By analyzing historical data, such as code changes, feature im- plementations, and defect occurrences. This en- ables development teams to anticipate and mitigate these issues, thus enhancing software quality, reducing maintenance costs, and ensuring smoother user interactions. In this work, we used a recommendation system to improve the performance of ML models in terms of predicting the code severity and effort estimation.Keywords: software engineering, machine learning, bugs detection, effort estimation
Procedia PDF Downloads 862934 Statistical Analysis of Extreme Flow (Regions of Chlef)
Authors: Bouthiba Amina
Abstract:
The estimation of the statistics bound to the precipitation represents a vast domain, which puts numerous challenges to meteorologists and hydrologists. Sometimes, it is necessary, to approach in value the extreme events for sites where there is little, or no datum, as well as their periods of return. The search for a model of the frequency of the heights of daily rains dresses a big importance in operational hydrology: It establishes a basis for predicting the frequency and intensity of floods by estimating the amount of precipitation in past years. The most known and the most common approach is the statistical approach, It consists in looking for a law of probability that fits best the values observed by the random variable " daily maximal rain " after a comparison of various laws of probability and methods of estimation by means of tests of adequacy. Therefore, a frequent analysis of the annual series of daily maximal rains was realized on the data of 54 pluviometric stations of the pond of high and average. This choice was concerned with five laws usually applied to the study and the analysis of frequent maximal daily rains. The chosen period is from 1970 to 2013. It was of use to the forecast of quantiles. The used laws are the law generalized by extremes to three components, those of the extreme values to two components (Gumbel and log-normal) in two parameters, the law Pearson typifies III and Log-Pearson III in three parameters. In Algeria, Gumbel's law has been used for a long time to estimate the quantiles of maximum flows. However, and we will check and choose the most reliable law.Keywords: return period, extreme flow, statistics laws, Gumbel, estimation
Procedia PDF Downloads 782933 Constructing the Joint Mean-Variance Regions for Univariate and Bivariate Normal Distributions: Approach Based on the Measure of Cumulative Distribution Functions
Authors: Valerii Dashuk
Abstract:
The usage of the confidence intervals in economics and econometrics is widespread. To be able to investigate a random variable more thoroughly, joint tests are applied. One of such examples is joint mean-variance test. A new approach for testing such hypotheses and constructing confidence sets is introduced. Exploring both the value of the random variable and its deviation with the help of this technique allows checking simultaneously the shift and the probability of that shift (i.e., portfolio risks). Another application is based on the normal distribution, which is fully defined by mean and variance, therefore could be tested using the introduced approach. This method is based on the difference of probability density functions. The starting point is two sets of normal distribution parameters that should be compared (whether they may be considered as identical with given significance level). Then the absolute difference in probabilities at each 'point' of the domain of these distributions is calculated. This measure is transformed to a function of cumulative distribution functions and compared to the critical values. Critical values table was designed from the simulations. The approach was compared with the other techniques for the univariate case. It differs qualitatively and quantitatively in easiness of implementation, computation speed, accuracy of the critical region (theoretical vs. real significance level). Stable results when working with outliers and non-normal distributions, as well as scaling possibilities, are also strong sides of the method. The main advantage of this approach is the possibility to extend it to infinite-dimension case, which was not possible in the most of the previous works. At the moment expansion to 2-dimensional state is done and it allows to test jointly up to 5 parameters. Therefore the derived technique is equivalent to classic tests in standard situations but gives more efficient alternatives in nonstandard problems and on big amounts of data.Keywords: confidence set, cumulative distribution function, hypotheses testing, normal distribution, probability density function
Procedia PDF Downloads 1742932 Non-Parametric, Unconditional Quantile Estimation of Efficiency in Microfinance Institutions
Authors: Komlan Sedzro
Abstract:
We apply the non-parametric, unconditional, hyperbolic order-α quantile estimator to appraise the relative efficiency of Microfinance Institutions in Africa in terms of outreach. Our purpose is to verify if these institutions, which must constantly try to strike a compromise between their social role and financial sustainability are operationally efficient. Using data on African MFIs extracted from the Microfinance Information eXchange (MIX) database and covering the 2004 to 2006 periods, we find that more efficient MFIs are also the most profitable. This result is in line with the view that social performance is not in contradiction with the pursuit of excellent financial performance. Our results also show that large MFIs in terms of asset and those charging the highest fees are not necessarily the most efficient.Keywords: data envelopment analysis, microfinance institutions, quantile estimation of efficiency, social and financial performance
Procedia PDF Downloads 3082931 The New Propensity Score Method and Assessment of Propensity Score: A Simulation Study
Authors: Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis tool for causal inference in observational studies where exposure is not randomly assigned. Thus, confounding can impact the estimation of treatment effect on the outcome. Due to the dangers of discretizing continuous variables, the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect utilizing the stratification of the PS method. In this study, we will develop a new methodology to improve the efficiency of the PS analysis through stratification and simulation study. We will also explore the property of empirical distribution of average treatment effect theoretically, including asymptotic distribution, variance estimation and 95% confident Intervals.Keywords: propensity score, stratification, emprical distribution, average treatment effect
Procedia PDF Downloads 962930 Impact Assessment of Information Communication, Network Providers, Teledensity, and Consumer Complaints on Gross Domestic Products
Authors: Essang Anwana Onuntuei, Chinyere Blessing Azunwoke
Abstract:
The study used secondary data from foreign and local organizations to explore major challenges and opportunities abound in Information Communication. The study aimed at exploring the tie between tele density (network coverage area) and the number of network subscriptions, probing if the degree of consumer complaints varies significantly among network providers, and assessing if network subscriptions do significantly influence the sector’s GDP contribution. Methods used for data analysis include Pearson product-moment correlation and regression analysis, and the Analysis of Variance (ANOVA) as well. At a two-tailed test of 0.05 confidence level, the results of findings established about 85.6% of network subscriptions were explained by tele density (network coverage area), and the number of network subscriptions; Consumer Complaints’ degree varied significantly among network providers as 80.158291 (F calculated) > 3.490295 (F critical) with very high confidence associated p-value = 0.000000 which is < 0.05; and finally, 65% of the nation’s GDP was explained by network subscription to show a high association.Keywords: tele density, subscription, network coverage, information communication, consumer
Procedia PDF Downloads 432929 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information
Procedia PDF Downloads 2942928 Performance Comparison of Wideband Covariance Matrix Sparse Representation (W-CMSR) with Other Wideband DOA Estimation Methods
Authors: Sandeep Santosh, O. P. Sahu
Abstract:
In this paper, performance comparison of wideband covariance matrix sparse representation (W-CMSR) method with other existing wideband Direction of Arrival (DOA) estimation methods has been made.W-CMSR relies less on a priori information of the incident signal number than the ordinary subspace based methods.Consider the perturbation free covariance matrix of the wideband array output. The diagonal covariance elements are contaminated by unknown noise variance. The covariance matrix of array output is conjugate symmetric i.e its upper right triangular elements can be represented by lower left triangular ones.As the main diagonal elements are contaminated by unknown noise variance,slide over them and align the lower left triangular elements column by column to obtain a measurement vector.Simulation results for W-CMSR are compared with simulation results of other wideband DOA estimation methods like Coherent signal subspace method (CSSM), Capon, l1-SVD, and JLZA-DOA. W-CMSR separate two signals very clearly and CSSM, Capon, L1-SVD and JLZA-DOA fail to separate two signals clearly and an amount of pseudo peaks exist in the spectrum of L1-SVD.Keywords: W-CMSR, wideband direction of arrival (DOA), covariance matrix, electrical and computer engineering
Procedia PDF Downloads 4712927 A System Dynamics Approach to Technological Learning Impact for Cost Estimation of Solar Photovoltaics
Authors: Rong Wang, Sandra Hasanefendic, Elizabeth von Hauff, Bart Bossink
Abstract:
Technological learning and learning curve models have been continuously used to estimate the photovoltaics (PV) cost development over time for the climate mitigation targets. They can integrate a number of technological learning sources which influence the learning process. Yet the accuracy and realistic predictions for cost estimations of PV development are still difficult to achieve. This paper develops four hypothetical-alternative learning curve models by proposing different combinations of technological learning sources, including both local and global technology experience and the knowledge stock. This paper specifically focuses on the non-linear relationship between the costs and technological learning source and their dynamic interaction and uses the system dynamics approach to predict a more accurate PV cost estimation for future development. As the case study, the data from China is gathered and drawn to illustrate that the learning curve model that incorporates both the global and local experience is more accurate and realistic than the other three models for PV cost estimation. Further, absorbing and integrating the global experience into the local industry has a positive impact on PV cost reduction. Although the learning curve model incorporating knowledge stock is not realistic for current PV cost deployment in China, it still plays an effective positive role in future PV cost reduction.Keywords: photovoltaic, system dynamics, technological learning, learning curve
Procedia PDF Downloads 962926 RP-HPLC Method Development and Its Validation for Simultaneous Estimation of Metoprolol Succinate and Olmesartan Medoxomil Combination in Bulk and Tablet Dosage Form
Authors: S. Jain, R. Savalia, V. Saini
Abstract:
A simple, accurate, precise, sensitive and specific RP-HPLC method was developed and validated for simultaneous estimation of Metoprolol Succinate and Olmesartan Medoxomil in bulk and tablet dosage form. The RP-HPLC method has shown adequate separation for Metoprolol Succinate and Olmesartan Medoxomil from its degradation products. The separation was achieved on a Phenomenex luna ODS C18 (250mm X 4.6mm i.d., 5μm particle size) with an isocratic mixture of acetonitrile: 50mM phosphate buffer pH 4.0 adjusted with glacial acetic acid in the ratio of 55:45 v/v. The mobile phase at a flow rate of 1.0ml/min, Injection volume 20μl and wavelength of detection was kept at 225nm. The retention time for Metoprolol Succinate and Olmesartan Medoxomil was 2.451±0.1min and 6.167±0.1min, respectively. The linearity of the proposed method was investigated in the range of 5-50μg/ml and 2-20μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively. Correlation coefficient was 0.999 and 0.9996 for Metoprolol Succinate and Olmesartan Medoxomil, respectively. The limit of detection was 0.2847μg/ml and 0.1251μg/ml for Metoprolol Succinate and Olmesartan Medoxomil, respectively and the limit of quantification was 0.8630μg/ml and 0.3793μg/ml for Metoprolol and Olmesartan, respectively. Proposed methods were validated as per ICH guidelines for linearity, accuracy, precision, specificity and robustness for estimation of Metoprolol Succinate and Olmesartan Medoxomil in commercially available tablet dosage form and results were found to be satisfactory. Thus the developed and validated stability indicating method can be used successfully for marketed formulations.Keywords: metoprolol succinate, olmesartan medoxomil, RP-HPLC method, validation, ICH
Procedia PDF Downloads 3152925 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images
Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann
Abstract:
FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design
Procedia PDF Downloads 2782924 Stature and Gender Estimation Using Foot Measurements in South Indian Population
Authors: Jagadish Rao Padubidri, Mehak Bhandary, Sowmya J. Rao
Abstract:
Introduction: The significance of the human foot and its measurements in identifying an individual has been proved a lot of times by different studies in different geographical areas and its association to the stature and gender of the individual has been justified by many researches. In our study we have used different foot measurements including the length, width, malleol height and navicular height for establishing its association to stature and gender and to find out its accuracy. The purpose of this study is to show the relation of foot measurements with stature and gender, and to derive Multiple and Logistic regression equations for stature and gender estimation in South Indian population. Materials and Methods: The subjects for this study were 200 South Indian students out of which 100 were females and 100 were males, aged between 18 to 24 years. The data for the present study included the stature, foot length, foot breath, foot malleol height, foot navicular height of both right and left foot. Descriptive statistics, T-test and Pearson correlation coefficients were derived between stature, gender and foot measurements. The stature was estimated from right and left foot measurements for both male and female South Indian population using multiple regression analysis and logistic regression analysis for gender estimation. Results: The means, standard deviation, stature, right and left foot measurements and T-test in male population were higher than in females. LFL (Left foot length) is more than RFL (Right Foot length) in male groups, but in female groups the length of both foot are almost equal [RFL=226.6, LFL=227.1]. There is not much of difference in means of RFW (Right foot width) and LFW (Left foot width) in both the genders. Significant difference were seen in mean values of malleol and navicular height of right and left feet in male gender. No such difference was seen in female subjects. Conclusions: The study has successfully demonstrated the correlation of foot length in stature estimation in all the three study groups in both right and left foot. Next in parameters are Foot width and malleol height in estimating stature among male and female groups. Navicular height of both right and left foot showed poor relationship with stature estimation in both male and female groups. Multiple regression equations for both right and left foot measurements to estimate stature were derived with standard error ranging from 11-12 cm in males and 10-11 cm in females. The SEE was 5.8 when both male and female groups were pooled together. The logistic regression model which was derived to determine gender showed 85% accuracy and 92.5% accuracy using right and left foot measurements respectively. We believe that stature and gender can be estimated with foot measurements in South Indian population.Keywords: foot length, gender, stature, South Indian
Procedia PDF Downloads 3352923 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: observer systems, unscented Kalman filter, nonlinear systems, Burgers' equation
Procedia PDF Downloads 1532922 A Digital Filter for Symmetrical Components Identification
Authors: Khaled M. El-Naggar
Abstract:
This paper presents a fast and efficient technique for monitoring and supervising power system disturbances generated due to dynamic performance of power systems or faults. Monitoring power system quantities involve monitoring fundamental voltage, current magnitudes, and their frequencies as well as their negative and zero sequence components under different operating conditions. The proposed technique is based on simulated annealing optimization technique (SA). The method uses digital set of measurements for the voltage or current waveforms at power system bus to perform the estimation process digitally. The algorithm is tested using different simulated data to monitor the symmetrical components of power system waveforms. Different study cases are considered in this work. Effects of number of samples, sampling frequency and the sample window size are studied. Results are reported and discussed.Keywords: estimation, faults, measurement, symmetrical components
Procedia PDF Downloads 4652921 A Bathtub Curve from Nonparametric Model
Authors: Eduardo C. Guardia, Jose W. M. Lima, Afonso H. M. Santos
Abstract:
This paper presents a nonparametric method to obtain the hazard rate “Bathtub curve” for power system components. The model is a mixture of the three known phases of a component life, the decreasing failure rate (DFR), the constant failure rate (CFR) and the increasing failure rate (IFR) represented by three parametric Weibull models. The parameters are obtained from a simultaneous fitting process of the model to the Kernel nonparametric hazard rate curve. From the Weibull parameters and failure rate curves the useful lifetime and the characteristic lifetime were defined. To demonstrate the model the historic time-to-failure of distribution transformers were used as an example. The resulted “Bathtub curve” shows the failure rate for the equipment lifetime which can be applied in economic and replacement decision models.Keywords: bathtub curve, failure analysis, lifetime estimation, parameter estimation, Weibull distribution
Procedia PDF Downloads 4462920 Flame Volume Prediction and Validation for Lean Blowout of Gas Turbine Combustor
Authors: Ejaz Ahmed, Huang Yong
Abstract:
The operation of aero engines has a critical importance in the vicinity of lean blowout (LBO) limits. Lefebvre’s model of LBO based on empirical correlation has been extended to flame volume concept by the authors. The flame volume takes into account the effects of geometric configuration, the complex spatial interaction of mixing, turbulence, heat transfer and combustion processes inside the gas turbine combustion chamber. For these reasons, flame volume based LBO predictions are more accurate. Although LBO prediction accuracy has improved, it poses a challenge associated with Vf estimation in real gas turbine combustors. This work extends the approach of flame volume prediction previously based on fuel iterative approximation with cold flow simulations to reactive flow simulations. Flame volume for 11 combustor configurations has been simulated and validated against experimental data. To make prediction methodology robust as required in the preliminary design stage, reactive flow simulations were carried out with the combination of probability density function (PDF) and discrete phase model (DPM) in FLUENT 15.0. The criterion for flame identification was defined. Two important parameters i.e. critical injection diameter (Dp,crit) and critical temperature (Tcrit) were identified, and their influence on reactive flow simulation was studied for Vf estimation. Obtained results exhibit ±15% error in Vf estimation with experimental data.Keywords: CFD, combustion, gas turbine combustor, lean blowout
Procedia PDF Downloads 2672919 On Modeling Data Sets by Means of a Modified Saddlepoint Approximation
Authors: Serge B. Provost, Yishan Zhang
Abstract:
A moment-based adjustment to the saddlepoint approximation is introduced in the context of density estimation. First applied to univariate distributions, this methodology is extended to the bivariate case. It then entails estimating the density function associated with each marginal distribution by means of the saddlepoint approximation and applying a bivariate adjustment to the product of the resulting density estimates. The connection to the distribution of empirical copulas will be pointed out. As well, a novel approach is proposed for estimating the support of distribution. As these results solely rely on sample moments and empirical cumulant-generating functions, they are particularly well suited for modeling massive data sets. Several illustrative applications will be presented.Keywords: empirical cumulant-generating function, endpoints identification, saddlepoint approximation, sample moments, density estimation
Procedia PDF Downloads 1622918 An Efficient Propensity Score Method for Causal Analysis With Application to Case-Control Study in Breast Cancer Research
Authors: Ms Azam Najafkouchak, David Todem, Dorothy Pathak, Pramod Pathak, Joseph Gardiner
Abstract:
Propensity score (PS) methods have recently become the standard analysis as a tool for the causal inference in the observational studies where exposure is not randomly assigned, thus, confounding can impact the estimation of treatment effect on the outcome. For the binary outcome, the effect of treatment on the outcome can be estimated by odds ratios, relative risks, and risk differences. However, using the different PS methods may give you a different estimation of the treatment effect on the outcome. Several methods of PS analyses have been used mainly, include matching, inverse probability of weighting, stratification, and covariate adjusted on PS. Due to the dangers of discretizing continuous variables (exposure, covariates), the focus of this paper will be on how the variation in cut-points or boundaries will affect the average treatment effect (ATE) utilizing the stratification of PS method. Therefore, we are trying to avoid choosing arbitrary cut-points, instead, we continuously discretize the PS and accumulate information across all cut-points for inferences. We will use Monte Carlo simulation to evaluate ATE, focusing on two PS methods, stratification and covariate adjusted on PS. We will then show how this can be observed based on the analyses of the data from a case-control study of breast cancer, the Polish Women’s Health Study.Keywords: average treatment effect, propensity score, stratification, covariate adjusted, monte Calro estimation, breast cancer, case_control study
Procedia PDF Downloads 105