Search results for: reduce order aeroelastic model (ROAM)
26428 Machine Learning and Metaheuristic Algorithms in Short Femoral Stem Custom Design to Reduce Stress Shielding
Authors: Isabel Moscol, Carlos J. Díaz, Ciro Rodríguez
Abstract:
Hip replacement becomes necessary when a person suffers severe pain or considerable functional limitations and the best option to enhance their quality of life is through the replacement of the damaged joint. One of the main components in femoral prostheses is the stem which distributes the loads from the joint to the proximal femur. To preserve more bone stock and avoid weakening of the diaphysis, a short starting stem was selected, generated from the intramedullary morphology of the patient's femur. It ensures the implantability of the design and leads to geometric delimitation for personalized optimization with machine learning (ML) and metaheuristic algorithms. The present study attempts to design a cementless short stem to make the strain deviation before and after implantation close to zero, promoting its fixation and durability. Regression models developed to estimate the percentage change of maximum principal stresses were used as objective optimization functions by the metaheuristic algorithm. The latter evaluated different geometries of the short stem with the modification of certain parameters in oblique sections from the osteotomy plane. The optimized geometry reached a global stress shielding (SS) of 18.37% with a determination factor (R²) of 0.667. The predicted results favour implantability integration in the short stem optimization to effectively reduce SS in the proximal femur.Keywords: machine learning techniques, metaheuristic algorithms, short-stem design, stress shielding, hip replacement
Procedia PDF Downloads 19926427 Practical Model of Regenerative Braking Using DC Machine and Boost Converter
Authors: Shah Krupa Rajendra, Amit Kumar
Abstract:
Increasing use of traditional vehicles driven by internal combustion engine is responsible for the environmental pollution. Further, it leads to depletion of limited energy resources. Therefore, it is required to explore alternative energy sources for the transportation. The promising solution is to use electric vehicle. However, it suffers from limited driving range. Regenerative braking increases the range of the electric vehicle to a certain extent. In this paper, a novel methodology utilizing regenerative braking is described. The model comprising of DC machine, feedback based boost converter and micro-controller is proposed. The suggested method is very simple and reliable. The proposed model successfully shows the energy being saved into during regenerative braking process.Keywords: boost converter, DC machine, electric vehicle, micro-controller, regenerative braking
Procedia PDF Downloads 27926426 Decision Tree Model for the Recommendation of Digital and Alternate Payment Methods for SMEs
Authors: Arturo J. Anci Alméstar, Jose D. Fernandez Huapaya, David Mauricio
Abstract:
Companies make erroneous decisions by not evaluating the inherent difficulties of entering electronic commerce without a prior review of current digital and alternate means of payment. For this reason, it is very important for businesses to have reliable, complete and integrated information on the means of current digital and alternate payments that allow decisions to be made about which of these to use. However, there is no such consolidated information or criteria that companies use to make decisions about the means of payment according to their needs. In this paper, we propose a decision tree model based on a taxonomy that presents us with a categorization of digital and alternative means of payment, as well as the visualization of the flow of information at a high level from the company to obtain a recommendation. This will allow the company to make the most appropriate decision about the implementation of the digital means of payment or alternative ideal for their needs, which allows a reduction in costs and complexity of the payment process. Likewise, the efficiency of the proposed model was evaluated through a satisfaction survey presented to company personnel, confirming the satisfactory quality level of the recommendations obtained by the model.Keywords: digital payment medium, decision tree, decision making, digital payments taxonomy
Procedia PDF Downloads 18326425 Comparison Approach for Wind Resource Assessment to Determine Most Precise Approach
Authors: Tasir Khan, Ishfaq Ahmad, Yejuan Wang, Muhammad Salam
Abstract:
Distribution models of the wind speed data are essential to assess the potential wind speed energy because it decreases the uncertainty to estimate wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. In this research, material from numerous criteria goodness-of-fits, such as Kolmogorov Simonov, Anderson Darling statistics, Chi-Square, root mean square error (RMSE), AIC and BIC were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in a circumstance to fitting 14 distribution models statistically with the data of wind speed together at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical results. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested MLM, MOM, and MLE the third-order moment used in the wind energy formula is a key function because it makes an important contribution to the precise estimate of wind energy. In order to prove the presence of the suggested MOM, it was compared with well-known estimation methods, such as the method of linear moment, and maximum likelihood estimate. In the relative analysis, given to several goodness-of-fit, the presentation of the considered techniques is estimated on the actual wind speed evaluated in different time periods. The results obtained show that MOM certainly provides a more precise estimation than other familiar approaches in terms of estimating wind energy based on the fourteen distributions. Therefore, MOM can be used as a better technique for assessing wind energy.Keywords: wind-speed modeling, goodness of fit, maximum likelihood method, linear moment
Procedia PDF Downloads 8826424 Assessment of Artists’ Socioeconomic and Working Conditions: The Empirical Case of Lithuania
Authors: Rusne Kregzdaite, Erika Godlevska, Morta Vidunaite
Abstract:
The main aim of this research is to explore existing methodologies for artists’ labour force and create artists’ socio-economic and creative conditions in an assessment model. Artists have dual aims in their creative working process: 1) income and 2) artistic self-expression. The valuation of their conditions takes into consideration both sides: the factors related to income and the satisfaction of the creative process and its result. The problem addressed in the study: tangible and intangible artists' criteria used for assessments creativity conditions. The proposed model includes objective factors (working time, income, etc.) and subjective factors (salary covering essential needs, self-satisfaction). Other intangible indicators are taken into account: the impact on the common culture, social values, and the possibility to receive awards, to represent the country in the international market. The empirical model consists of 59 separate indicators, grouped into eight categories. The deviation of each indicator from the general evaluation allows for identifying the strongest and the weakest components of artists’ conditions.Keywords: artist conditions, artistic labour force, cultural policy, indicator, assessment model
Procedia PDF Downloads 15526423 Real Time Multi Person Action Recognition Using Pose Estimates
Authors: Aishrith Rao
Abstract:
Human activity recognition is an important aspect of video analytics, and many approaches have been recommended to enable action recognition. In this approach, the model is used to identify the action of the multiple people in the frame and classify them accordingly. A few approaches use RNNs and 3D CNNs, which are computationally expensive and cannot be trained with the small datasets which are currently available. Multi-person action recognition has been performed in order to understand the positions and action of people present in the video frame. The size of the video frame can be adjusted as a hyper-parameter depending on the hardware resources available. OpenPose has been used to calculate pose estimate using CNN to produce heap-maps, one of which provides skeleton features, which are basically joint features. The features are then extracted, and a classification algorithm can be applied to classify the action.Keywords: human activity recognition, computer vision, pose estimates, convolutional neural networks
Procedia PDF Downloads 14626422 The Relationship between Political Risks and Capital Adequacy Ratio: Evidence from GCC Countries Using a Dynamic Panel Data Model (System–GMM)
Authors: Wesam Hamed
Abstract:
This paper contributes to the existing literature by investigating the impact of political risks on the capital adequacy ratio in the banking sector of Gulf Cooperation Council (GCC) countries, which is the first attempt for this nexus to the best of our knowledge. The dynamic panel data model (System‐GMM) showed that political risks significantly decrease the capital adequacy ratio in the banking sector. For this purpose, we used political risks, bank-specific, profitability, and macroeconomic variables that are utilized from the data stream database for the period 2005-2017. The results also actively support the “too big to fail” hypothesis. Finally, the robustness results confirm the conclusions derived from the baseline System‐GMM model.Keywords: capital adequacy ratio, system GMM, GCC, political risks
Procedia PDF Downloads 15426421 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 10326420 A Construction Scheduling Model by Applying Pedestrian and Vehicle Simulation
Authors: Akhmad F. K. Khitam, Yi Tai, Hsin-Yun Lee
Abstract:
In the modern research of construction management, the goals of scheduling are not only to finish the project within the limited duration, but also to improve the impact of people and environment. Especially for the impact to the pedestrian and vehicles, the considerable social cost should be estimated in the total performance of a construction project. However, the site environment has many differences between projects. These interactions affect the requirement and goal of scheduling. It is difficult for schedule planners to quantify these interactions. Therefore, this study use 3D dynamic simulation technology to plan the schedule of the construction engineering projects that affect the current space users (i.e., the pedestrians and vehicles). The proposed model can help the project manager find out the optimal schedule to minimize the inconvenience brought to the space users. Besides, a roadwork project and a building renovation project were analyzed for the practical situation of engineering and operations. Then this study integrates the proper optimization algorithms and computer technology to establish a decision support model. The proposed model can generate a near-optimal schedule solution for project planners.Keywords: scheduling, simulation, optimization, pedestrian and vehicle behavior
Procedia PDF Downloads 14426419 Second Order Solitary Solutions to the Hodgkin-Huxley Equation
Authors: Tadas Telksnys, Zenonas Navickas, Minvydas Ragulskis
Abstract:
Necessary and sufficient conditions for the existence of second order solitary solutions to the Hodgkin-Huxley equation are derived in this paper. The generalized multiplicative operator of differentiation helps not only to construct closed-form solitary solutions but also automatically generates conditions of their existence in the space of the equation's parameters and initial conditions. It is demonstrated that bright, kink-type solitons and solitary solutions with singularities can exist in the Hodgkin-Huxley equation.Keywords: Hodgkin-Huxley equation, solitary solution, existence condition, operator method
Procedia PDF Downloads 38626418 Information Technology Pattern for Traceability to Increase the Exporting Efficiency of Thailand’s Orchid
Authors: Pimploi Tirastittam, Phutthiwat Waiyawuththanapoom, Manop Tirastittam
Abstract:
Traceability system is one of the tools which can ensure the product’s confident of the consumer as it can trace the product back to its origin and can reduce the operation cost of recall. Nowadays, there are so many technologies which can be applied to the traceability system and also able to increase the efficiency of the system such as QR Code, barcode, GS1 and GTIN. As the result, this research is aimed to study and design the information technology pattern that suits for the traceability of Thailand’s orchid because Thailand’s orchid is the popular export product for Japan, USA, China, Netherlands and Italy. This study will enhance the value of Thailand’s orchid and able to prevent the unexpected event of the defects or damaged product. The traceability pattern was received IOC test from 12 experts from 4 fields of study which are traceability field, information technology field, information communication technology field and orchid export field. The result of the in-depth interview and questionnaire showed that the technology which most compatibility with the traceability system is the QR code. The mean of the score was 4.25 and the standard deviation was 0.5 as the QR code is the new technology and user-friendly. The traceability system should start from the farm to the consumer in the consuming country as the traceability system will enhance the quality level of the product and increase the value of its as well. The other outcome from this research is the supply chain model of Thailand’s Orchid along with the system architecture and working system diagram.Keywords: exporting, information technology pattern, orchid, traceability
Procedia PDF Downloads 22526417 The Reliability and Shape of the Force-Power-Velocity Relationship of Strength-Trained Males Using an Instrumented Leg Press Machine
Authors: Mark Ashton Newman, Richard Blagrove, Jonathan Folland
Abstract:
The force-velocity profile of an individual has been shown to influence success in ballistic movements, independent of the individuals' maximal power output; therefore, effective and accurate evaluation of an individual’s F-V characteristics and not solely maximal power output is important. The relatively narrow range of loads typically utilised during force-velocity profiling protocols due to the difficulty in obtaining force data at high velocities may bring into question the accuracy of the F-V slope along with predictions pertaining to the maximum force that the system can produce at a velocity of null (F₀) and the theoretical maximum velocity against no load (V₀). As such, the reliability of the slope of the force-velocity profile, as well as V₀, has been shown to be relatively poor in comparison to F₀ and maximal power, and it has been recommended to assess velocity at loads closer to both F₀ and V₀. The aim of the present study was to assess the relative and absolute reliability of an instrumented novel leg press machine which enables the assessment of force and velocity data at loads equivalent to ≤ 10% of one repetition maximum (1RM) through to 1RM during a ballistic leg press movement. The reliability of maximal and mean force, velocity, and power, as well as the respective force-velocity and power-velocity relationships and the linearity of the force-velocity relationship, were evaluated. Sixteen male strength-trained individuals (23.6 ± 4.1 years; 177.1 ± 7.0 cm; 80.0 ± 10.8 kg) attended four sessions; during the initial visit, participants were familiarised with the leg press, modified to include a mounted force plate (Type SP3949, Force Logic, Berkshire, UK) and a Micro-Epsilon WDS-2500-P96 linear positional transducer (LPT) (Micro-Epsilon, Merseyside, UK). Peak isometric force (IsoMax) and a dynamic 1RM, both from a starting position of 81% leg length, were recorded for the dominant leg. Visits two to four saw the participants carry out the leg press movement at loads equivalent to ≤ 10%, 30%, 50%, 70%, and 90% 1RM. IsoMax was recorded during each testing visit prior to dynamic F-V profiling repetitions. The novel leg press machine used in the present study appears to be a reliable tool for measuring F and V-related variables across a range of loads, including velocities closer to V₀ when compared to some of the findings within the published literature. Both linear and polynomial models demonstrated good to excellent levels of reliability for SFV and F₀ respectively, with reliability for V₀ being good using a linear model but poor using a 2nd order polynomial model. As such, a polynomial regression model may be most appropriate when using a similar unilateral leg press setup to predict maximal force production capabilities due to only a 5% difference between F₀ and obtained IsoMax values with a linear model being best suited to predict V₀.Keywords: force-velocity, leg-press, power-velocity, profiling, reliability
Procedia PDF Downloads 6326416 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel
Authors: Wajid Ali Khan
Abstract:
Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.Keywords: residual stresses, end milling, 1045 steel, optimization
Procedia PDF Downloads 10926415 A Parking Demand Forecasting Method for Making Parking Policy in the Center of Kabul City
Authors: Roien Qiam, Shoshi Mizokami
Abstract:
Parking demand in the Central Business District (CBD) has enlarged with the increase of the number of private vehicles due to rapid economic growth, lack of an efficient public transport and traffic management system. This has resulted in low mobility, poor accessibility, serious congestion, high rates of traffic accident fatalities and injuries and air pollution, mainly because people have to drive slowly around to find a vacant spot. With parking pricing and enforcement policy, considerable advancement could be found, and on-street parking spaces could be managed efficiently and effectively. To evaluate parking demand and making parking policy, it is required to understand the current parking condition and driver’s behavior, understand how drivers choose their parking type and location as well as their behavior toward finding a vacant parking spot under parking charges and search times. This study illustrates the result from an observational, revealed and stated preference surveys and experiment. Attained data shows that there is a gap between supply and demand in parking and it has maximized. For the modeling of the parking decision, a choice model was constructed based on discrete choice modeling theory and multinomial logit model estimated by using SP survey data; the model represents the choice of an alternative among different alternatives which are priced on-street, off-street, and illegal parking. Individuals choose a parking type based on their preference concerning parking charges, searching times, access times and waiting times. The parking assignment model was obtained directly from behavioral model and is used in parking simulation. The study concludes with an evaluation of parking policy.Keywords: CBD, parking demand forecast, parking policy, parking choice model
Procedia PDF Downloads 20026414 Comparative Study of Heat Transfer Capacity Limits of Heat Pipes
Authors: H. Shokouhmand, A. Ghanami
Abstract:
Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.Keywords: heat pipe, HVAC system, grooved Heat pipe, heat pipe limits
Procedia PDF Downloads 42626413 D-Wave Quantum Computing Ising Model: A Case Study for Forecasting of Heat Waves
Authors: Dmytro Zubov, Francesco Volponi
Abstract:
In this paper, D-Wave quantum computing Ising model is used for the forecasting of positive extremes of daily mean air temperature. Forecast models are designed with two to five qubits, which represent 2-, 3-, 4-, and 5-day historical data respectively. Ising model’s real-valued weights and dimensionless coefficients are calculated using daily mean air temperatures from 119 places around the world, as well as sea level (Aburatsu, Japan). In comparison with current methods, this approach is better suited to predict heat wave values because it does not require the estimation of a probability distribution from scarce observations. Proposed forecast quantum computing algorithm is simulated based on traditional computer architecture and combinatorial optimization of Ising model parameters for the Ronald Reagan Washington National Airport dataset with 1-day lead-time on learning sample (1975-2010 yr). Analysis of the forecast accuracy (ratio of successful predictions to total number of predictions) on the validation sample (2011-2014 yr) shows that Ising model with three qubits has 100 % accuracy, which is quite significant as compared to other methods. However, number of identified heat waves is small (only one out of nineteen in this case). Other models with 2, 4, and 5 qubits have 20 %, 3.8 %, and 3.8 % accuracy respectively. Presented three-qubit forecast model is applied for prediction of heat waves at other five locations: Aurel Vlaicu, Romania – accuracy is 28.6 %; Bratislava, Slovakia – accuracy is 21.7 %; Brussels, Belgium – accuracy is 33.3 %; Sofia, Bulgaria – accuracy is 50 %; Akhisar, Turkey – accuracy is 21.4 %. These predictions are not ideal, but not zeros. They can be used independently or together with other predictions generated by different method(s). The loss of human life, as well as environmental, economic, and material damage, from extreme air temperatures could be reduced if some of heat waves are predicted. Even a small success rate implies a large socio-economic benefit.Keywords: heat wave, D-wave, forecast, Ising model, quantum computing
Procedia PDF Downloads 50526412 Modeling and Controlling the Rotational Degree of a Quadcopter Using Proportional Integral and Derivative Controller
Authors: Sanjay Kumar, Lillie Dewan
Abstract:
The study of complex dynamic systems has advanced through various scientific approaches with the help of computer modeling. The common design trends in aerospace system design can be applied to quadcopter design. A quadcopter is a nonlinear, under-actuated system with complex aerodynamics parameters and creates challenges that demand new, robust, and effective control approaches. The flight control stability can be improved by planning and tracking the trajectory and reducing the effect of sensors and the operational environment. This paper presents a modern design Simmechanics visual modeling approach for a mechanical model of a quadcopter with three degrees of freedom. The Simmechanics model, considering inertia, mass, and geometric properties of a dynamic system, produces multiple translation and rotation maneuvers. The proportional, integral, and derivative (PID) controller is integrated with the Simmechanics model to follow a predefined quadcopter rotational trajectory for a fixed time interval. The results presented are satisfying. The simulation of the quadcopter control performed operations successfully.Keywords: nonlinear system, quadcopter model, simscape modelling, proportional-integral-derivative controller
Procedia PDF Downloads 20026411 A DEA Model in a Multi-Objective Optimization with Fuzzy Environment
Authors: Michael Gidey Gebru
Abstract:
Most DEA models operate in a static environment with input and output parameters that are chosen by deterministic data. However, due to ambiguity brought on shifting market conditions, input and output data are not always precisely gathered in real-world scenarios. Fuzzy numbers can be used to address this kind of ambiguity in input and output data. Therefore, this work aims to expand crisp DEA into DEA with fuzzy environment. In this study, the input and output data are regarded as fuzzy triangular numbers. Then, the DEA model with fuzzy environment is solved using a multi-objective method to gauge the Decision Making Units’ efficiency. Finally, the developed DEA model is illustrated with an application on real data 50 educational institutions.Keywords: efficiency, DEA, fuzzy, decision making units, higher education institutions
Procedia PDF Downloads 5826410 Powerful Media: Reflection of Professional Audience
Authors: Hamide Farshad, Mohammadreza Javidi Abdollah Zadeh Aval
Abstract:
As a result of the growing penetration of the media into human life, a new role under the title of "audience" is defined in the social life .A kind of role which is dramatically changed since its formation. This article aims to define the audience position in the new media equations which is concluded to the transformation of the media role. By using the Library and Attributive method to study the history, the evolutionary outlook to the audience and the recognition of the audience and the media relation in the new media context is studied. It was perceived in past that public communication would result in receiving the audience. But after the emergence of the interactional media and transformation in the audience social life, a new kind of public communication is formed, and also the imaginary picture of the audience is replaced by the audience impact on the communication process. Part of this impact can be seen in the form of feedback which is one of the public communication elements. In public communication, the audience feedback is completely accepted. But in many cases, and along with the audience feedback, the media changes its direction; this direction shift is known as media feedback. At this state, the media and the audience are both doers and consistently change their positions in an interaction. With the greater number of the audience and the media, this process has taken a new role, and the role of this doer is sometimes taken by an audience while influencing another audience, or a media while influencing another media. In this article, this multiple public communication process is shown through representing a model under the title of ”The bilateral influence of the audience and the media.” Based on this model, the audience and the media power are not the two sides of a coin, and as a result, by accepting these two as the doers, the bilateral power of the audience and the media will be complementary to each other. Also more, the compatibility between the media and the audience is analyzed in the bilateral and interactional relation hypothesis, and by analyzing the action law hypothesis, the dos and don’ts of this role are defined, and media is obliged to know and accept them in order to be able to survive. They also have a determining role in the strategic studies of a media.Keywords: audience, effect, media, interaction, action laws
Procedia PDF Downloads 49326409 Dynamic Modeling of Wind Farms in the Jeju Power System
Authors: Dae-Hee Son, Sang-Hee Kang, Soon-Ryul Nam
Abstract:
In this paper, we develop a dynamic modeling of wind farms in the Jeju power system. The dynamic model of wind farms is developed to study their dynamic effects on the Jeju power system. PSS/E is used to develop the dynamic model of a wind farm composed of 1.5-MW doubly fed induction generators. The output of a wind farm is regulated based on pitch angle control, in which the two controllable parameters are speed and power references. The simulation results confirm that the pitch angle is successfully controlled, regardless of the variation in wind speed and output regulation.Keywords: dynamic model, Jeju power system, online limitation, pitch angle control, wind farm
Procedia PDF Downloads 33126408 The Chemical Transport Mechanism of Emitter Micro-Particles in Tungsten Electrode: A Metallurgical Study
Authors: G. Singh, H.Schuster, U. Füssel
Abstract:
The stability of electric arc and durability of electrode tip used in Tungsten Inert Gas (TIG) welding demand a metallurgical study about the chemical transport mechanism of emitter oxide particles in tungsten electrode during its real welding conditions. The tungsten electrodes doped with emitter oxides of rare earth oxides such as La₂O₃, Th₂O₃, Y₂O₃, CeO₂ and ZrO₂ feature a comparatively lower work function than tungsten and thus have superior emission characteristics due to lesser surface temperature of the cathode. The local change in concentration of these emitter particles in tungsten electrode due to high temperature diffusion (chemical transport) can change its functional properties like electrode temperature, work function, electron emission, and stability of the electrode tip shape. The resulting increment in tip surface temperature results in the electrode material loss. It was also observed that the tungsten recrystallizes to large grains at high temperature. When the shape of grain boundaries are granular in shape, the intergranular diffusion of oxide emitter particles takes more time to reach the electrode surface. In the experimental work, the microstructure of the used electrode's tip surface will be studied by scanning electron microscope and reflective X-ray technique in order to gauge the extent of the diffusion and chemical reaction of emitter particles. Besides, a simulated model is proposed to explain the effect of oxide particles diffusion on the electrode’s microstructure, electron emission characteristics, and electrode tip erosion. This model suggests metallurgical modifications in tungsten electrode to enhance its erosion resistance.Keywords: rare-earth emitter particles, temperature-dependent diffusion, TIG welding, Tungsten electrode
Procedia PDF Downloads 19026407 Oxygen Transport in Blood Flows Pasts Staggered Fiber Arrays: A Computational Fluid Dynamics Study of an Oxygenator in Artificial Lung
Authors: Yu-Chen Hsu, Kuang C. Lin
Abstract:
The artificial lung called extracorporeal membrane oxygenation (ECMO) is an important medical machine that supports persons whose heart and lungs dysfunction. Previously, investigation of steady deoxygenated blood flows passing through hollow fibers for oxygen transport was carried out experimentally and computationally. The present study computationally analyzes the effect of biological pulsatile flow on the oxygen transport in blood. A 2-D model with a pulsatile flow condition is employed. The power law model is used to describe the non-Newtonian flow and the Hill equation is utilized to simulate the oxygen saturation of hemoglobin. The dimensionless parameters for the physical model include Reynolds numbers (Re), Womersley parameters (α), pulsation amplitudes (A), Sherwood number (Sh) and Schmidt number (Sc). The present model with steady-state flow conditions is well validated against previous experiment and simulations. It is observed that pulsating flow amplitudes significantly influence the velocity profile, pressure of oxygen (PO2), saturation of oxygen (SO2) and the oxygen mass transfer rates (m ̇_O2). In comparison between steady-state and pulsating flows, our findings suggest that the consideration of pulsating flow in the computational model is needed when Re is raised from 2 to 10 in a typical range for flow in artificial lung.Keywords: artificial lung, oxygen transport, non-Newtonian flows, pulsating flows
Procedia PDF Downloads 31326406 Phosphorus Recovery Optimization in Microbial Fuel Cell
Authors: Abdullah Almatouq
Abstract:
Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.Keywords: energy, microbial fuel cell, phosphorus, struvite
Procedia PDF Downloads 16126405 Impact of Financial Inclusion on Gender Inequality: An Empirical Examination
Authors: Sumanta Kumar Saha, Jie Qin
Abstract:
This study analyzes the impact of financial inclusion on gender inequality in 126 countries belonging to different income groups during the 2005–2019 period. Due to its positive influence on poverty alleviation, economic growth, women empowerment, and income inequality reduction, financial inclusion may help reduce gender equality. This study constructs a novel composite financial inclusion index and applies both fixed-effect panel estimation and instrumental variable approach to examine the impact of financial inclusion on gender inequality. The results indicate that financial inclusion can reduce gender inequality in developing and low- and lower-middle-income countries, but not in higher-income countries. The impact is not always immediate. Past financial inclusion initiatives have a significant influence on future gender inequality. Financial inclusion is also significant if the poverty level is high and women's access to financial services is low compared to men. When the poverty level is low, or women have equal access to financial services, financial inclusion does not significantly affect gender inequality. The study finds that compulsory education and improvement in institutional quality promote gender equality in developing countries apart from financial inclusion. The study proposes that lower-income countries use financial inclusion initiatives to improve gender equality. Other countries need to focus on other aspects such as promoting educational support and institutional quality improvements to achieve gender equality.Keywords: financial inclusion, gender inequality, institutional quality, women empowerment
Procedia PDF Downloads 13326404 Quantification of Dispersion Effects in Arterial Spin Labelling Perfusion MRI
Authors: Rutej R. Mehta, Michael A. Chappell
Abstract:
Introduction: Arterial spin labelling (ASL) is an increasingly popular perfusion MRI technique, in which arterial blood water is magnetically labelled in the neck before flowing into the brain, providing a non-invasive measure of cerebral blood flow (CBF). The accuracy of ASL CBF measurements, however, is hampered by dispersion effects; the distortion of the ASL labelled bolus during its transit through the vasculature. In spite of this, the current recommended implementation of ASL – the white paper (Alsop et al., MRM, 73.1 (2015): 102-116) – does not account for dispersion, which leads to the introduction of errors in CBF. Given that the transport time from the labelling region to the tissue – the arterial transit time (ATT) – depends on the region of the brain and the condition of the patient, it is likely that these errors will also vary with the ATT. In this study, various dispersion models are assessed in comparison with the white paper (WP) formula for CBF quantification, enabling the errors introduced by the WP to be quantified. Additionally, this study examines the relationship between the errors associated with the WP and the ATT – and how this is influenced by dispersion. Methods: Data were simulated using the standard model for pseudo-continuous ASL, along with various dispersion models, and then quantified using the formula in the WP. The ATT was varied from 0.5s-1.3s, and the errors associated with noise artefacts were computed in order to define the concept of significant error. The instantaneous slope of the error was also computed as an indicator of the sensitivity of the error with fluctuations in ATT. Finally, a regression analysis was performed to obtain the mean error against ATT. Results: An error of 20.9% was found to be comparable to that introduced by typical measurement noise. The WP formula was shown to introduce errors exceeding 20.9% for ATTs beyond 1.25s even when dispersion effects were ignored. Using a Gaussian dispersion model, a mean error of 16% was introduced by using the WP, and a dispersion threshold of σ=0.6 was determined, beyond which the error was found to increase considerably with ATT. The mean error ranged from 44.5% to 73.5% when other physiologically plausible dispersion models were implemented, and the instantaneous slope varied from 35 to 75 as dispersion levels were varied. Conclusion: It has been shown that the WP quantification formula holds only within an ATT window of 0.5 to 1.25s, and that this window gets narrower as dispersion occurs. Provided that the dispersion levels fall below the threshold evaluated in this study, however, the WP can measure CBF with reasonable accuracy if dispersion is correctly modelled by the Gaussian model. However, substantial errors were observed with other common models for dispersion with dispersion levels similar to those that have been observed in literature.Keywords: arterial spin labelling, dispersion, MRI, perfusion
Procedia PDF Downloads 37326403 Seamless MATLAB® to Register-Transfer Level Design Methodology Using High-Level Synthesis
Authors: Petri Solanti, Russell Klein
Abstract:
Many designers are asking for an automated path from an abstract mathematical MATLAB model to a high-quality Register-Transfer Level (RTL) hardware description. Manual transformations of MATLAB or intermediate code are needed, when the design abstraction is changed. Design conversion is problematic as it is multidimensional and it requires many different design steps to translate the mathematical representation of the desired functionality to an efficient hardware description with the same behavior and configurability. Yet, a manual model conversion is not an insurmountable task. Using currently available design tools and an appropriate design methodology, converting a MATLAB model to efficient hardware is a reasonable effort. This paper describes a simple and flexible design methodology that was developed together with several design teams.Keywords: design methodology, high-level synthesis, MATLAB, verification
Procedia PDF Downloads 14926402 Bulk Viscous Bianchi Type V Cosmological Model with Time Dependent Gravitational Constant and Cosmological Constant in General Relativity
Authors: Reena Behal, D. P. Shukla
Abstract:
In this paper, we investigate Bulk Viscous Bianchi Type V Cosmological Model with Time dependent gravitational constant and cosmological constant in general Relativity by assuming ξ(t)=ξ_(0 ) p^m where ξ_(0 ) and m are constants. We also assume a variation law for Hubble parameter as H(R) = a (R^(-n)+1), where a>0, n>1 being constant. Two universe models were obtained, and their physical behavior has been discussed. When n=1 the Universe starts from singular state whereas when n=0 the cosmology follows a no singular state. The presence of bulk viscosity increase matter density’s value.Keywords: Bulk Viscous Bianchi Type V Cosmological Model, hubble constants, gravitational constant, cosmological constants
Procedia PDF Downloads 17926401 Simulating the Hot Hand Phenomenon in Basketball with Bayesian Hidden Markov Models
Authors: Gabriel Calvo, Carmen Armero, Luigi Spezia
Abstract:
A basketball player is said to have a hot hand if his/her performance is better than expected in different periods of time. A way to deal with this phenomenon is to make use of latent variables, which can indicate whether the player is ‘on fire’ or not. This work aims to model the hot hand phenomenon through a Bayesian hidden Markov model (HMM) with two states (cold and hot) and two different probability of success depending on the corresponding hidden state. This task is illustrated through a comprehensive simulation study. The simulated data sets emulate the field goal attempts in an NBA season from different profile players. This model can be a powerful tool to assess the ‘streakiness’ of each player, and it provides information about the general performance of the players during the match. Finally, the Bayesian HMM allows computing the posterior probability of any type of streak.Keywords: Bernoulli trials, field goals, latent variables, posterior distribution
Procedia PDF Downloads 19626400 Conversational Assistive Technology of Visually Impaired Person for Social Interaction
Authors: Komal Ghafoor, Tauqir Ahmad, Murtaza Hanif, Hira Zaheer
Abstract:
Assistive technology has been developed to support visually impaired people in their social interactions. Conversation assistive technology is designed to enhance communication skills, facilitate social interaction, and improve the quality of life of visually impaired individuals. This technology includes speech recognition, text-to-speech features, and other communication devices that enable users to communicate with others in real time. The technology uses natural language processing and machine learning algorithms to analyze spoken language and provide appropriate responses. It also includes features such as voice commands and audio feedback to provide users with a more immersive experience. These technologies have been shown to increase the confidence and independence of visually impaired individuals in social situations and have the potential to improve their social skills and relationships with others. Overall, conversation-assistive technology is a promising tool for empowering visually impaired people and improving their social interactions. One of the key benefits of conversation-assistive technology is that it allows visually impaired individuals to overcome communication barriers that they may face in social situations. It can help them to communicate more effectively with friends, family, and colleagues, as well as strangers in public spaces. By providing a more seamless and natural way to communicate, this technology can help to reduce feelings of isolation and improve overall quality of life. The main objective of this research is to give blind users the capability to move around in unfamiliar environments through a user-friendly device by face, object, and activity recognition system. This model evaluates the accuracy of activity recognition. This device captures the front view of the blind, detects the objects, recognizes the activities, and answers the blind query. It is implemented using the front view of the camera. The local dataset is collected that includes different 1st-person human activities. The results obtained are the identification of the activities that the VGG-16 model was trained on, where Hugging, Shaking Hands, Talking, Walking, Waving video, etc.Keywords: dataset, visually impaired person, natural language process, human activity recognition
Procedia PDF Downloads 6626399 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 77