Search results for: optimal chiller loading
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4601

Search results for: optimal chiller loading

11 The Impact of Kids Science Labs Intervention Program on Independent Thinking and Academic Achievement in Young Children

Authors: Aliya Kamilyevna Salahova

Abstract:

This study examines the effectiveness of the Kids Science Labs intervention program, based on STEM, in fostering independent thinking among preschool and elementary school children and its influence on their academic achievement. Through a comprehensive methodology involving interviews, surveys, observations, case studies, and statistical tests, data were collected from various sources to accurately analyze the program's effects. The findings indicate a significant positive impact on children's independent thinking abilities, leading to improved academic performance in mathematics and science, enhanced learning motivation, and a propensity to critically evaluate problem-solving approaches. This research contributes to the theoretical understanding of how STEM activities can foster independent thinking and academic success in young children, providing valuable insights for the development of educational programs. Introduction: The goal of this study is to investigate the influence of the Kids Science Labs intervention program, grounded in STEM, on the development of independent thinking skills among preschool and elementary school children. By addressing this objective, we aim to explore the program's potential to enhance academic performance in mathematics and science. The study's findings have theoretical significance as they shed light on the ways in which STEM activities can foster independent thinking in young children, thus enabling educators to design effective learning programs that promote academic success. Methodology: This study employs a robust methodology that includes interviews, surveys, observations, case studies, and statistical tests. These methods were carefully selected to collect comprehensive data from multiple sources, such as documents and records, ensuring a thorough analysis of the program's effects. The use of diverse data collection and analysis procedures facilitated an in-depth exploration of the research questions and yielded reliable results. Results: The results indicate that children participating in the Kids Science Labs program experienced a sustained positive impact on their independent thinking abilities. Moreover, these children demonstrated improved academic performance in mathematics and science, displaying higher learning motivation and the capacity to critically evaluate problem-solving methods and seek optimal solutions. Theoretical Importance: This study contributes significantly to the existing theoretical knowledge by elucidating how STEM activities can foster independent thinking and enhance academic success in preschool and elementary school children. The findings have practical implications for educators, empowering them to develop learning programs that stimulate independent thinking, leading to improved academic performance in young children. Discussion: The findings of this research affirm that the Kids Science Labs intervention program is highly effective in fostering independent thinking among preschool and elementary school children. The program's positive impact extends to improved academic performance in mathematics and science, highlighting its potential to enhance learning outcomes. Educators can leverage these findings to develop educational programs that promote independent thinking and elevate academic achievement in young children. Conclusion: In conclusion, the Kids Science Labs intervention program has been found to be highly effective in fostering independent thinking among preschool and elementary school children. Furthermore, participation in the program correlates with improved academic performance in mathematics and science. The study's outcomes underscore the importance of developing educational initiatives that stimulate independent thinking in young children, thereby enhancing their academic success.

Keywords: STEM in preschool, STEM in elementary school, kids science labs, independent thinking, STEM activities in early childhood education

Procedia PDF Downloads 86
10 Research Project of National Interest (PRIN-PNRR) DIVAS: Developing Methods to Assess Tree Vitality after a Wildfire through Analyses of Cambium Sugar Metabolism

Authors: Claudia Cocozza, Niccolò Frassinelli, Enrico Marchi, Cristiano Foderi, Alessandro Bizzarri, Margherita Paladini, Maria Laura Traversi, Eleftherious Touloupakis, Alessio Giovannelli

Abstract:

The development of tools to quickly identify the fate of injured trees after stress is highly relevant when biodiversity restoration of damaged sites is based on nature-based solutions. In this context, an approach to assess irreversible physiological damages within trees could help to support planning management decisions of perturbed sites to restore biodiversity, for the safety of the environment and understanding functionality adjustments of the ecosystems. Tree vitality can be estimated by a series of physiological proxies like cambium activity, starch, and soluble sugars amount in C-sinks whilst the accumulation of ethanol within the cambial cells and phloem is considered an alert of cell death. However, their determination requires time-consuming laboratory protocols, which makes the approach unfeasible as a practical option in the field. The project aims to develop biosensors to assess the concentration of soluble sugars and ethanol in stem tissues. Soluble sugars and ethanol concentrations will be used to define injured trees to discriminate compromised and recovering trees in the forest directly. To reach this goal, we select study sites subjected to prescribed fires or recent wildfires as experimental set-ups. Indeed, in Mediterranean countries, forest fire is a recurrent event that must be considered as a central component of regional and global strategies in forest management and biodiversity restoration programs. A biosensor will be developed through a multistep process related to target analytes characterization, bioreceptor selection, and, finally, calibration/testing of the sensor. To validate biosensor signals, soluble sugars and ethanol will be quantified by HPLC and GC using synthetic media (in lab) and phloem sap (in field) whilst cambium vitality will be assessed by anatomical observations. On burnt trees, the stem growth will be monitored by dendrometers and/or estimated by tree ring analyses, whilst the tree response to past fire events will be assessed by isotopic discrimination. Moreover, the fire characterization and the visual assessment procedure will be used to assign burnt trees to a vitality class. At the end of the project, a well-defined procedure combining biosensor signal and visual assessment will be produced and applied to a study case. The project outcomes and the results obtained will be properly packaged to reach, engage and address the needs of the final users and widely shared with relevant stakeholders involved in the optimal use of biosensors and in the management of post-fire areas. This project was funded by National Recovery and Resilience Plan (NRRP), Mission 4, Component C2, Investment 1.1 - Call for tender No. 1409 of 14 September 2022 – ‘Progetti di Ricerca di Rilevante interesse Nazionale – PRIN’ of Italian Ministry of University and Research funded by the European Union – NextGenerationEU; Grant N° P2022Z5742, CUP B53D23023780001.

Keywords: phloem, scorched crown, conifers, prescribed burning, biosensors

Procedia PDF Downloads 15
9 A Risk-Based Comprehensive Framework for the Assessment of the Security of Multi-Modal Transport Systems

Authors: Mireille Elhajj, Washington Ochieng, Deeph Chana

Abstract:

The challenges of the rapid growth in the demand for transport has traditionally been seen within the context of the problems of congestion, air quality, climate change, safety, and affordability. However, there are increasing threats including those related to crime such as cyber-attacks that threaten the security of the transport of people and goods. To the best of the authors’ knowledge, this paper presents for the first time, a comprehensive framework for the assessment of the current and future security issues of multi-modal transport systems. The approach or method proposed is based on a structured framework starting with a detailed specification of the transport asset map (transport system architecture), followed by the identification of vulnerabilities. The asset map and vulnerabilities are used to identify the various approaches for exploitation of the vulnerabilities, leading to the creation of a set of threat scenarios. The threat scenarios are then transformed into risks and their categories, and include insights for their mitigation. The consideration of the mitigation space is holistic and includes the formulation of appropriate policies and tactics and/or technical interventions. The quality of the framework is ensured through a structured and logical process that identifies the stakeholders, reviews the relevant documents including policies and identifies gaps, incorporates targeted surveys to augment the reviews, and uses subject matter experts for validation. The approach to categorising security risks is an extension of the current methods that are typically employed. Specifically, the partitioning of risks into either physical or cyber categories is too limited for developing mitigation policies and tactics/interventions for transport systems where an interplay between physical and cyber processes is very often the norm. This interplay is rapidly taking on increasing significance for security as the emergence of cyber-physical technologies, are shaping the future of all transport modes. Examples include: Connected Autonomous Vehicles (CAVs) in road transport; the European Rail Traffic Management System (ERTMS) in rail transport; Automatic Identification System (AIS) in maritime transport; advanced Communications, Navigation and Surveillance (CNS) technologies in air transport; and the Internet of Things (IoT). The framework adopts a risk categorisation scheme that considers risks as falling within the following threat→impact relationships: Physical→Physical, Cyber→Cyber, Cyber→Physical, and Physical→Cyber). Thus the framework enables a more complete risk picture to be developed for today’s transport systems and, more importantly, is readily extendable to account for emerging trends in the sector that will define future transport systems. The framework facilitates the audit and retro-fitting of mitigations in current transport operations and the analysis of security management options for the next generation of Transport enabling strategic aspirations such as systems with security-by-design and co-design of safety and security to be achieved. An initial application of the framework to transport systems has shown that intra-modal consideration of security measures is sub-optimal and that a holistic and multi-modal approach that also addresses the intersections/transition points of such networks is required as their vulnerability is high. This is in-line with traveler-centric transport service provision, widely accepted as the future of mobility services. In summary, a risk-based framework is proposed for use by the stakeholders to comprehensively and holistically assess the security of transport systems. It requires a detailed understanding of the transport architecture to enable a detailed vulnerabilities analysis to be undertaken, creates threat scenarios and transforms them into risks which form the basis for the formulation of interventions.

Keywords: mitigations, risk, transport, security, vulnerabilities

Procedia PDF Downloads 165
8 The Pro-Reparative Effect of Vasoactive Intestinal Peptide in Chronic Inflammatory Osteolytic Periapical Lesions

Authors: Michelle C. S. Azevedo, Priscila M. Colavite, Carolina F. Francisconi, Ana P. Trombone, Gustavo P. Garlet

Abstract:

VIP (vasoactive intestinal peptide) know as a potential protective factor in the view of its marked immunosuppressive properties. In this work, we investigated a possible association of VIP with the clinical status of experimental periapical granulomas and the association with expression markers in the lesions potentially associated with periapical lesions pathogenesis. C57BL/6WT mice were treated or not with recombinant VIP. Animals with active/progressive (N=40), inactive/stable (N=70) periapical granulomas and controls (N=50) were anesthetized and the right mandibular first molar was surgically opened, allowing exposure of dental pulp. Endodontic pathogenic bacterial strains were inoculated: Porphyromonas gingivalis, Prevotella nigrescens, Actinomyces viscosus, and Fusobacterium nucleatum subsp. polymorphum. The cavity was not sealed after bacterial inoculation. During lesion development, animals were treated or not with recombinant VIP 3 days post infection. Animals were killed after 3, 7, 14, and 21 days of infection and the jaws were dissected. The extraction of total RNA from periodontal tissues was performed and the integrity of samples was checked. qPCR reaction using TaqMan chemistry with inventoried primers were performed in ViiA7 equipment. The results, depicted as the relative levels of gene expression, were calculated in reference to GAPDH and β-actin expression. Periodontal tissues from upper molars were vested and incubated supplemented RPMI, followed by processing with 0.05% DNase. Cell viability and couting were determined by Neubauer chamber analysis. For flow cytometry analysis, after cell counting the cells were stained with the optimal dilution of each antibody; (PE)-conjugated and (FITC)-conjugated antibodies against CD4, CD25, FOXP3, IL-4, IL-17 and IFN-γ antibodies, as well their respective isotype controls. Cells were analyzed by FACScan and CellQuest software. Results are presented as the number of cells in the periodontal tissues or the number of positive cells for each marker in the CD4+FOXp3+, CD4+IL-4+, CD4+IFNg+ and CD4+IL-17+ subpopulations. The levels mRNA were measured by qPCR. The VIP expression was predominated in inactive lesions, as well part of the clusters of cytokine/Th markers identified as protective factors and a negative correlation between VIP expression and lesion evolution was observed. A quantitative analysis of IL1β, IL17, TNF, IFN, MMP2, RANKL, OPG, IL10, TGFβ, CTLA4, COL5A1, CTGF, CXCL11, FGF7, ITGA4, ITGA5, SERP1 and VTN expression was measured in experimental periapical lesions treated with VIP 7 and 14 days after lesion induction and healthy animals. After 7 days, all targets presented a significate increase in comparison to untreated animals. About migration kinetics, profile of chemokine receptors expression of TCD4+ subsets and phenotypic analysis of Tregs, Th1, Th2 and Th17 cells during the course of experimental periodontal disease evaluated by flow cytometry and depicted as the number of positive cells for each marker. CD4+IFNg+ and CD4+FOXp3+ cells migration were significate increased 7 days post VIP treatment. CD4+IL17+ cells migration were significate increased 7 and 14 days post VIP treatment, CD4+IL4+ cells migration were significate increased 14 and 21 days post VIP treatment compared to the control group. In conclusion, our experimental data support VIP involvement in determining the inactivity of periapical lesions. Financial support: FAPESP #2015/25618-2.

Keywords: chronic inflammation, cytokines, osteolytic lesions, VIP (Vasoactive Intestinal Peptide)

Procedia PDF Downloads 191
7 Case Study Hyperbaric Oxygen Therapy for Idiopathic Sudden Sensorineural Hearing Loss

Authors: Magdy I. A. Alshourbagi

Abstract:

Background: The National Institute for Deafness and Communication Disorders defines idiopathic sudden sensorineural hearing loss as the idiopathic loss of hearing of at least 30 dB across 3 contiguous frequencies occurring within 3 days.The most common clinical presentation involves an individual experiencing a sudden unilateral hearing loss, tinnitus, a sensation of aural fullness and vertigo. The etiologies and pathologies of ISSNHL remain unclear. Several pathophysiological mechanisms have been described including: vascular occlusion, viral infections, labyrinthine membrane breaks, immune associated disease, abnormal cochlear stress response, trauma, abnormal tissue growth, toxins, ototoxic drugs and cochlear membrane damage. The rationale for the use of hyperbaric oxygen to treat ISSHL is supported by an understanding of the high metabolism and paucity of vascularity to the cochlea. The cochlea and the structures within it require a high oxygen supply. The direct vascular supply, particularly to the organ of Corti, is minimal. Tissue oxygenation to the structures within the cochlea occurs via oxygen diffusion from cochlear capillary networks into the perilymph and the cortilymph. . The perilymph is the primary oxygen source for these intracochlear structures. Unfortunately, perilymph oxygen tension is decreased significantly in patients with ISSHL. To achieve a consistent rise of perilymph oxygen content, the arterial-perilymphatic oxygen concentration difference must be extremely high. This can be restored with hyperbaric oxygen therapy. Subject and Methods: A 37 year old man was presented at the clinic with a five days history of muffled hearing and tinnitus of the right ear. Symptoms were sudden onset, with no associated pain, dizziness or otorrhea and no past history of hearing problems or medical illness. Family history was negative. Physical examination was normal. Otologic examination revealed normal tympanic membranes bilaterally, with no evidence of cerumen or middle ear effusion. Tuning fork examination showed positive Rinne test bilaterally but with lateralization of Weber test to the left side, indicating right ear sensorineural hearing loss. Audiometric analysis confirmed sensorineural hearing loss across all frequencies of about 70- dB in the right ear. Routine lab work were all within normal limits. Clinical diagnosis of idiopathic sudden sensorineural hearing loss of the right ear was made and the patient began a medical treatment (corticosteroid, vasodilator and HBO therapy). The recommended treatment profile consists of 100% O2 at 2.5 atmospheres absolute for 60 minutes daily (six days per week) for 40 treatments .The optimal number of HBOT treatments will vary, depending on the severity and duration of symptomatology and the response to treatment. Results: As HBOT is not yet a standard for idiopathic sudden sensorineural hearing loss, it was introduced to this patient as an adjuvant therapy. The HBOT program was scheduled for 40 sessions, we used a 12-seat multi place chamber for the HBOT, which was started at day seven after the hearing loss onset. After the tenth session of HBOT, improvement of both hearing (by audiogram) and tinnitus was obtained in the affected ear (right). Conclusions: In conclusion, HBOT may be used for idiopathic sudden sensorineural hearing loss as an adjuvant therapy. It may promote oxygenation to the inner ear apparatus and revive hearing ability. Patients who fail to respond to oral and intratympanic steroids may benefit from this treatment. Further investigation is warranted, including animal studies to understand the molecular and histopathological aspects of HBOT and randomized control clinical studies.

Keywords: idiopathic sudden sensorineural hearing loss (issnhl), hyperbaric oxygen therapy (hbot), the decibel (db), oxygen (o2)

Procedia PDF Downloads 431
6 Improving Diagnostic Accuracy of Ankle Syndesmosis Injuries: A Comparison of Traditional Radiographic Measurements and Computed Tomography-Based Measurements

Authors: Yasar Samet Gokceoglu, Ayse Nur Incesu, Furkan Okatar, Berk Nimetoglu, Serkan Bayram, Turgut Akgul

Abstract:

Ankle syndesmosis injuries pose a significant challenge in orthopedic practice due to their potential for prolonged recovery and chronic ankle dysfunction. Accurate diagnosis and management of these injuries are essential for achieving optimal patient outcomes. The use of radiological methods, such as X-ray, computed tomography (CT), and magnetic resonance imaging (MRI), plays a vital role in the accurate diagnosis of syndesmosis injuries in the context of ankle fractures. Treatment options for ankle syndesmosis injuries vary, with surgical interventions such as screw fixation and suture-button implantation being commonly employed. The choice of treatment is influenced by the severity of the injury and the presence of associated fractures. Additionally, the mechanism of injury, such as pure syndesmosis injury or specific fracture types, can impact the stability and management of syndesmosis injuries. Ankle fractures with syndesmosis injury present a complex clinical scenario, requiring accurate diagnosis, appropriate reduction, and tailored management strategies. The interplay between the mechanism of injury, associated fractures, and treatment modalities significantly influences the outcomes of these challenging injuries. The long-term outcomes and patient satisfaction following ankle fractures with syndesmosis injury are crucial considerations in the field of orthopedics. Patient-reported outcome measures, such as the Foot and Ankle Outcome Score (FAOS), provide essential information about functional recovery and quality of life after these injuries. When diagnosing syndesmosis injuries, standard measurements, such as the medial clear space, tibiofibular overlap, tibiofibular clear space, anterior tibiofibular ratio (ATFR), and the anterior-posterior tibiofibular ratio (APTF), are assessed through radiographs and computed tomography (CT) scans. These parameters are critical in evaluating the presence and severity of syndesmosis injuries, enabling clinicians to choose the most appropriate treatment approach. Despite advancements in diagnostic imaging, challenges remain in accurately diagnosing and treating ankle syndesmosis injuries. Traditional diagnostic parameters, while beneficial, may not capture the full extent of the injury or provide sufficient information to guide therapeutic decisions. This gap highlights the need for exploring additional diagnostic parameters that could enhance the accuracy of syndesmosis injury diagnoses and inform treatment strategies more effectively. The primary goal of this research is to evaluate the usefulness of traditional radiographic measurements in comparison to new CT-based measurements for diagnosing ankle syndesmosis injuries. Specifically, this study aims to assess the accuracy of conventional parameters, including medial clear space, tibiofibular overlap, tibiofibular clear space, ATFR, and APTF, in contrast with the recently proposed CT-based measurements such as the delta and gamma angles. Moreover, the study intends to explore the relationship between these diagnostic parameters and functional outcomes, as measured by the Foot and Ankle Outcome Score (FAOS). Establishing a correlation between specific diagnostic measurements and FAOS scores will enable us to identify the most reliable predictors of functional recovery following syndesmosis injuries. This comparative analysis will provide valuable insights into the accuracy and dependability of CT-based measurements in diagnosing ankle syndesmosis injuries and their potential impact on predicting patient outcomes. The results of this study could greatly influence clinical practices by refining diagnostic criteria and optimizing treatment planning for patients with ankle syndesmosis injuries.

Keywords: ankle syndesmosis injury, diagnostic accuracy, computed tomography, radiographic measurements, Tibiofibular syndesmosis distance

Procedia PDF Downloads 72
5 Leveraging Digital Transformation Initiatives and Artificial Intelligence to Optimize Readiness and Simulate Mission Performance across the Fleet

Authors: Justin Woulfe

Abstract:

Siloed logistics and supply chain management systems throughout the Department of Defense (DOD) has led to disparate approaches to modeling and simulation (M&S), a lack of understanding of how one system impacts the whole, and issues with “optimal” solutions that are good for one organization but have dramatic negative impacts on another. Many different systems have evolved to try to understand and account for uncertainty and try to reduce the consequences of the unknown. As the DoD undertakes expansive digital transformation initiatives, there is an opportunity to fuse and leverage traditionally disparate data into a centrally hosted source of truth. With a streamlined process incorporating machine learning (ML) and artificial intelligence (AI), advanced M&S will enable informed decisions guiding program success via optimized operational readiness and improved mission success. One of the current challenges is to leverage the terabytes of data generated by monitored systems to provide actionable information for all levels of users. The implementation of a cloud-based application analyzing data transactions, learning and predicting future states from current and past states in real-time, and communicating those anticipated states is an appropriate solution for the purposes of reduced latency and improved confidence in decisions. Decisions made from an ML and AI application combined with advanced optimization algorithms will improve the mission success and performance of systems, which will improve the overall cost and effectiveness of any program. The Systecon team constructs and employs model-based simulations, cutting across traditional silos of data, aggregating maintenance, and supply data, incorporating sensor information, and applying optimization and simulation methods to an as-maintained digital twin with the ability to aggregate results across a system’s lifecycle and across logical and operational groupings of systems. This coupling of data throughout the enterprise enables tactical, operational, and strategic decision support, detachable and deployable logistics services, and configuration-based automated distribution of digital technical and product data to enhance supply and logistics operations. As a complete solution, this approach significantly reduces program risk by allowing flexible configuration of data, data relationships, business process workflows, and early test and evaluation, especially budget trade-off analyses. A true capability to tie resources (dollars) to weapon system readiness in alignment with the real-world scenarios a warfighter may experience has been an objective yet to be realized to date. By developing and solidifying an organic capability to directly relate dollars to readiness and to inform the digital twin, the decision-maker is now empowered through valuable insight and traceability. This type of educated decision-making provides an advantage over the adversaries who struggle with maintaining system readiness at an affordable cost. The M&S capability developed allows program managers to independently evaluate system design and support decisions by quantifying their impact on operational availability and operations and support cost resulting in the ability to simultaneously optimize readiness and cost. This will allow the stakeholders to make data-driven decisions when trading cost and readiness throughout the life of the program. Finally, sponsors are available to validate product deliverables with efficiency and much higher accuracy than in previous years.

Keywords: artificial intelligence, digital transformation, machine learning, predictive analytics

Procedia PDF Downloads 158
4 Development of a Core Set of Clinical Indicators to Measure Quality of Care for Thyroid Cancer: A Modified-Delphi Approach

Authors: Liane J. Ioannou, Jonathan Serpell, Cino Bendinelli, David Walters, Jenny Gough, Dean Lisewski, Win Meyer-Rochow, Julie Miller, Duncan Topliss, Bill Fleming, Stephen Farrell, Andrew Kiu, James Kollias, Mark Sywak, Adam Aniss, Linda Fenton, Danielle Ghusn, Simon Harper, Aleksandra Popadich, Kate Stringer, David Watters, Susannah Ahern

Abstract:

BACKGROUND: There are significant variations in the management, treatment and outcomes of thyroid cancer, particularly in the role of: diagnostic investigation and pre-treatment scanning; optimal extent of surgery (total or hemi-thyroidectomy); use of active surveillance for small low-risk cancers; central lymph node dissections (therapeutic or prophylactic); outcomes following surgery (e.g. recurrent laryngeal nerve palsy, hypocalcaemia, hypoparathyroidism); post-surgical hormone, calcium and vitamin D therapy; and provision and dosage of radioactive iodine treatment. A proven strategy to reduce variations in the outcome and to improve survival is to measure and compare it using high-quality clinical registry data. Clinical registries provide the most effective means of collecting high-quality data and are a tool for quality improvement. Where they have been introduced at a state or national level, registries have become one of the most clinically valued tools for quality improvement. To benchmark clinical care, clinical quality registries require systematic measurement at predefined intervals and the capacity to report back information to participating clinical units. OBJECTIVE: The aim of this study was to develop a core set clinical indicators that enable measurement and reporting of quality of care for patients with thyroid cancer. We hypothesise that measuring clinical quality indicators, developed to identify differences in quality of care across sites, will reduce variation and improve patient outcomes and survival, thereby lessening costs and healthcare burden to the Australian community. METHOD: Preparatory work and scoping was conducted to identify existing high quality, clinical guidelines and best practice for thyroid cancer both nationally and internationally, as well as relevant literature. A bi-national panel was invited to participate in a modified Delphi process. Panelists were asked to rate each proposed indicator on a Likert scale of 1–9 in a three-round iterative process. RESULTS: A total of 236 potential quality indicators were identified. One hundred and ninety-two indicators were removed to reflect the data capture by the Australian and New Zealand Thyroid Cancer Registry (ANZTCR) (from diagnosis to 90-days post-surgery). The remaining 44 indicators were presented to the panelists for voting. A further 21 indicators were later added by the panelists bringing the total potential quality indicators to 65. Of these, 21 were considered the most important and feasible indicators to measure quality of care in thyroid cancer, of which 12 were recommended for inclusion in the final set. The consensus indicator set spans the spectrum of care, including: preoperative; surgery; surgical complications; staging and post-surgical treatment planning; and post-surgical treatment. CONCLUSIONS: This study provides a core set of quality indicators to measure quality of care in thyroid cancer. This indicator set can be applied as a tool for internal quality improvement, comparative quality reporting, public reporting and research. Inclusion of these quality indicators into monitoring databases such as clinical quality registries will enable opportunities for benchmarking and feedback on best practice care to clinicians involved in the management of thyroid cancer.

Keywords: clinical registry, Delphi survey, quality indicators, quality of care

Procedia PDF Downloads 179
3 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 54
2 Non Pharmacological Approach to IBS (Irritable Bowel Syndrome)

Authors: A. Aceranti, L. Moretti, S. Vernocchi, M. Colorato, P. Caristia

Abstract:

Irritable bowel syndrome (IBS) is the association between abdominal pain, abdominal distension and intestinal dysfunction for recurring periods. About 10% of the world's population has IBS at any given time in their life, and about 200 people per 100,000 receive an initial diagnosis of IBS each year. Persistent pain is recognized as one of the most pervasive and challenging problems facing the medical community today. Persistent pain is considered more as a complex pathophysiological, diagnostic and therapeutic situation rather than as a persistent symptom. The low efficiency of conventional drug treatments has led many doctors to become interested in the non-drug alternative treatment of IBS, especially for more severe cases. Patients and providers are often dissatisfied with the available drug remedies and often seek complementary and alternative medicine (CAM), a unique and holistic approach to treatment that is not a typical component of conventional medicine. Osteopathic treatment may be of specific interest in patients with IBS. Osteopathy is a complementary health approach that emphasizes the role of the musculoskeletal system in health and promotes optimal function of the body's tissues using a variety of manual techniques to improve body function. Osteopathy has been defined as a patient-centered health discipline based on the principles of interrelation between body structure and function, the body's innate capacity for self-healing and the adoption of a whole person health approach. mainly by practicing manual processing. Studies reported that osteopathic manual treatment (OMT) reduced IBS symptoms, such as abdominal pain, constipation, diarrhea, and improved general well-being. The focus in the treatment of IBS with osteopathy has gone beyond simple spinal alignment, to directly address the abnormal physiology of the body using a series of direct and indirect techniques. The topic of this study was chosen for different reasons: due to the large number of people involved who suffer from this disorder and for the dysfunction itself, since nowadays there is still little clarity about the best type of treatment and, above all, to its origin. The visceral component in the osteopathic field is still a world to be discovered, although it is related to a large part of patient series, it has contents that affect numerous disciplines and this makes it an enigma yet to be solved. The study originated in the didactic practice where the curiosity of a topic is marked that, even today, no one is able to explain and, above all, cure definitively. The main purpose of this study is to try to create a good basis on the osteopathic discipline for subsequent studies that can be exhaustive in the best possible way, resolving some doubts about which treatment modality can be used with more relevance. The path was decided to structure it in such a way that 3 types of osteopathic treatment are used on 3 groups of people who will be selected after completing a questionnaire, which will deem them suitable for the study. They will, in fact, be divided into three groups where: - the first group was given a visceral osteopathic treatment. - The second group was given a manual osteopathic treatment of neurological stimulation. - The third group received a placebo treatment. At the end of the treatment, questionnaires will be re-proposed respectively one week after the session and one month after the treatment from which any data will be collected that will demonstrate the effectiveness or otherwise of the treatment received. The sample of 50 patients examined underwent an oral interview to evaluate the inclusion and exclusion criteria to participate in the study. Of the 50 patients questioned, 17 people who underwent different osteopathic techniques were eligible for the study. Comparing the data related to the first assessment of tenderness and frequency of symptoms with the data related to the first follow-up shows a significant improvement in the score assigned to the different questions, especially in the neurogenic and visceral groups. We are aware of the fact that it is a study performed on a small sample of patients, and this is a penalizing factor. We remain, however, convinced that having obtained good results in terms of subjective improvement in the quality of life of the subjects, it would be very interesting to re-propose the study on a larger sample and fill the gaps.

Keywords: IBS, osteopathy, colon, intestinal inflammation

Procedia PDF Downloads 100
1 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 27