Search results for: transient stability
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3777

Search results for: transient stability

3387 The Effect of AMBs Number of a Dynamics Behavior of a Spur Gear Reducer in Non-Stationary Regime

Authors: Najib Belhadj Messaoud, Slim Souissi

Abstract:

The non-linear dynamic behavior of a single stage spur gear reducer is studied in this paper in transient regime. Driving and driver rotors are, respectively, powered by a motor torque Cm and loaded by a resistive torque Cr. They are supported by two identical Active Magnetic Bearings (AMBs). Gear excitation is induced by the motor torque and load variation in addition to the fluctuation of meshing stiff-ness due to the variation of input rotational speed. Three models of AMBs were used with four, six and eight magnets. They are operated by P.D controller and powered by control and bias currents. The dynamic parameters of the AMBs are modeled by stiffness and damping matrices computed by the derivation of the electromagnetic forces. The equations of motion are solved iteratively using Newmark time integration method. In the first part of the study, the model is powered by an electric motor and by a four strokes four cylinders diesel engine in the second part. The numerical results of the dynamic responses of the system come to confirm the significant effect of the transient regime on the dynamic behavior of a gear set, particularly in the case of engine acyclism condition. Results also confirm the influence of the magnet number by AMBs on the dynamic behavior of the system. Indeed, vibrations were more important in the case of gear reducer supported by AMBs with four magnets.

Keywords: motor, stiffness, gear, acyclism, fluctuation, torque

Procedia PDF Downloads 455
3386 Investigation of Static Stability of Soil Slopes Using Numerical Modeling

Authors: Seyed Abolhasan Naeini, Elham Ghanbari Alamooti

Abstract:

Static stability of soil slopes using numerical simulation by a finite element code, ABAQUS, has been investigated, and safety factors of the slopes achieved in the case of static load of a 10-storey building. The embankments have the same soil condition but different loading distance from the slope heel. The numerical method for estimating safety factors is 'Strength Reduction Method' (SRM). Mohr-Coulomb criterion used in the numerical simulations. Two steps used for measuring the safety factors of the slopes: first is under gravity loading, and the second is under static loading of a building near the slope heel. These safety factors measured from SRM, are compared with the values from Limit Equilibrium Method, LEM. Results show that there is good agreement between SRM and LEM. Also, it is seen that by increasing the distance from slope heel, safety factors increases.

Keywords: limit equilibrium method, static stability, soil slopes, strength reduction method

Procedia PDF Downloads 151
3385 Therapeutic Potential of GSTM2-2 C-Terminal Domain and Its Mutants, F157A and Y160A on the Treatment of Cardiac Arrhythmias: Effect on Ca2+ Transients in Neonatal Ventricular Cardiomyocytes

Authors: R. P. Hewawasam, A. F. Dulhunty

Abstract:

The ryanodine receptor (RyR) is an intracellular ion channel that releases Ca2+ from the sarcoplasmic reticulum and is essential for the excitation-contraction coupling and contraction in striated muscle. Human muscle specific glutathione transferase M2-2 (GSTM2-2) is a highly specific inhibitor of cardiac ryanodine receptor (RyR2) activity. Single channel-lipid bilayer studies and Ca2+ release assays performed using the C-terminal half of the GSTM2-2 and its mutants F157A and Y160A confirmed the ability of the C terminal domain of GSTM2-2 to specifically inhibit the cardiac ryanodine receptor activity. Objective of the present study is to determine the effect of C terminal domain of GSTM2-2 (GSTM2-2C) and the mutants, F157A and Y160A on the Ca2+ transients of neonatal ventricular cardiomyocytes. Primary cardiomyocytes were cultured from neonatal rats. They were treated with GSTM2-2C and the two mutants F157A and Y160A at 15µM and incubated for 2 hours. Then the cells were led with Fluo-4AM, fluorescent Ca2+ indicator, and the field stimulated (1 Hz, 3V and 2ms) cells were excited using the 488 nm argon laser. Contractility of the cells were measured and the Ca2+ transients in the stained cells were imaged using Leica SP5 confocal microscope. Peak amplitude of the Ca2+ transient, rise time and decay time from the peak were measured for each transient. In contrast to GSTM2C which significantly reduced the % shortening (42.8%) in the field stimulated cells, F157A and Y160A failed to reduce the % shortening.Analysis revealed that the average amplitude of the Ca2+ transient was significantly reduced (P<0.001) in cells treated with the wild type GSTM2-2C compared to that of untreated cells. Cells treated with the mutants F157A and Y160A didn’t change the Ca2+ transient significantly compared to the control. A significant increase in the rise time (P< 0.001) and a significant reduction in the decay time (P< 0.001) were observed in cardiomyocytes treated with GSTM2-2C compared to the control but not with F157A and Y160A. These results are consistent with the observation that GSTM2-2C reduced the Ca2+ release from the cardiac SR significantly whereas the mutants, F157A and Y160A didn’t show any effect compared to the control. GSTM2-2C has an isoform-specific effect on the cardiac ryanodine receptor activity and also it inhibits RyR2 channel activity only during diastole. Selective inhibition of RyR2 by GSTM2-2C has significant clinical potential in the treatment of cardiac arrhythmias and heart failure. Since GSTM2-2C-terminal construct has no GST enzyme activity, its introduction to the cardiomyocyte would not exert any unwanted side effects that may alter its enzymatic action. The present study further confirms that GSTM2-2C is capable of decreasing the Ca2+ release from the cardiac SR during diastole. These results raise the future possibility of using GSTM2-2C as a template for therapeutics that can depress RyR2 function when the channel is hyperactive in cardiac arrhythmias and heart failure.

Keywords: arrhythmia, cardiac muscle, cardiac ryanodine receptor, GSTM2-2

Procedia PDF Downloads 277
3384 Investigating the Dynamic Response of the Ballast

Authors: Osama Brinji, Wing Kong Chiu, Graham Tew

Abstract:

Understanding the stability of rail ballast is one of the most important aspects in the railways. An unstable track may cause some issues such as unnecessary vibration and ultimately loss of track quality. The track foundation plays an important role in the stabilization of the railway. The dynamic response of rail ballast in the vicinity of the rail sleeper can affect the stability of the rail track and this has not been studied in detail. A review of literature showed that most of the works focused on the area under the concrete sleeper. Although there are some theories about the shear (longitudinal) effect of the rail ballast, these have not properly been studied and hence are not well understood. The stability of a rail track will depend on the compactness of the ballast in its vicinity. This paper will try to determine the dynamic response of the ballast to identify its resonant behaviour. This preliminary research is one of several studies that examine the vibration response of the granular materials. The main aim is to use this information for future design of sleepers to ensure that any dynamic response of the sleeper will not compromise the state of compactness of the ballast. This paper will report on the dependence of damping and the natural frequency of the ballast as a function of depth and distance from the point of excitation introduced through a concrete block. The concrete block is used to simulate a sleeper and the ballast is simulated with gravel. In spite of these approximations, the results presented in the paper will show an agreement with theories and the assumptions that are used in study the mechanical behaviour of the rail ballast.

Keywords: ballast, dynamic response, sleeper, stability

Procedia PDF Downloads 496
3383 A Second Spark Ignition Timing for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Adam Majczak

Abstract:

In aviation most important systems that impact the aircraft flight safety are duplicated. The ASz-62IR aircraft radial engine consists of two spark plugs powered by two separate magnetos. The relative difference in spark timing has an influence on the combustion process. The retardation of the second spark relative to the first spark was analyzed. The CFD simulation was developed as a multicycle transient model. Two independent spark sources imitate two flame fronts after an ignition period. It makes the combustion process shorter but only for certain range of second spark retardation. The model was validated by the in-cylinder pressure comparison. Combustion parameters were analyzed for different second spark retardation values. It was found that the most advantageous ignition timing in means of performance is simultaneous ignition. Nevertheless, for this engine the ignition time of the second spark plug is greatly retarded eliminating the advantageous performance influence. The reason behind this is maintaining high ignition certainty for all engine running conditions and for whole operating rpm range. In aviation the engine reliability is more important than its performance. Introducing electronic ignition system can yield from simultaneous ignition timing by increasing the engine performance and providing good reliability for all flight conditions. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 379
3382 Brexit and Financial Stability: An Agent-Based Simulation

Authors: Aristeidis Samitas, Stathis Polyzos

Abstract:

As the UK and the EU prepare to start negotiations for Brexit, it is important for both sides to comprehend the full extent of the consequences of this process. In this paper, we employ an object oriented simulation framework in order to test for the short-term and long-term effects of Brexit on both sides of the Channel. The relative strength of the UK economy and the banking sector vis-à-vis the EU is taken under consideration. Our results confirm predictions in the relevant literature regarding the output cost of Brexit, with particular emphasis on the EU. Furthermore, we show that financial stability is also an important issue on both sides, with the banking system suffering significant losses, particularly over the longer term. Our findings suggest that policymakers should be extremely careful in handling Brexit negotiations, making sure to consider dynamic effects that may be caused by UK bank assets moving to the EU after Brexit. The model results show that, as the UK banking system loses its assets, the end state of the UK economy is deteriorated while the end state of EU economy is improved.

Keywords: Banking Crises, Brexit, Financial Stability, VBanking

Procedia PDF Downloads 276
3381 Effects of Kinesio Taping on Postural Stability in Young Soccer Players

Authors: Mustafa Gulsen, Nihan Pekyavas, Emine Atıcı

Abstract:

Purpose: The aim of this study is to investigate the effects of Kinesio taping on postural stability and in young soccer players. Subjects and Methods: 62 volunteered soccer players from Cayyolu Sports Club were included in our study. Permissions were also taken from the club directors about the inclusion of their players to our study. Soccer players between the age of 12 and 16 were included in our study. Players that had previous injury on lower extremities were excluded from the study. Players were randomly divided into two groups: Kinesio taping (KT) (n=31), and control group (n = 31). KT application including gastrocnemius and quadriceps femoris muscle facilitation techniques were applied to the first group. A rest time for 45 minutes was given in order to see the best effectiveness of the tape. The second group was set as the control group and no application was made. All participants were assessed before the application and 45 minutes later. In order to provide the double-blind design of the study, an experienced physiotherapist has done the assessments and another experienced physiotherapist has done the taping. The patients were randomly assigned to one of the two groups using an online random allocation software program. Postural stability was assessed by using Tetrax Interactive Balance System. Thermographic assessment was done by using FLIR E5 (FLIR Systems AB, Sweden) thermal camera in order to see which muscles have the most thermal activity while maintaining postural stability. Results: Statistically significant differences were found in all assessment parameters in both Kinesio Taping and control groups (all p<0.05) except thermal imaging of dominant gastrocnemius muscle results (p=0.668) (Table 1). In comparison of the two groups, statistically significant differences were found in all parameters (all p<0.05). Conclusion: In this study, we investigated the effects of Kinesio taping on postural stability in young soccer players and found that KT application on Quadriceps and Gastrocnemius muscles may have decreased the risk of falling more than the control group. According to thermal imaging assessments, both Quadriceps and Gastrocnemius muscles may be active in maintaining postural stability but in KT group, the temperature of these muscles are higher which leads us to think that they are more activated.

Keywords: Kinesio taping, fall risk, muscle temperature, postural stability

Procedia PDF Downloads 234
3380 Impact of Flavor on Food Product Quality, A Case Study of Vanillin Stability during Biscuit Preparation

Authors: N. Yang, R. Linforth, I. Fisk

Abstract:

The influence of food processing and choice of flavour solvent was investigated using biscuits prepared with vanillin flavour as an example. Powder vanillin either was added directly into the dough or dissolved into flavour solvent then mixed into the dough. The impact of two commonly used flavour solvents on food quality was compared: propylene glycol (PG) or triacetin (TA). The analytical approach for vanillin detection was developed by chromatography (HPLC-PDA), and the standard extraction method for vanillin was also established. The results indicated the impact of solvent choice on vanillin level during biscuit preparation. After baking, TA as a more heat resistant solvent retained more vanillin than PG, so TA is a better solvent for products that undergo a heating process. The results also illustrated the impact of mixing and baking on vanillin stability in the matrices. The average loss of vanillin was 33% during mixing and 13% during baking, which indicated that the binding of vanillin to fat or flour before baking might cause larger loss than evaporation loss during baking.

Keywords: biscuit, flavour stability, food quality, vanillin

Procedia PDF Downloads 504
3379 A Highly Efficient Broadcast Algorithm for Computer Networks

Authors: Ganesh Nandakumaran, Mehmet Karaata

Abstract:

A wave is a distributed execution, often made up of a broadcast phase followed by a feedback phase, requiring the participation of all the system processes before a particular event called decision is taken. Wave algorithms with one initiator such as the 1-wave algorithm have been shown to be very efficient for broadcasting messages in tree networks. Extensions of this algorithm broadcasting a sequence of waves using a single initiator have been implemented in algorithms such as the m-wave algorithm. However as the network size increases, having a single initiator adversely affects the message delivery times to nodes further away from the initiator. As a remedy, broadcast waves can be allowed to be initiated by multiple initiator nodes distributed across the network to reduce the completion time of broadcasts. These waves initiated by one or more initiator processes form a collection of waves covering the entire network. Solutions to global-snapshots, distributed broadcast and various synchronization problems can be solved efficiently using waves with multiple concurrent initiators. In this paper, we propose the first stabilizing multi-wave sequence algorithm implementing waves started by multiple initiator processes such that every process in the network receives at least one sequence of broadcasts. Due to being stabilizing, the proposed algorithm can withstand transient faults and do not require initialization. We view a fault as a transient fault if it perturbs the configuration of the system but not its program.

Keywords: distributed computing, multi-node broadcast, propagation of information with feedback and cleaning (PFC), stabilization, wave algorithms

Procedia PDF Downloads 497
3378 The Effect of Corporate Governance on Financial Stability and Solvency Margin for Insurance Companies in Jordan

Authors: Ghadeer A.Al-Jabaree, Husam Aldeen Al-Khadash, M. Nassar

Abstract:

This study aimed at investigating the effect of well-designed corporate governance system on the financial stability of insurance companies listed in ASE. Further, this study provides a comprehensive model for evaluating and analyzing insurance companies' financial position and prospective for comparing the degree of corporate governance application provisions among Jordanian insurance companies. In order to achieve the goals of the study, a whole population that consist of (27) listed insurance companies was introduced through the variables of (board of director, audit committee, internal and external auditor, board and management ownership and block holder's identities). Statistical methods were used with alternative techniques by (SPSS); where descriptive statistical techniques such as means, standard deviations were used to describe the variables, while (F) test and ANOVA analysis of variance were used to test the hypotheses of the study. The study revealed the existence of significant effect of corporate governance variables except local companies that are not listed in ASE on financial stability within control variables especially debt ratio (leverage),where it's also showed that concentration in motor third party doesn't have significant effect on insurance companies' financial stability during study period. Moreover, the study concludes that Global financial crisis affect the investment side of insurance companies with insignificant effect on the technical side. Finally, some recommendations were presented such as enhancing the laws and regulation that help the appropriate application of corporate governance, and work on activating the transparency in the disclosures of the financial statements and focusing on supporting the technical provisions for the companies, rather than focusing only on profit side.

Keywords: corporate governance, financial stability and solvency margin, insurance companies, Jordan

Procedia PDF Downloads 485
3377 A Single Country Comparative Contextual Description Study of the Executive Authorities in Austria

Authors: Meryl Abigail Lucasan

Abstract:

The purpose of this research paper is to present a Single Country Comparative Contextual Description Study of the Executive Authorities in Austria, focusing with the Federal President, Cabinet members (Federal Chancellor, the Vice-Chancellor and the other Federal Ministers) and the State Government. In this paper, the roles and powers of the executive authorities of Austria will be enumerated and explained; and the behavior of the executive authorities of Austria will be described in detail. In addition, the researcher will provide a survey that was answered by an Austrian citizen through electronic mail to gain more concrete information about the current political condition in Austria. Based on research, Austria has a remarkable political stability. This paper will develop a conceptual framework or a sample paradigm to represent the political system in Austria, focusing on its states and Executive Authorities in achieving political stability.

Keywords: Austrian politics, executive branch of the government, federal government, political stability

Procedia PDF Downloads 259
3376 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 334
3375 Thermal Effects on Wellbore Stability and Fluid Loss in High-Temperature Geothermal Drilling

Authors: Mubarek Alpkiray, Tan Nguyen, Arild Saasen

Abstract:

Geothermal drilling operations contain numerous challenges that are encountered to increase the well cost and nonproductive time. Fluid loss is one of the most undesirable troublesome that can cause well abandonment in geothermal drilling. Lost circulation can be seen due to natural fractures, high mud weight, and extremely high formation temperatures. This challenge may cause wellbore stability problems and lead to expensive drilling operations. Wellbore stability is the main domain that should be considered to mitigate or prevent fluid loss into the formation. This paper describes the causes of fluid loss in the Pamukoren geothermal field in Turkey. A geomechanics approach integration and assessment is applied to help the understanding of fluid loss problems. In geothermal drillings, geomechanics is primarily based on rock properties, in-situ stress characterization, the temperature of the rock, determination of stresses around the wellbore, and rock failure criteria. Since a high-temperature difference between the wellbore wall and drilling fluid is presented, temperature distribution through the wellbore is estimated and implemented to the wellbore stability approach. This study reviewed geothermal drilling data to analyze temperature estimation along the wellbore, the cause of fluid loss and stored electric capacity of the reservoir. Our observation demonstrates the geomechanical approach's significant role in understanding safe drilling operations on high-temperature wells. Fluid loss is encountered due to thermal stress effects around the borehole. This paper provides a wellbore stability analysis for a geothermal drilling operation to discuss the causes of lost circulation resulting in nonproductive time and cost.

Keywords: geothermal wells, drilling, wellbore stresses, drilling fluid loss, thermal stress

Procedia PDF Downloads 185
3374 Optimal Allocation of Battery Energy Storage Considering Stiffness Constraints

Authors: Felipe Riveros, Ricardo Alvarez, Claudia Rahmann, Rodrigo Moreno

Abstract:

Around the world, many countries have committed to a decarbonization of their electricity system. Under this global drive, converter-interfaced generators (CIG) such as wind and photovoltaic generation appear as cornerstones to achieve these energy targets. Despite its benefits, an increasing use of CIG brings several technical challenges in power systems, especially from a stability viewpoint. Among the key differences are limited short circuit current capacity, inertia-less characteristic of CIG, and response times within the electromagnetic timescale. Along with the integration of CIG into the power system, one enabling technology for the energy transition towards low-carbon power systems is battery energy storage systems (BESS). Because of the flexibility that BESS provides in power system operation, its integration allows for mitigating the variability and uncertainty of renewable energies, thus optimizing the use of existing assets and reducing operational costs. Another characteristic of BESS is that they can also support power system stability by injecting reactive power during the fault, providing short circuit currents, and delivering fast frequency response. However, most methodologies for sizing and allocating BESS in power systems are based on economic aspects and do not exploit the benefits that BESSs can offer to system stability. In this context, this paper presents a methodology for determining the optimal allocation of battery energy storage systems (BESS) in weak power systems with high levels of CIG. Unlike traditional economic approaches, this methodology incorporates stability constraints to allocate BESS, aiming to mitigate instability issues arising from weak grid conditions with low short-circuit levels. The proposed methodology offers valuable insights for power system engineers and planners seeking to maintain grid stability while harnessing the benefits of renewable energy integration. The methodology is validated in the reduced Chilean electrical system. The results show that integrating BESS into a power system with high levels of CIG with stability criteria contributes to decarbonizing and strengthening the network in a cost-effective way while sustaining system stability. This paper potentially lays the foundation for understanding the benefits of integrating BESS in electrical power systems and coordinating their placements in future converter-dominated power systems.

Keywords: battery energy storage, power system stability, system strength, weak power system

Procedia PDF Downloads 57
3373 Triangular Libration Points in the R3bp under Combined Effects of Oblateness, Radiation and Power-Law Profile

Authors: Babatunde James Falaye, Shi Hai Dong, Kayode John Oyewumi

Abstract:

We study the e ffects of oblateness up to J4 of the primaries and power-law density pro file (PDP) on the linear stability of libration location of an in nitesimal mass within the framework of restricted three body problem (R3BP), by using a more realistic model in which a disc with PDP is rotating around the common center of the system mass with perturbed mean motion. The existence and stability of triangular equilibrium points have been explored. It has been shown that triangular equilibrium points are stable for 0 < μ < μc and unstable for μc ≤ μ ≤ 1/2, where c denotes the critical mass parameter. We find that, the oblateness up to J2 of the primaries and the radiation reduces the stability range while the oblateness up to J4 of the primaries increases the size of stability both in the context where PDP is considered and ignored. The PDP has an e ect of about ≈0:01 reduction on the application of c to Earth-Moon and Jupiter-Moons systems. We find that the comprehensive eff ects of the perturbations have a stabilizing proclivity. However, the oblateness up to J2 of the primaries and the radiation of the primaries have tendency for instability, while coecients up to J4 of the primaries have stability predisposition. In the limiting case c = 0, and also by setting appropriate parameter(s) to zero, our results are in excellent agreement with the ones obtained previously. Libration points play a very important role in space mission and as a consequence, our results have a practical application in space dynamics and related areas. The model may be applied to study the navigation and station-keeping operations of spacecraft (in nitesimal mass) around the Jupiter (more massive) -Callisto (less massive) system, where PDP accounts for the circumsolar ring of asteroidal dust, which has a cloud of dust permanently in its wake.

Keywords: libration points, oblateness, power-law density profile, restricted three-body problem

Procedia PDF Downloads 317
3372 Investigation of the Effects of Gamma Radiation on the Electrically Active Defects in InAs/InGaAs Quantum Dots Laser Structures Grown by Molecular Beam Epitaxy on GaAs Substrates Using Deep Level Transient Spectroscopy

Authors: M. Al Huwayz, A. Salhi, S. Alhassan, S. Alotaibi, A. Almalki, M.Almunyif, A. Alhassni, M. Henini

Abstract:

Recently, there has been much research carried out to investigate quantum dots (QDs) lasers with the aim to increase the gain of quantum well lasers. However, one of the difficulties with these structures is that electrically active defects can lead to serious issues in the performance of these devices. It is therefore essential to fully understand the types of defects introduced during the growth and/or the fabrication process. In this study, the effects of Gamma radiation on the electrically active defects in p-i-n InAs/InGaAsQDs laser structures grown by Molecular Beam Epitaxy (MBE) technique on GaAs substrates were investigated. Deep Level Transient Spectroscopy (DLTS), current-voltage (I-V), and capacitance-voltage (C-V) measurements were performed to explore these effects on the electrical properties of these QDs lasers. I-V measurements showed that as-grown sample had better electrical properties than the irradiated sample. However, DLTS and Laplace DLTS measurements at different reverse biases revealed that the defects in the-region of the p-i-n structures were decreased in the irradiated sample. In both samples, a trap with an activation energy of ~ 0.21 eV was assigned to the well-known defect M1 in GaAs layers

Keywords: quantum dots laser structures, gamma radiation, DLTS, defects, nAs/IngaAs

Procedia PDF Downloads 182
3371 Geomechanical Numerical Modeling of Well Wall in Drilling with Finite Difference Method

Authors: Marzieh Zarei

Abstract:

Well instability is one of the most fundamental challenges faced by the oil and gas industry. Well wall stability analysis is a gap to be filled in the oil industry. The collection of static data such as well logging leads to the construction of a geomechanical numerical model, which will help in assessing the probable risks in future drilling. In this paper, geomechanical model was designed, and mechanical properties of the rock was determined at all points of the model. It was found the safe mud window was determined and the minimum and maximum mud pressures were determined in the ranges of 70-60 MPa and 110-100 MPa, respectively.

Keywords: geomechanics, numerical model, well stability, in-situ stress, underbalanced drilling

Procedia PDF Downloads 116
3370 Production Increase of C-Central Wells Baher Essalm-Libya

Authors: Emed Krekshi, Walid Ben Husein

Abstract:

The Bahr Essalam gas-condensate field is located off the Libyan coast and is currently being produced by Mellitah Oil and Gas (MOG). Gas and condensate are produced from the Bahr Essalam reservoir through a mixture of platform and subsea wells, with the subsea wells being gathered at the western manifolds and delivered to the Sabratha platform via a 22-inch pipeline. Gas is gathered and dehydrated on the Sabratha platform and then delivered to the Mellitah gas plant via an existing 36-inch gas export pipeline. The condensate separated on the Sabratha platform will be delivered to the Mellitah gas plant via an existing 10-inch export pipeline. The Bahr Essalam Phase II project includes 2 production wells (CC16 & CC17) at C-Central A connected to the Sabratha platform via a new 10.9 km long 10”/14” production pipeline. Production rates from CC16 and CC17 have exceeded the maximum planned rate of 40 MMSCFD per well. A hydrothermal analysis was conducted to review and Verify input data, focusing on the variation of flowing well head as a function of flowrate.as well as Review available input data against the previous design input data to determine the extent of change. The steady-state and transient simulations performed with Olga yielded coherent results and confirmed the possibility of achieving flow rates of up to 60MMSCFD per well without exceeding the design temperatures, pressures, and velocities.

Keywords: Bahr Essalam, Mellitah Oil and Gas, production flow rates, steady and transient

Procedia PDF Downloads 47
3369 Study of Compatibility and Oxidation Stability of Vegetable Insulating Oils

Authors: Helena M. Wilhelm, Paulo O. Fernandes, Laís P. Dill, Kethlyn G. Moscon

Abstract:

The use of vegetable oil (or natural ester) as an insulating fluid in electrical transformers is a trend that aims to contribute to environmental preservation since it is biodegradable and non-toxic. Besides, vegetable oil has high flash and combustion points, being considered a fire safety fluid. However, vegetable oil is usually less stable towards oxidation than mineral oil. Both insulating fluids, mineral and vegetable oils, need to be tested periodically according to specific standards. Oxidation stability can be determined by the induction period measured by conductivity method (Rancimat) by monitoring the effectivity of oil’s antioxidant additives, a methodology already developed for food application and biodiesel but still not standardized for insulating fluids. Besides adequate oxidation stability, fluids must be compatible with transformer's construction materials under normal operating conditions to ensure that damage to the oil and parts of the transformer does not occur. ASTM standard and Brazilian normative differ in parameters evaluated, which reveals the need to regulate tests for each oil type. The aim of this study was to assess oxidation stability and compatibility of vegetable oils to suggest the best way to assure a viable performance of vegetable oil as transformer insulating fluid. The determination of the induction period for several vegetable insulating oils from the local market by using Rancimat was carried out according to BS EN 14112 standard, at different temperatures (110, 120, and 130 °C). Also, the compatibility of vegetable oil was assessed according to ASTM and ABNT NBR standards. The main results showed that the best temperature for use in the Rancimat test is 130 °C, which allows a better observation of conductivity change. The compatibility test results presented differences between vegetable and mineral oil standards that should be taken into account in oil testing since materials compatibility and oxidation stability are essential for equipment reliability.

Keywords: compatibility, Rancimat, natural ester, vegetable oil

Procedia PDF Downloads 202
3368 Mathieu Stability of Offshore Buoyant Leg Storage and Regasification Platform

Authors: S. Chandrasekaran, P. A. Kiran

Abstract:

Increasing demand for large-sized Floating, Storage and Regasification Units (FSRUs) for oil and gas industries led to the development of novel geometric form of Buoyant Leg Storage and Regasification Platform (BLSRP). BLSRP consists of a circular deck supported by six buoyant legs placed symmetrically with respect to wave direction. Circular deck is connected to buoyant legs using hinged joints, which restrain transfer of rotational response from the legs to deck and vice-versa. Buoyant legs are connected to seabed using taut moored system with high initial pretension, enabling rigid body motion in vertical plane. Encountered environmental loads induce dynamic tether tension variations, which in turn affect stability of the platform. The present study investigates Mathieu stability of BLSRP under the postulated tether pullout cases by inducing additional tension in the tethers. From the numerical studies carried out, it is seen that postulated tether pullout on any one of the buoyant legs does not result in Mathieu type instability even under excessive tether tension. This is due to the presence of hinged joints, which are capable of dissipating the unbalanced loads to other legs. However, under tether pullout of consecutive buoyant legs, Mathieu-type instability is observed.

Keywords: offshore platforms, stability, postulated failure, dynamic tether tension

Procedia PDF Downloads 175
3367 Ultrafast Ground State Recovery Dynamics of a Cyanine Dye Molecule in Heterogeneous Environment

Authors: Tapas Goswami, Debabrata Goswami

Abstract:

We have studied the changes in ground state recovery dynamics of IR 144 dye using degenerate transient absorption spectroscopy technique when going from homogeneous solution phase to heterogeneous partially miscible liquid/liquid interface. Towards this aim, we set up a partially miscible liquid/liquid interface in which dye is insoluble in one solvent carbon tetrachloride (CCl₄) layer and soluble in other solvent dimethyl sulphoxide (DMSO). A gradual increase in ground state recovery time of the dye molecule is observed from homogenous bulk solution to more heterogeneous environment interface layer. In the bulk solution charge distribution of dye molecule is in equilibrium with polar DMSO solvent molecule. Near the interface micro transportation of non-polar solvent, CCl₄ disturbs the solvent equilibrium in DMSO layer and it relaxes to a new equilibrium state corresponding to a new charge distribution of dye with a heterogeneous mixture of polar and non-polar solvent. In this experiment, we have measured the time required for the dye molecule to relax to the new equilibrium state in different heterogeneous environment. As a result, dye remains longer time in the excited state such that even it can populate more triplet state. The present study of ground state recovery dynamics of a cyanine dye molecule in different solvent environment provides the important characteristics of effect of solvation on excited life time of a dye molecule.

Keywords: excited state, ground state recovery, solvation, transient absorption

Procedia PDF Downloads 276
3366 The Effect of Transparent Oil Wood Stain on the Colour Stability of Spruce Wood during Weathering

Authors: Eliska Oberhofnerova, Milos Panek, Stepan Hysek, Martin Lexa

Abstract:

Nowadays the use of wood, both indoors and outdoors, is constantly increasing. However wood is a natural organic material and in the exterior is subjected to a degradation process caused by abiotic factors (solar radiation, rain, moisture, wind, dust etc.). This process affects only surface layers of wood but neglecting some of the basic rules of wood protection leads to increased possibility of biological agents attack and thereby influences a function of the wood element. The process of wood degradation can be decreased by proper surface treatment, especially in the case of less naturally durable wood species, as spruce. Modern coating systems are subjected to many requirements such as colour stability, hydrophobicity, low volatile organic compound (VOC) content, long service life or easy maintenance. The aim of this study is to evaluate the colour stability of spruce wood (Picea abies), as the basic parameter indicating the coating durability, treated with two layers of transparent natural oil wood stain and exposed to outdoor conditions. The test specimens were exposed for 2 years to natural weathering and 2000 hours to artificial weathering in UV-chamber. The colour parameters were measured before and during exposure to weathering by the spectrophotometer according to CIELab colour space. The comparison between untreated and treated wood and both testing procedures was carried out. The results showed a significant effect of coating on the colour stability of wood, as expected. Nevertheless, increasing colour changes of wood observed during the exposure to weathering differed according to applied testing procedure - natural and artificial.

Keywords: colour stability, natural and artificial weathering, spruce wood, transparent coating

Procedia PDF Downloads 214
3365 Effect of Core Stability Exercises on Balance between Trunk Muscles in Healthy Adult Subjects

Authors: Amir A. Beltagi, Ahmed R. Abdelbaki

Abstract:

Background: Core stability training has recently attracted attention for optimizing performance and improving muscle balance for healthy and unhealthy individuals. The purpose of this study was to investigate the effect of beginner’s core stability exercises on the trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals, randomly assigned into two groups; experimental (group I) and control (group II), participated in the study. Group I involved 20 participants (10 male & 10 female) with mean ±SD age, weight, and height of 20.7±2.4 years, 66.5±12.1 kg and 166.7±7.8 cm respectively. Group II involved 15 participants (6 male & 9 female) with mean ±SD age, weight, and height of 20.3±0.61 years, 68.57±12.2 kg and 164.28 ±7.59 cm respectively. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which the experimental group performed a core stability training program. Findings: Statistical analysis using the 2x2 Mixed Design ANOVA revealed that there were no significant differences in the trunk flexors’/extensors’ peak torque ratio between the ‘pre’ and ‘post’ tests for either group (p > 0.025). Moreover, there were no significant differences in the trunk flexors’/extensors’ ratios between both groups at either test (p > 0.025). Meanwhile, the 2x2 Mixed Design MANOVA revealed that there were significant differences in the trunk flexors’ and extensors’ peak torques between the ‘pre’ and ‘post’ tests for group I (p < 0.025), while there were no significant differences inbetween for group II (p > 0.025). Moreover, there were no significant differences between both groups for the tested muscles’ peak torques at either test except for that of the trunk flexors at the ‘post’ test only (p < 0.025). Interpretation: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.

Keywords: core stability, isokinetic, trunk muscles, muscle balance

Procedia PDF Downloads 305
3364 Preliminary Study on the Factors Affecting Safety Parameters of (Th, U)O₂ Fuel Cycle: The Basis for Choosing Three Fissile Enrichment Zones

Authors: E. H. Uguru, S. F. A. Sani, M. U. Khandaker, M. H. Rabir

Abstract:

The beginning of cycle transient safety parameters is paramount for smooth reactor operation. The enhanced operational safety of UO₂ fuelled AP1000 reactor being the first using three fissile enrichment zones motivated this research for (Th, U)O₂ fuel. This study evaluated the impact of fissile enrichment, soluble boron, and gadolinia on the transient safety parameters to determine the basis for choosing the three fissile enrichment zones. Fuel assembly and core model of Westinghouse small modular reactor were investigated using different fuel and reactivity control arrangements. The Monte Carlo N-Particle eXtended (MCNPX) integrated with CINDER90 burn-up code was used for the calculations. The results show that the moderator temperature coefficient of reactivity (MTC) and the fuel temperature coefficient of reactivity (FTC) were respectively negative and decreased with increasing fissile enrichment. Soluble boron significantly decreased the MTC but slightly increased FTC while gadolinia followed the same trend with a minor impact. However, the MTC and FTC respectively decreased significantly with increasing change in temperature. These results provide a guide on the considerable factors in choosing the three fissile enrichment zones for (Th, U)O₂ fuel in anticipation of their impact on safety parameters. Therefore, this study provides foundational results on the factors that must be considered in choosing three fissile arrangement zones for (Th, U)O₂ fuel.

Keywords: reactivity, safety parameters, small modular reactor, soluble boron, thorium fuel cycle

Procedia PDF Downloads 125
3363 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors

Authors: S. Mohammadzamani, B. Kordi

Abstract:

Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.

Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator

Procedia PDF Downloads 179
3362 A Study on the Optimum Shoulder Width in the Tunnel Considering Driving Safety

Authors: Somyoung Shin, Donghun Jeong, Yeoil Yun

Abstract:

South Korea continuously installed tunnels in consideration of the safety and operation efficiency, and the number of installed tunnels has doubled over the past ten years. The tunnel section is designed based on the guidelines, but the tunnel entrance becomes narrow due to dark adaptation and pressure. In fact, around 13% of traffic in expressways of Japan happens at the entrance, leading to congestion and rear-ends collision accidents. Therefore, this study aims to analyze the stability from the expansion of the shoulder width in the tunnel entrance by applying a virtual reality driving simulator in order to reduce the accidents that happen in the tunnel entrance. To compare the driving stability based on the changes in the width of the right shoulder under the same condition, a virtual reality driving simulator is used to conduct an experiment on 30 subjects in their 20s to 60s and to provide a more practical virtual reality driving environment, and an experiment map is designed based on actual roads as the background to conduct the experiment. The right shoulder is classified into 2.5m and 3.0m based on the design guidelines of the expressways and the road structure installation regulations. The experimenters' experiment order is decided randomly. As a result of analyzing the average speed, it was displayed as 100.73km/h when the shoulder width was 2.5m and 101.69km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as more than 0.05 in the significance level of 95%, so it was statistically insignificant. Also, as a result of analyzing the speed deviation between the average driving speed of the analyzed interval and the average driving speed upon entering the tunnel, it was displayed as 3.06km/h when the shoulder width was 2.5m and 1.87km/h when the shoulder width was 3.0m and as a result of conducting t-test analysis, the p-value appeared as less than 0.05 in the significance level of 95%, so it was statistically significant. This means that when the shoulder width is 3.0m, there is stability in terms of the driving stability compared to when it is 2.5m. Therefore, it is considered that when new roads are constructed in Korea, the right shoulder width should be installed as 3.0m to enhance the driving stability.

Keywords: driving stability, shoulder width, tunnel, virtual reality driving simulator

Procedia PDF Downloads 189
3361 Seepage Analysis through Earth Dam Embankment: Case Study of Batu Dam

Authors: Larifah Mohd Sidik, Anuar Kasa

Abstract:

In recent years, the demands for raw water are increasing along with the growth of the economy and population. Hence, the need for the construction and operation of dams is one of the solutions for the management of water resources problems. The stability of the embankment should be taken into consideration to evaluate the safety of retaining water. The safety of the dam is mostly based on numerous measurable components, for instance, seepage flowrate, pore water pressure and deformation of the embankment. Seepage and slope stability is the primary and most important reason to ascertain the overall safety behavior of the dams. This research study was conducted to evaluate static condition seepage and slope stability performances of Batu dam which is located in Kuala Lumpur capital city. The numerical solution Geostudio-2012 software was employed to analyse the seepage using finite element method, SEEP/W and slope stability using limit equilibrium method, SLOPE/W for three different cases of reservoir level operations; normal and flooded condition. Results of seepage analysis using SEEP/W were utilized as parental input for the analysis of SLOPE/W. Sensitivity analysis on hydraulic conductivity of material was done and calibrated to minimize the relative error of simulation SEEP/W, where the comparison observed field data and predicted value were also carried out. In seepage analysis, such as leakage flow rate, pore water distribution and location of a phreatic line are determined using the SEEP/W. The result of seepage analysis shows the clay core effectively lowered the phreatic surface and no piping failure is shown in the result. Hence, the total seepage flux was acceptable and within the permissible limit.

Keywords: earth dam, dam safety, seepage, slope stability, pore water pressure

Procedia PDF Downloads 213
3360 Proposed Design of an Optimized Transient Cavity Picosecond Ultraviolet Laser

Authors: Marilou Cadatal-Raduban, Minh Hong Pham, Duong Van Pham, Tu Nguyen Xuan, Mui Viet Luong, Kohei Yamanoi, Toshihiko Shimizu, Nobuhiko Sarukura, Hung Dai Nguyen

Abstract:

There is a great deal of interest in developing all-solid-state tunable ultrashort pulsed lasers emitting in the ultraviolet (UV) region for applications such as micromachining, investigation of charge carrier relaxation in conductors, and probing of ultrafast chemical processes. However, direct short-pulse generation is not as straight forward in solid-state gain media as it is for near-IR tunable solid-state lasers such as Ti:sapphire due to the difficulty of obtaining continuous wave laser operation, which is required for Kerr lens mode-locking schemes utilizing spatial or temporal Kerr type nonlinearity. In this work, the transient cavity method, which was reported to generate ultrashort laser pulses in dye lasers, is extended to a solid-state gain medium. Ce:LiCAF was chosen among the rare-earth-doped fluoride laser crystals emitting in the UV region because of its broad tunability (from 280 to 325 nm) and enough bandwidth to generate 3-fs pulses, sufficiently large effective gain cross section (6.0 x10⁻¹⁸ cm²) favorable for oscillators, and a high saturation fluence (115 mJ/cm²). Numerical simulations are performed to investigate the spectro-temporal evolution of the broadband UV laser emission from Ce:LiCAF, represented as a system of two homogeneous broadened singlet states, by solving the rate equations extended to multiple wavelengths. The goal is to find the appropriate cavity length and Q-factor to achieve the optimal photon cavity decay time and pumping energy for resonator transients that will lead to ps UV laser emission from a Ce:LiCAF crystal pumped by the fourth harmonics (266nm) of a Nd:YAG laser. Results show that a single ps pulse can be generated from a 1-mm, 1 mol% Ce³⁺-doped LiCAF crystal using an output coupler with 10% reflectivity (low-Q) and an oscillator cavity that is 2-mm long (short cavity). This technique can be extended to other fluoride-based solid-state laser gain media.

Keywords: rare-earth-doped fluoride gain medium, transient cavity, ultrashort laser, ultraviolet laser

Procedia PDF Downloads 353
3359 Coupling Static Multiple Light Scattering Technique With the Hansen Approach to Optimize Dispersibility and Stability of Particle Dispersions

Authors: Guillaume Lemahieu, Matthias Sentis, Giovanni Brambilla, Gérard Meunier

Abstract:

Static Multiple Light Scattering (SMLS) has been shown to be a straightforward technique for the characterization of colloidal dispersions without dilution, as multiply scattered light in backscattered and transmitted mode is directly related to the concentration and size of scatterers present in the sample. In this view, the use of SMLS for stability measurement of various dispersion types has already been widely described in the literature. Indeed, starting from a homogeneous dispersion, the variation of backscattered or transmitted light can be attributed to destabilization phenomena, such as migration (sedimentation, creaming) or particle size variation (flocculation, aggregation). In a view to investigating more on the dispersibility of colloidal suspensions, an experimental set-up for “at the line” SMLS experiment has been developed to understand the impact of the formulation parameters on particle size and dispersibility. The SMLS experiment is performed with a high acquisition rate (up to 10 measurements per second), without dilution, and under direct agitation. Using such experimental device, SMLS detection can be combined with the Hansen approach to optimize the dispersing and stabilizing properties of TiO₂ particles. It appears that the dispersibility and the stability spheres generated are clearly separated, arguing that lower stability is not necessarily a consequence of poor dispersibility. Beyond this clarification, this combined SMLS-Hansen approach is a major step toward the optimization of dispersibility and stability of colloidal formulations by finding solvents having the best compromise between dispersing and stabilizing properties. Such study can be intended to find better dispersion media, greener and cheaper solvents to optimize particles suspensions, reduce the content of costly stabilizing additives or satisfy product regulatory requirements evolution in various industrial fields using suspensions (paints & inks, coatings, cosmetics, energy).

Keywords: dispersibility, stability, Hansen parameters, particles, solvents

Procedia PDF Downloads 97
3358 A Tool Tuning Approximation Method: Exploration of the System Dynamics and Its Impact on Milling Stability When Amending Tool Stickout

Authors: Nikolai Bertelsen, Robert A. Alphinas, Klaus B. Orskov

Abstract:

The shortest possible tool stickout has been the traditional go-to approach with expectations of increased stability and productivity. However, experimental studies at Danish Advanced Manufacturing Research Center (DAMRC) have proven that for some tool stickout lengths, there exist local productivity optimums when utilizing the Stability Lobe Diagrams for chatter avoidance. This contradicts with traditional logic and the best practices taught to machinists. This paper explores the vibrational characteristics and behaviour of a milling system over the tool stickout length. The experimental investigation has been conducted by tap testing multiple endmills where the tool stickout length has been varied. For each length, the modal parameters have been recorded and mapped to visualize behavioural tendencies. Furthermore, the paper explores the correlation between the modal parameters and the Stability Lobe Diagram to outline the influence and importance of each parameter in a multi-mode system. The insights are conceptualized into a tool tuning approximation solution. It builds on an almost linear change in the natural frequencies when amending tool stickout, which results in changed positions of the Chatter-free Stability Lobes. Furthermore, if the natural frequency of two modes become too close, it will onset of the dynamic absorber effect phenomenon. This phenomenon increases the critical stable depth of cut, allowing for a more stable milling process. Validation tests on the tool tuning approximation solution have shown varying success of the solution. This outlines the need for further research on the boundary conditions of the solution to understand at which conditions the tool tuning approximation solution is applicable. If the conditions get defined, the conceptualized tool tuning approximation solution outlines an approach for quick and roughly approximating tool stickouts with the potential for increased stiffness and optimized productivity.

Keywords: milling, modal parameters, stability lobes, tap testing, tool tuning

Procedia PDF Downloads 148