Search results for: green infrastructure network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8400

Search results for: green infrastructure network

4440 Renovation of Industrial Zones in Ho Chi Minh City: An Approach from Changing Function of Processing to Urban Warehousing

Authors: Thu Le Thi Bao

Abstract:

Industrial parks have both active roles in promoting economic development and source of appearance of boarding houses and slums in the adjacent area, lacking infrastructure, causing many social evils. The context of the recent pandemic and climate change on a global scale pose issues that need to be resolved for sustainable development. Ho Chi Minh City aims to develop housing for migrant workers to stabilize human resources and, at the same time, solve problems of social evils caused by poor living conditions. The paper focuses on the content of renovating existing industrial parks and worker accommodation in Ho Chi Minh City to propose appropriate models, contributing to the goal of urban embellishment and solutions for industrial parks to adapt to abnormal impact conditions such as pandemics, climate change, crises.

Keywords: industrial park, social housing, accommodation, distribution center

Procedia PDF Downloads 117
4439 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 103
4438 Sustainable Living Where the Immaterial Matters

Authors: Maria Hadjisoteriou, Yiorgos Hadjichristou

Abstract:

This paper aims to explore and provoke a debate, through the work of the design studio, “living where the immaterial matters” of the architecture department of the University of Nicosia, on the role that the “immaterial matter” can play in enhancing innovative sustainable architecture and viewing the cities as sustainable organisms that always grow and alter. The blurring, juxtaposing binary of immaterial and matter, as the theoretical backbone of the Unit is counterbalanced by the practicalities of the contested sites of the last divided capital Nicosia with its ambiguous green line and the ghost city of Famagusta in the island of Cyprus. Jonathan Hill argues that the ‘immaterial is as important to architecture as the material concluding that ‘Immaterial–Material’ weaves the two together, so that they are in conjunction not opposition’. This understanding of the relationship of the immaterial vs material set the premises and the departing point of our argument, and talks about new recipes for creating hybrid public space that can lead to the unpredictability of a complex and interactive, sustainable city. We hierarchized the human experience as a priority. We distinguish the notion of space and place referring to Heidegger’s ‘building dwelling thinking’: ‘a distinction between space and place, where spaces gain authority not from ‘space’ appreciated mathematically but ‘place’ appreciated through human experience’. Following the above, architecture and the city are seen as one organism. The notions of boundaries, porous borders, fluidity, mobility, and spaces of flows are the lenses of the investigation of the unit’s methodology, leading to the notion of a new hybrid urban environment, where the main constituent elements are in a flux relationship. The material and the immaterial flows of the town are seen interrelated and interwoven with the material buildings and their immaterial contents, yielding to new sustainable human built environments. The above premises consequently led to choices of controversial sites. Indisputably a provoking site was the ghost town of Famagusta where the time froze back in 1974. Inspired by the fact that the nature took over the a literally dormant, decaying city, a sustainable rebirthing was seen as an opportunity where both nature and built environment, material and immaterial are interwoven in a new emergent urban environment. Similarly, we saw the dividing ‘green line’ of Nicosia completely failing to prevent the trespassing of images, sounds and whispers, smells and symbols that define the two prevailing cultures and becoming a porous creative entity which tends to start reuniting instead of separating , generating sustainable cultures and built environments. The authors would like to contribute to the debate by introducing a question about a new recipe of cooking the built environment. Can we talk about a new ‘urban recipe’: ‘cooking architecture and city’ to deliver an ever changing urban sustainable organism, whose identity will mainly depend on the interrelationship of the immaterial and material constituents?

Keywords: blurring zones, porous borders, spaces of flow, urban recipe

Procedia PDF Downloads 424
4437 Comparison of Deep Learning and Machine Learning Algorithms to Diagnose and Predict Breast Cancer

Authors: F. Ghazalnaz Sharifonnasabi, Iman Makhdoom

Abstract:

Breast cancer is a serious health concern that affects many people around the world. According to a study published in the Breast journal, the global burden of breast cancer is expected to increase significantly over the next few decades. The number of deaths from breast cancer has been increasing over the years, but the age-standardized mortality rate has decreased in some countries. It’s important to be aware of the risk factors for breast cancer and to get regular check- ups to catch it early if it does occur. Machin learning techniques have been used to aid in the early detection and diagnosis of breast cancer. These techniques, that have been shown to be effective in predicting and diagnosing the disease, have become a research hotspot. In this study, we consider two deep learning approaches including: Multi-Layer Perceptron (MLP), and Convolutional Neural Network (CNN). We also considered the five-machine learning algorithm titled: Decision Tree (C4.5), Naïve Bayesian (NB), Support Vector Machine (SVM), K-Nearest Neighbors (KNN) Algorithm and XGBoost (eXtreme Gradient Boosting) on the Breast Cancer Wisconsin Diagnostic dataset. We have carried out the process of evaluating and comparing classifiers involving selecting appropriate metrics to evaluate classifier performance and selecting an appropriate tool to quantify this performance. The main purpose of the study is predicting and diagnosis breast cancer, applying the mentioned algorithms and also discovering of the most effective with respect to confusion matrix, accuracy and precision. It is realized that CNN outperformed all other classifiers and achieved the highest accuracy (0.982456). The work is implemented in the Anaconda environment based on Python programing language.

Keywords: breast cancer, multi-layer perceptron, Naïve Bayesian, SVM, decision tree, convolutional neural network, XGBoost, KNN

Procedia PDF Downloads 81
4436 Utilization of Discarded PET and Concrete Aggregates in Construction Causes: A Green Approach

Authors: Arjun, A. D. Singh

Abstract:

The purpose of this study is to resolve the solid waste problems caused by plastics and concrete demolition as well. In order to that mechanical properties of polymer concrete; in particular, polymer concrete made of unsaturated polyester resins from recycled polyethylene terephthalate (PET) plastic waste and recycled concrete aggregates is carried out. Properly formulated unsaturated polyester based on recycled PET is mixed with inorganic aggregates to produce polymer concrete. Apart from low manufacturing cost, polymer concrete blend has acceptable properties, to go through it. The prior objectives of the paper is to investigate the mechanical properties, i.e. compressive strength, splitting tensile strength, and the flexural strength of polymer concrete blend using an unsaturated polyester resin based on recycled PET. The relationships between the mechanical properties are also analyzed.

Keywords: polyethylene terephthalate (PET), concrete aggregates, compressive strength, splitting tensile strength

Procedia PDF Downloads 575
4435 Viable Use of Natural Extract Solutions from Tuberous and Cereals to Enhance the Synthesis of Activated Carbon-Graphene Composite

Authors: Pamphile Ndagijimana, Xuejiao Liu, Zhiwei Li, Yin Wang

Abstract:

Enhancing the properties of activated carbon is very imperative for various applications. Indeed, the activated carbon has promising physicochemical properties desired for a considerable number of applications. In this regard, we are proposing an enhanced and green technology for increasing the efficiency and performance of the activated carbon to various applications. The technique poses on the use of natural extracts from tuberous and cereals based-solutions. These solutions showed high potentiality to be used in the synthesis of activated carbon-graphene composite with only 3 mL. The extracted liquid from tuberous sourcing was enough to induce precipitation within a fraction of a minute in contrast to that from cereal sourced. Using these extracts, a synthesis of activated carbon-graphene composite was successful. Different characterization techniques such as XRD, SEM, FTIR, BET, and Raman spectroscopy were performed to investigate the composite materials. The results confirmed a conjugation between activated carbon and graphene material.

Keywords: activated carbon, cereals, extract solution, graphene, tuberous

Procedia PDF Downloads 149
4434 Policy of Tourism and Opportunities of Development of Wellness Industry in Georgia

Authors: G. Erkomaishvili, R. Gvelesiani, E. Kharaishvili, M. Chavleishvili

Abstract:

The topic reviews the situation existing currently in Georgia in the field of tourism in conditions of globalization: Touristic resources, the paces of development of the tourism infrastructure, tourism policy, possibilities of development of the Wellness industry in Georgia that is the newest direction of the medical tourism. The factors impeding the development of the industry of tourism, namely-existence of the conflict zones, high rates of the bank credits, deficiencies associated with the tax laws, a level of infrastructural development, quality of services, deficit in the competitive staff, increase of prices in the peak seasons, insufficient promotion of the touristic opportunities of Georgia on the international markets are studied and analyzed. Besides, the levels of development of tourism in Georgia according to the World Economic Forum, aspects of cooperation with the European Union etc. are reviewed. As a result of these studies, a strategy of development of tourism and one of its directions-Wellness industries in Georgia is introduced with the relevant conclusions, on which basis the recommendations are provided.

Keywords: about tourism, tourism policy, wellness industry, business, innovation, technology

Procedia PDF Downloads 520
4433 Contemplation on Non-Expensive Housing Conception by Stable Approach in Metropolises

Authors: Mahdieh Omranian, Mehran Ghanbari Motlagh

Abstract:

As we know, today urban growth, development, and intelligent social evolutions have been proposed in metropolises and this matter extends urban life which can have negative items besides positive and strong items. Along with research on urban life desirable development, conditions should be provided to provide the possibility of human stable development and improvement social welfare. These conditions can reinforce social, economic, and political structures related to non-expensive housing. Demand for non-expensive housing is increasing regarding to population increase and incremental urbanizing process. Therefore, the present study by precise exploration on conceptions, challenges, and strategies, should achieve an endogenous pattern and improve housing condition by looking to instant development. Therefore, the general objective of this article recognizes the existed strategies in housing and achieving desirable conditions for all social classes by sustainable development.

Keywords: housing strategies, infrastructure, metropolis, sustainable development

Procedia PDF Downloads 338
4432 Evaluation of Random Forest and Support Vector Machine Classification Performance for the Prediction of Early Multiple Sclerosis from Resting State FMRI Connectivity Data

Authors: V. Saccà, A. Sarica, F. Novellino, S. Barone, T. Tallarico, E. Filippelli, A. Granata, P. Valentino, A. Quattrone

Abstract:

The work aim was to evaluate how well Random Forest (RF) and Support Vector Machine (SVM) algorithms could support the early diagnosis of Multiple Sclerosis (MS) from resting-state functional connectivity data. In particular, we wanted to explore the ability in distinguishing between controls and patients of mean signals extracted from ICA components corresponding to 15 well-known networks. Eighteen patients with early-MS (mean-age 37.42±8.11, 9 females) were recruited according to McDonald and Polman, and matched for demographic variables with 19 healthy controls (mean-age 37.55±14.76, 10 females). MRI was acquired by a 3T scanner with 8-channel head coil: (a)whole-brain T1-weighted; (b)conventional T2-weighted; (c)resting-state functional MRI (rsFMRI), 200 volumes. Estimated total lesion load (ml) and number of lesions were calculated using LST-toolbox from the corrected T1 and FLAIR. All rsFMRIs were pre-processed using tools from the FMRIB's Software Library as follows: (1) discarding of the first 5 volumes to remove T1 equilibrium effects, (2) skull-stripping of images, (3) motion and slice-time correction, (4) denoising with high-pass temporal filter (128s), (5) spatial smoothing with a Gaussian kernel of FWHM 8mm. No statistical significant differences (t-test, p < 0.05) were found between the two groups in the mean Euclidian distance and the mean Euler angle. WM and CSF signal together with 6 motion parameters were regressed out from the time series. We applied an independent component analysis (ICA) with the GIFT-toolbox using the Infomax approach with number of components=21. Fifteen mean components were visually identified by two experts. The resulting z-score maps were thresholded and binarized to extract the mean signal of the 15 networks for each subject. Statistical and machine learning analysis were then conducted on this dataset composed of 37 rows (subjects) and 15 features (mean signal in the network) with R language. The dataset was randomly splitted into training (75%) and test sets and two different classifiers were trained: RF and RBF-SVM. We used the intrinsic feature selection of RF, based on the Gini index, and recursive feature elimination (rfe) for the SVM, to obtain a rank of the most predictive variables. Thus, we built two new classifiers only on the most important features and we evaluated the accuracies (with and without feature selection) on test-set. The classifiers, trained on all the features, showed very poor accuracies on training (RF:58.62%, SVM:65.52%) and test sets (RF:62.5%, SVM:50%). Interestingly, when feature selection by RF and rfe-SVM were performed, the most important variable was the sensori-motor network I in both cases. Indeed, with only this network, RF and SVM classifiers reached an accuracy of 87.5% on test-set. More interestingly, the only misclassified patient resulted to have the lowest value of lesion volume. We showed that, with two different classification algorithms and feature selection approaches, the best discriminant network between controls and early MS, was the sensori-motor I. Similar importance values were obtained for the sensori-motor II, cerebellum and working memory networks. These findings, in according to the early manifestation of motor/sensorial deficits in MS, could represent an encouraging step toward the translation to the clinical diagnosis and prognosis.

Keywords: feature selection, machine learning, multiple sclerosis, random forest, support vector machine

Procedia PDF Downloads 242
4431 Using Multi-Arm Bandits to Optimize Game Play Metrics and Effective Game Design

Authors: Kenny Raharjo, Ramon Lawrence

Abstract:

Game designers have the challenging task of building games that engage players to spend their time and money on the game. There are an infinite number of game variations and design choices, and it is hard to systematically determine game design choices that will have positive experiences for players. In this work, we demonstrate how multi-arm bandits can be used to automatically explore game design variations to achieve improved player metrics. The advantage of multi-arm bandits is that they allow for continuous experimentation and variation, intrinsically converge to the best solution, and require no special infrastructure to use beyond allowing minor game variations to be deployed to users for evaluation. A user study confirms that applying multi-arm bandits was successful in determining the preferred game variation with highest play time metrics and can be a useful technique in a game designer's toolkit.

Keywords: game design, multi-arm bandit, design exploration and data mining, player metric optimization and analytics

Procedia PDF Downloads 514
4430 XRD and Image Analysis of Low Carbon Type Recycled Cement Using Waste Cementitious Powder

Authors: Hyeonuk Shin, Hun Song, Yongsik Chu, Jongkyu Lee, Dongcheon Park

Abstract:

Although much current research has been devoted to reusing concrete in the form of recycled aggregate, insufficient attention has been given to researching the utilization of waste concrete powder, which constitutes 20 % or more of waste concrete and therefore the majority of waste cementitious powder is currently being discarded or buried in landfills. This study consists of foundational research for the purpose of reusing waste cementitious powder in the form of recycled cement that can answer the need for low carbon green growth. Progressing beyond the conventional practice of using the waste cementitious powder as inert filler material, this study contributes to the aim of manufacturing high value added materials that exploits the chemical properties of the waste cementitious powder, by presenting a pre-treatment method for the material and an optimal method of proportioning the mix of materials to develop a low carbon type of recycled cement.

Keywords: Low carbon type cement, Waste cementitious powder, Waste recycling

Procedia PDF Downloads 469
4429 Formulation and Nutrition Analysis of Low-Sugar Snack Bars

Authors: S. Kongtun-Janphuk, S. Niwitpong Jr., J. Saengsai

Abstract:

Low-sugar snack bars were formulated with 3 main formulas depending on the main ingredient, which were peanut-green bean-sesame, apple, and prune. The most acceptable formula of each group was obtained by sensory evaluation using a nine-point hedonic scale. The moisture content, total ash, protein, fat and fiber were analyzed by the standard methods of AOAC. The peanut-mung bean-sesame snack bar showed the highest protein content (88.32%) and total fat (0.48%) with the lowest of fiber content (0.01%) while the prune formula showed the lowest protein content (71.91%) and total fat (0.21%) with the highest of fiber content (0.03%). This result indicated that the prune formula could be used as diet food to assist in weight loss program.

Keywords: low-sugar snack bar, diet food, nutrition analysis, food formulation

Procedia PDF Downloads 402
4428 Design and Development of Fleet Management System for Multi-Agent Autonomous Surface Vessel

Authors: Zulkifli Zainal Abidin, Ahmad Shahril Mohd Ghani

Abstract:

Agent-based systems technology has been addressed as a new paradigm for conceptualizing, designing, and implementing software systems. Agents are sophisticated systems that act autonomously across open and distributed environments in solving problems. Nevertheless, it is impractical to rely on a single agent to do all computing processes in solving complex problems. An increasing number of applications lately require multiple agents to work together. A multi-agent system (MAS) is a loosely coupled network of agents that interact to solve problems that are beyond the individual capacities or knowledge of each problem solver. However, the network of MAS still requires a main system to govern or oversees the operation of the agents in order to achieve a unified goal. We had developed a fleet management system (FMS) in order to manage the fleet of agents, plan route for the agents, perform real-time data processing and analysis, and issue sets of general and specific instructions to the agents. This FMS should be able to perform real-time data processing, communicate with the autonomous surface vehicle (ASV) agents and generate bathymetric map according to the data received from each ASV unit. The first algorithm is developed to communicate with the ASV via radio communication using standard National Marine Electronics Association (NMEA) protocol sentences. Next, the second algorithm will take care of the path planning, formation and pattern generation is tested using various sample data. Lastly, the bathymetry map generation algorithm will make use of data collected by the agents to create bathymetry map in real-time. The outcome of this research is expected can be applied on various other multi-agent systems.

Keywords: autonomous surface vehicle, fleet management system, multi agent system, bathymetry

Procedia PDF Downloads 275
4427 Unlocking the Future of Grocery Shopping: Graph Neural Network-Based Cold Start Item Recommendations with Reverse Next Item Period Recommendation (RNPR)

Authors: Tesfaye Fenta Boka, Niu Zhendong

Abstract:

Recommender systems play a crucial role in connecting individuals with the items they require, as is particularly evident in the rapid growth of online grocery shopping platforms. These systems predominantly rely on user-centered recommendations, where items are suggested based on individual preferences, garnering considerable attention and adoption. However, our focus lies on the item-centered recommendation task within the grocery shopping context. In the reverse next item period recommendation (RNPR) task, we are presented with a specific item and challenged to identify potential users who are likely to consume it in the upcoming period. Despite the ever-expanding inventory of products on online grocery platforms, the cold start item problem persists, posing a substantial hurdle in delivering personalized and accurate recommendations for new or niche grocery items. To address this challenge, we propose a Graph Neural Network (GNN)-based approach. By capitalizing on the inherent relationships among grocery items and leveraging users' historical interactions, our model aims to provide reliable and context-aware recommendations for cold-start items. This integration of GNN technology holds the promise of enhancing recommendation accuracy and catering to users' individual preferences. This research contributes to the advancement of personalized recommendations in the online grocery shopping domain. By harnessing the potential of GNNs and exploring item-centered recommendation strategies, we aim to improve the overall shopping experience and satisfaction of users on these platforms.

Keywords: recommender systems, cold start item recommendations, online grocery shopping platforms, graph neural networks

Procedia PDF Downloads 95
4426 A Problem on Homogeneous Isotropic Microstretch Thermoelastic Half Space with Mass Diffusion Medium under Different Theories

Authors: Devinder Singh, Rajneesh Kumar, Arvind Kumar

Abstract:

The present investigation deals with generalized model of the equations for a homogeneous isotropic microstretch thermoelastic half space with mass diffusion medium. Theories of generalized thermoelasticity Lord-Shulman (LS) Green-Lindsay (GL) and Coupled Theory (CT) theories are applied to investigate the problem. The stresses in the considered medium have been studied due to normal force and tangential force. The normal mode analysis technique is used to calculate the normal stress, shear stress, couple stresses and microstress. A numerical computation has been performed on the resulting quantity. The computed numerical results are shown graphically.

Keywords: microstretch, thermoelastic, normal mode analysis, normal and tangential force, microstress force

Procedia PDF Downloads 536
4425 Synthesis and Functionalization of MnFe₂O₄ Nano−Hollow Spheres for Optical and Catalytic Properties

Authors: Indranil Chakraborty, Kalyan Mandal

Abstract:

Herein, we synthesize MnFe₂O₄ nano−hollow spheres (NHSs) of average diameter 100 nm through a facile template free solvothermal process and carry out a time dependent morphological study to investigate their process of core excavation. Further, a surface engineering of as−synthesized MnFe₂O₄ NHSs has been executed with organic disodium tartrate dihydrate ligand and interestingly, the surface modified MnFe₂O₄ NHSs are found to capable of emerging multicolor fluorescence starting from blue, green to red. The magnetic measurements through vibrating sample magnetometer demonstrate that room temperature superparamagnetic nature of MnFe₂O₄ NHSs remains unaltered after surface modification. Moreover, functionalized MnFe₂O₄ NHSs are found to exhibit excellent reusable photocatalytic efficiency in the degradation of cationic dye, methylene blue with rate constant of 2.64×10−2 min.

Keywords: nano hollow sphere, tartrate modification, multiple fluorescence, catalytic property

Procedia PDF Downloads 191
4424 Soap Film Enneper Minimal Surface Model

Authors: Yee Hooi Min, Mohdnasir Abdul Hadi

Abstract:

Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.

Keywords: Enneper, minimal surface, soap film, tensioned membrane structure

Procedia PDF Downloads 560
4423 Lightweight and Seamless Distributed Scheme for the Smart Home

Authors: Muhammad Mehran Arshad Khan, Chengliang Wang, Zou Minhui, Danyal Badar Soomro

Abstract:

Security of the smart home in terms of behavior activity pattern recognition is a totally dissimilar and unique issue as compared to the security issues of other scenarios. Sensor devices (low capacity and high capacity) interact and negotiate each other by detecting the daily behavior activity of individuals to execute common tasks. Once a device (e.g., surveillance camera, smart phone and light detection sensor etc.) is compromised, an adversary can then get access to a specific device and can damage daily behavior activity by altering the data and commands. In this scenario, a group of common instruction processes may get involved to generate deadlock. Therefore, an effective suitable security solution is required for smart home architecture. This paper proposes seamless distributed Scheme which fortifies low computational wireless devices for secure communication. Proposed scheme is based on lightweight key-session process to upheld cryptic-link for trajectory by recognizing of individual’s behavior activities pattern. Every device and service provider unit (low capacity sensors (LCS) and high capacity sensors (HCS)) uses an authentication token and originates a secure trajectory connection in network. Analysis of experiments is revealed that proposed scheme strengthens the devices against device seizure attack by recognizing daily behavior activities, minimum utilization memory space of LCS and avoids network from deadlock. Additionally, the results of a comparison with other schemes indicate that scheme manages efficiency in term of computation and communication.

Keywords: authentication, key-session, security, wireless sensors

Procedia PDF Downloads 324
4422 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 296
4421 Collaborative Program Student Community Service as a New Approach for Development in Rural Area in Case of Western Java

Authors: Brian Yulianto, Syachrial, Saeful Aziz, Anggita Clara Shinta

Abstract:

Indonesia, with a population of about two hundred and fifty million people in quantity, indicates the outstanding wealth of human resources. Hundreds of millions of the population scattered in various communities in various regions in Indonesia with the different characteristics of economic, social and unique culture. Broadly speaking, the community in Indonesia is divided into two classes, namely urban communities and rural communities. The rural communities characterized by low potential and management of natural and human resources, limited access of development, and lack of social and economic infrastructure, and scattered and isolated population. West Java is one of the provinces with the largest population in Indonesia. Based on data from the Central Bureau of Statistics in 2015 the number of population in West Java reached 46.7096 million souls spread over 18 districts and 9 cities. The big difference in geographical and social conditions of people in West Java from one region to another, especially the south to the north causing the gap is high. It is closely related to the flow of investment to promote the area. Poverty and underdevelopment are the classic problems that occur on a massive scale in the region as the effects of inequity in development. South Cianjur and Tasikmalaya area South became one of the portraits area where the existing potential has not been capable of prospering society. Tri Dharma College not only define the College as a pioneer implementation of education and research to improve the quality of human resources but also demanded to be a pioneer in the development through the concept of public service. Bandung Institute of Technology as one of the institutions of higher education to implement community service system through collaborative community work program "one of the university community" as one approach to developing villages. The program is based Community Service, where students are not only required to be able to take part in community service, but also able to develop a community development strategy that is comprehensive and integrity in cooperation with government agencies and non-government related as a real form of effort alignment potential, position and role from various parties. Areas of western Java in particular have high poverty rates and disparity. On the other hand, there are three fundamental pillars in the development of rural communities, namely economic development, community development, and the integrated infrastructure development. These pillars require the commitment of all components of community, including the students and colleges for upholding success. College’s community program is one of the approaches in the development of rural communities. ITB is committed to implement as one form of student community service as community-college programs that integrate all elements of the community which is called Kuliah Kerja Nyata-Thematic.

Keywords: development in rural area, collaborative, student community service, Kuliah Kerja Nyata-Thematic ITB

Procedia PDF Downloads 227
4420 Soil Salinity Mapping using Electromagnetic Induction Measurements

Authors: Fethi Bouksila, Nessrine Zemni, Fairouz Slama, Magnus Persson, Ronny Berndasson, Akissa Bahri

Abstract:

Electromagnetic sensor EM 38 was used to predict and map soil salinity (ECe) in arid oasis. Despite the high spatial variation of soil moisture and shallow watertable, significant ECe-EM relationships were developed. The low drainage network efficiency is the main factor of soil salinization

Keywords: soil salinity map, electromagnetic induction, EM38, oasis, shallow watertable

Procedia PDF Downloads 190
4419 Tutoring between “The Can Do” and “The Have to”: The Case of Batna 2 University (Algeria)

Authors: Radia Guerza

Abstract:

Tutoring at the Algerian University has been an issue of great controversy and debate. Henceforth, the current paper is an attempt to shed light on the issue of tutoring at Algerian University. It aims to set a plan for tutoring that might meet the student's needs and challenges. It endeavors to explore the following query: “what is the role of tutoring in the Algerian university between “The CAN DO” and “The HAVE TO”? To equate with the addressed research question, an exploratory small-scale study has been carried out at Batna 2 University using questionnaires and interviews with fifty (50) teachers. Results indicate that Algerian University is still lagging behind because of the huge lack of infrastructure means, human resources, and even pedagogical resources. In addition, the majority of our teachers are reluctant to adhere to the tutorial policy due to the lack of incentives; next to that, the increasing yearly number of students and students high ratio would hardly permit any tutoring sessions. Finally, this paper is the first attempt, to our best knowledge, towards raising the awareness of our institution, staff members, teachers, and students towards the importance of tutoring and how to adopt it.

Keywords: attitudes, higher education, perceptions, tutoring

Procedia PDF Downloads 66
4418 A Machine Learning-Based Model to Screen Antituberculosis Compound Targeted against LprG Lipoprotein of Mycobacterium tuberculosis

Authors: Syed Asif Hassan, Syed Atif Hassan

Abstract:

Multidrug-resistant Tuberculosis (MDR-TB) is an infection caused by the resistant strains of Mycobacterium tuberculosis that do not respond either to isoniazid or rifampicin, which are the most important anti-TB drugs. The increase in the occurrence of a drug-resistance strain of MTB calls for an intensive search of novel target-based therapeutics. In this context LprG (Rv1411c) a lipoprotein from MTB plays a pivotal role in the immune evasion of Mtb leading to survival and propagation of the bacterium within the host cell. Therefore, a machine learning method will be developed for generating a computational model that could predict for a potential anti LprG activity of the novel antituberculosis compound. The present study will utilize dataset from PubChem database maintained by National Center for Biotechnology Information (NCBI). The dataset involves compounds screened against MTB were categorized as active and inactive based upon PubChem activity score. PowerMV, a molecular descriptor generator, and visualization tool will be used to generate the 2D molecular descriptors for the actives and inactive compounds present in the dataset. The 2D molecular descriptors generated from PowerMV will be used as features. We feed these features into three different classifiers, namely, random forest, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model based on the accuracy of predicting novel antituberculosis compound with an anti LprG activity. Additionally, the efficacy of predicted active compounds will be screened using SMARTS filter to choose molecule with drug-like features.

Keywords: antituberculosis drug, classifier, machine learning, molecular descriptors, prediction

Procedia PDF Downloads 396
4417 Mobile Learning in Teacher Education: A Review in Context of Developing Countries

Authors: Mehwish Raza

Abstract:

Mobile learning (m-learning) offers unique affordances to learners, setting them free of limitations posed by time and geographic space; thus becoming an affordable device for convenient distant learning. There is a plethora of research available on mobile learning projects planned, implemented and evaluated across disciplines in the context of developed countries, however, the potential of m-learning at different educational levels remain unexplored with little evidence of research carried out in developing countries. Despite the favorable technical infrastructure offered by cellular networks and boom in mobile subscriptions in the developing world, there is limited focus on utilizing m-learning for education and development purposes. The objective of this review is to unify findings from m-learning projects that have been implemented in developing countries such as Pakistan, Bangladesh, Philippines, India, and Tanzania for teachers’ in-service training. The purpose is to draw upon key characteristics of mobile learning that would be useful for future researchers to inform conceptualizations of mobile learning for developing countries.

Keywords: design model, developing countries, key characteristics, mobile learning

Procedia PDF Downloads 450
4416 Information Technology Application for Knowledge Management in Medium-Size Businesses

Authors: S. Thongchai

Abstract:

Result of the study on knowledge management systems in businesses was shown that the most of these businesses provide internet accessibility for their employees in order to study new knowledge via internet, corporate website, electronic mail, and electronic learning system. These business organizations use information technology application for knowledge management because of convenience, time saving, ease of use, accuracy of information and knowledge usefulness. The result indicated prominent improvements for corporate knowledge management systems as the following; 1) administrations must support corporate knowledge management system 2) the goal of corporate knowledge management must be clear 3) corporate culture should facilitate the exchange and sharing of knowledge within the organization 4) cooperation of personnel of all levels must be obtained 5) information technology infrastructure must be provided 6) they must develop the system regularly and constantly.

Keywords: business organizations, information technology application, knowledge management systems, prominent improvements

Procedia PDF Downloads 391
4415 The Impact of Shifting Trading Pattern from Long-Haul to Short-Sea to the Car Carriers’ Freight Revenues

Authors: Tianyu Wang, Nikita Karandikar

Abstract:

The uncertainty around cost, safety, and feasibility of the decarbonized shipping fuels has made it increasingly complex for the shipping companies to set pricing strategies and forecast their freight revenues going forward. The increase in the green fuel surcharges will ultimately influence the automobile’s consumer prices. The auto shipping demand (ton-miles) has been gradually shifting from long-haul to short-sea trade over the past years following the relocation of the original equipment manufacturer (OEM) manufacturing to regions such as South America and Southeast Asia. The objective of this paper is twofold: 1) to investigate the car-carriers freight revenue development over the years when the trade pattern is gradually shifting towards short-sea exports 2) to empirically identify the quantitative impact of such trade pattern shifting to mainly freight rate, but also vessel size, fleet size as well as Green House Gas (GHG) emission in Roll on-Roll Off (Ro-Ro) shipping. In this paper, a model of analyzing and forecasting ton-miles and freight revenues for the trade routes of AS-NA (Asia to North America), EU-NA (Europe to North America), and SA-NA (South America to North America) is established by deploying Automatic Identification System (AIS) data and the financial results of a selected car carrier company. More specifically, Wallenius Wilhelmsen Logistics (WALWIL), the Norwegian Ro-Ro carrier listed on Oslo Stock Exchange, is selected as the case study company in this paper. AIS-based ton-mile datasets of WALWIL vessels that are sailing into North America region from three different origins (Asia, Europe, and South America), together with WALWIL’s quarterly freight revenues as reported in trade segments, will be investigated and compared for the past five years (2018-2022). Furthermore, ordinary‐least‐square (OLS) regression is utilized to construct the ton-mile demand and freight revenue forecasting. The determinants of trade pattern shifting, such as import tariffs following the China-US trade war and fuel prices following the 0.1% Emission Control Areas (ECA) zone requirement after IMO2020 will be set as key variable inputs to the machine learning model. The model will be tested on another newly listed Norwegian Car Carrier, Hoegh Autoliner, to forecast its 2022 financial results and to validate the accuracy based on its actual results. GHG emissions on the three routes will be compared and discussed based on a constant emission per mile assumption and voyage distances. Our findings will provide important insights about 1) the trade-off evaluation between revenue reduction and energy saving with the new ton-mile pattern and 2) how the trade flow shifting would influence the future need for the vessel and fleet size.

Keywords: AIS, automobile exports, maritime big data, trade flows

Procedia PDF Downloads 126
4414 Roadmap to a Bottom-Up Approach Creating Meaningful Contributions to Surgery in Low-Income Settings

Authors: Eva Degraeuwe, Margo Vandenheede, Nicholas Rennie, Jolien Braem, Miryam Serry, Frederik Berrevoet, Piet Pattyn, Wouter Willaert, InciSioN Belgium Consortium

Abstract:

Background: Worldwide, five billion people lack access to safe and affordable surgical care. An added 1.27 million surgeons, anesthesiologists, and obstetricians (SAO) are needed by 2030 to meet the target of 20 per 100,000 population and to reach the goal of the Lancet Commission on Global Surgery. A well-informed future generation exposed early on to the current challenges in global surgery (GS) is necessary to ensure a sustainable future. Methods: InciSioN, the International Student Surgical Network, is a non-profit organization by and for students, residents, and fellows in over 80 countries. InciSioN Belgium, one of the prominent national working groups, has made a vast progression and collaborated with other networks to fill the educational gap, stimulate advocacy efforts and increase interactions with the international network. This report describes a roadmap to achieve sustainable development and education within GS, with the example of InciSioN Belgium. Results: Since the establishment of the organization’s branch in 2019, it has hosted an educational workshop for first-year residents in surgery, engaging over 2500 participants, and established a recurring directing board of 15 members. In the year 2020-2021, InciSioN Ghent has organized three workshops combining educational and interactive sessions for future prime advocates and surgical candidates. InciSioN Belgium has set up a strong formal coalition with the Belgian Medical Students’ Association (BeMSA), with its own standing committee, reaching over 3000+ medical students annually. In 2021-2022, InciSioN Belgium broadened to a multidisciplinary approach, including dentistry and nursing students and graduates within workshops and research projects, leading to a member and exposure increase of 450%. This roadmap sets strategic goals and mechanisms for the GS community to achieve nationwide sustained improvements in the research and education of GS focused on future SAOs, in order to achieve the GS sustainable development goals. In the coming year, expansion is directed to a formal integration of GS into the medical curriculum and increased international advocacy whilst inspiring SAOs to integrate into GS in Belgium. Conclusion: The development and implementation of durable change for GS are necessary. The student organization InciSioN Belgium is growing and hopes to close the colossal gap in GS and inspire the growth of other branches while sharing the know-how of a student organization.

Keywords: advocacy, education, global surgery, InciSioN, student network

Procedia PDF Downloads 177
4413 Investigation of the Corrosion Inhibition Mechanism of Tagetes erecta Extract for Mild Steel in Nitric Acid: Gravimetric Studies

Authors: Selvam Noyel Victoria, Kavita Yadav, Manivannan Ramachandran

Abstract:

The extract of Tagetes erecta (marigold flower) was used as a green corrosion inhibitor for mild steel (MS) in nitric acid medium. The weight loss measurements were performed to understand the inhibition mechanism. The effect of temperature on the behaviour of mild steel corrosion without and with inhibitor was studied. The temperature studies revealed that the activation energy increased from 12 kJ/mol to 28.8 kJ/mol with the addition of 500 ppm inhibitor concentration. The thermodynamic analysis and the adsorption isotherm studies revealed that the molecules of inhibitor show physical adsorption on the surface of mild steel. Based on weight loss measurements, adsorption of the inhibitor on the surface of mild steel follows Langmuir isotherm.

Keywords: Tagetes erecta, corrosion, adsorption, inhibitor

Procedia PDF Downloads 252
4412 Gender Bias in Natural Language Processing: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: gendered grammar, misogynistic language, natural language processing, neural networks

Procedia PDF Downloads 125
4411 Study of Effective Factors Influencing the Pragmatics of Knowledge Management in Iranian Oil Terminals Company

Authors: Ali Asghar Asad Sangabi, Afsaneh Aeen, Mohammad Behroozi

Abstract:

Knowledge management is vital in today's world as one of the most valuable intangible assets regarded by companies. This study aimed to identify factors that affect the application of knowledge management in the Iranian Oil Terminals Company in 2022. In this study, 12 of the factors affecting the application of knowledge management have been studied, and implement practical solutions, and reuse has been studied. This study is descriptive data from the questionnaire factors affecting knowledge management application used by Cronbach's Coefficient Alpha equal to 0.85. The population of this study consisted of 1500 IOTC employees. The sample is determined by the Cochran formula sample; the results of this study showed that between the application of knowledge management and factors, there is a significant correlation. Among the factors that have been studied, valuable teamwork and organizational culture were the most effective, and the infrastructure of information systems had the least impact on Knowledge management.

Keywords: knowledge management, knowledge-based organization, Iranian Oil Terminals

Procedia PDF Downloads 162