Search results for: stock selection
2793 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision
Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha
Abstract:
Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR
Procedia PDF Downloads 1542792 Relationship between Independence Directors and Performance of Firms During Financial Crisis
Authors: Gladie Lui
Abstract:
The global credit crisis of 2008 aroused renewed interest in the effectiveness of corporate governance mechanisms to safeguard investor interests. In this paper, we measure the effect of the crisis from 2008 to 2009 on the stock performance of 976 Hong Kong-listed companies and examine its link to corporate governance mechanisms. It is evident that the crisis and the economic downturn affected different industries. Empirical results show that firms with an independent board and a high concentration of ownership and management ownership had lower abnormal stock returns, but a lower price volatility during the global financial crisis. These results highlight that no single corporate governance mechanism is fit for all types of financial crises and time frames. To strengthen investors’ confidence in the ability of companies to deal with such swift financial catastrophes, companies should enhance the dynamism and responsiveness of their governance mechanisms in times of turbulence.Keywords: board of directors, capital market, corporate governance, financial crisis
Procedia PDF Downloads 4252791 An Application of Extreme Value Theory as a Risk Measurement Approach in Frontier Markets
Authors: Dany Ng Cheong Vee, Preethee Nunkoo Gonpot, Noor Sookia
Abstract:
In this paper, we consider the application of Extreme Value Theory as a risk measurement tool. The Value at Risk, for a set of indices, from six Stock Exchanges of Frontier markets is calculated using the Peaks over Threshold method and the performance of the model index-wise is evaluated using coverage tests and loss functions. Our results show that 'fat-tailedness' alone of the data is not enough to justify the use of EVT as a VaR approach. The structure of the returns dynamics is also a determining factor. This approach works fine in markets which have had extremes occurring in the past thus making the model capable of coping with extremes coming up (Colombo, Tunisia and Zagreb Stock Exchanges). On the other hand, we find that indices with lower past than present volatility fail to adequately deal with future extremes (Mauritius and Kazakhstan). We also conclude that using EVT alone produces quite static VaR figures not reflecting the actual dynamics of the data.Keywords: extreme value theory, financial crisis 2008, value at risk, frontier markets
Procedia PDF Downloads 2752790 Generalized Additive Model Approach for the Chilean Hake Population in a Bio-Economic Context
Authors: Selin Guney, Andres Riquelme
Abstract:
The traditional bio-economic method for fisheries modeling uses some estimate of the growth parameters and the system carrying capacity from a biological model for the population dynamics (usually a logistic population growth model) which is then analyzed as a traditional production function. The stock dynamic is transformed into a revenue function and then compared with the extraction costs to estimate the maximum economic yield. In this paper, the logistic population growth model for the population is combined with a forecast of the abundance and location of the stock by using a generalized additive model approach. The paper focuses on the Chilean hake population. This method allows for the incorporation of climatic variables and the interaction with other marine species, which in turn will increase the reliability of the estimates and generate better extraction paths for different conservation objectives, such as the maximum biological yield or the maximum economic yield.Keywords: bio-economic, fisheries, GAM, production
Procedia PDF Downloads 2502789 Bayesian Variable Selection in Quantile Regression with Application to the Health and Retirement Study
Authors: Priya Kedia, Kiranmoy Das
Abstract:
There is a rich literature on variable selection in regression setting. However, most of these methods assume normality for the response variable under consideration for implementing the methodology and establishing the statistical properties of the estimates. In many real applications, the distribution for the response variable may be non-Gaussian, and one might be interested in finding the best subset of covariates at some predetermined quantile level. We develop dynamic Bayesian approach for variable selection in quantile regression framework. We use a zero-inflated mixture prior for the regression coefficients, and consider the asymmetric Laplace distribution for the response variable for modeling different quantiles of its distribution. An efficient Gibbs sampler is developed for our computation. Our proposed approach is assessed through extensive simulation studies, and real application of the proposed approach is also illustrated. We consider the data from health and retirement study conducted by the University of Michigan, and select the important predictors when the outcome of interest is out-of-pocket medical cost, which is considered as an important measure for financial risk. Our analysis finds important predictors at different quantiles of the outcome, and thus enhance our understanding on the effects of different predictors on the out-of-pocket medical cost.Keywords: variable selection, quantile regression, Gibbs sampler, asymmetric Laplace distribution
Procedia PDF Downloads 1552788 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images
Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge
Abstract:
Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.Keywords: band selection, fuzzy c-means, k-means, hyperspectral image
Procedia PDF Downloads 4062787 Emotion Mining and Attribute Selection for Actionable Recommendations to Improve Customer Satisfaction
Authors: Jaishree Ranganathan, Poonam Rajurkar, Angelina A. Tzacheva, Zbigniew W. Ras
Abstract:
In today’s world, business often depends on the customer feedback and reviews. Sentiment analysis helps identify and extract information about the sentiment or emotion of the of the topic or document. Attribute selection is a challenging problem, especially with large datasets in actionable pattern mining algorithms. Action Rule Mining is one of the methods to discover actionable patterns from data. Action Rules are rules that help describe specific actions to be made in the form of conditions that help achieve the desired outcome. The rules help to change from any undesirable or negative state to a more desirable or positive state. In this paper, we present a Lexicon based weighted scheme approach to identify emotions from customer feedback data in the area of manufacturing business. Also, we use Rough sets and explore the attribute selection method for large scale datasets. Then we apply Actionable pattern mining to extract possible emotion change recommendations. This kind of recommendations help business analyst to improve their customer service which leads to customer satisfaction and increase sales revenue.Keywords: actionable pattern discovery, attribute selection, business data, data mining, emotion
Procedia PDF Downloads 1992786 Tweets to Touchdowns: Predicting National Football League Achievement from Social Media Optimism
Authors: Rohan Erasala, Ian McCulloh
Abstract:
The NFL Draft is a chance for every NFL team to select their next superstar. As a result, teams heavily invest in scouting, and millions of fans partake in the online discourse surrounding the draft. This paper investigates the potential correlations between positive sentiment in individual draft selection threads from the subreddit r/NFL and if this data can be used to make successful player recommendations. It is hypothesized that there will be limited correlations and nonviable recommendations made from these threads. The hypothesis is tested using sentiment analysis of draft thread comments and analyzing correlation and precision at k of top scores. The results indicate weak correlations between the percentage of positive comments in a draft selection thread and a player’s approximate value, but potentially viable recommendations from looking at players whose draft selection threads have the highest percentage of positive comments.Keywords: national football league, NFL, NFL Draft, sentiment analysis, Reddit, social media, NLP
Procedia PDF Downloads 832785 Evaluation and Selection of SaaS Product Based on User Preferences
Authors: Boussoualim Nacira, Aklouf Youcef
Abstract:
Software as a Service (SaaS) is a software delivery paradigm in which the product is not installed on-premise, but it is available on Internet and Web. The customers do not pay to possess the software itself but rather to use it. This concept of pay per use is very attractive. Hence, we see increasing number of organizations adopting SaaS. However, each customer is unique, which leads to a very large variation in the requirements off the software. As several suppliers propose SaaS products, the choice of this latter becomes a major issue. When multiple criteria are involved in decision making, we talk about a problem of «Multi-Criteria Decision-Making» (MCDM). Therefore, this paper presents a method to help customers to choose a better SaaS product satisfying most of their conditions and alternatives. Also, we know that a good method of adaptive selection should be based on the correct definition of the different parameters of choice. This is why we started by extraction and analysis the various parameters involved in the process of the selection of a SaaS application.Keywords: cloud computing, business operation, Multi-Criteria Decision-Making (MCDM), Software as a Service (SaaS)
Procedia PDF Downloads 4812784 Meat Consumption for Family Health in Nigeria
Authors: Chigbu Ruth Nnena
Abstract:
This paper discussed the concept of meat its nutritive value in family meals. The paper further discussed the selection, storage and preparation of meat in family meal the Nigerian way. The paper made the following recommendations among others; that families in Nigeria should rear cow meat for easy access to the meant and that family should purchase meat that are fresh from chain shops in the market to avoid meat contamination among others.Keywords: meat, selection, storage meals, concept and preparation
Procedia PDF Downloads 3402783 Third Party Logistics (3PL) Selection Criteria for an Indian Heavy Industry Using SEM
Authors: Nadama Kumar, P. Parthiban, T. Niranjan
Abstract:
In the present paper, we propose an incorporated approach for 3PL supplier choice that suits the distinctive strategic needs of the outsourcing organization in southern part of India. Four fundamental criteria have been used in particular Performance, IT, Service and Intangible. These are additionally subdivided into fifteen sub-criteria. The proposed strategy coordinates Structural Equation Modeling (SEM) and Non-additive Fuzzy Integral strategies. The presentation of fluffiness manages the unclearness of human judgments. The SEM approach has been used to approve the determination criteria for the proposed show though the Non-additive Fuzzy Integral approach uses the SEM display contribution to assess a supplier choice score. The case organization has a exclusive vertically integrated assembly that comprises of several companies focusing on a slight array of the value chain. To confirm manufacturing and logistics proficiency, it significantly relies on 3PL suppliers to attain supply chain superiority. However, 3PL supplier selection is an intricate decision-making procedure relating multiple selection criteria. The goal of this work is to recognize the crucial 3PL selection criteria by using the non-additive fuzzy integral approach. Unlike the outmoded multi criterion decision-making (MCDM) methods which frequently undertake independence among criteria and additive importance weights, the nonadditive fuzzy integral is an effective method to resolve the dependency among criteria, vague information, and vital fuzziness of human judgment. In this work, we validate an empirical case that engages the nonadditive fuzzy integral to assess the importance weight of selection criteria and indicate the most suitable 3PL supplier.Keywords: 3PL, non-additive fuzzy integral approach, SEM, fuzzy
Procedia PDF Downloads 2802782 The Volume–Volatility Relationship Conditional to Market Efficiency
Authors: Massimiliano Frezza, Sergio Bianchi, Augusto Pianese
Abstract:
The relation between stock price volatility and trading volume represents a controversial issue which has received a remarkable attention over the past decades. In fact, an extensive literature shows a positive relation between price volatility and trading volume in the financial markets, but the causal relationship which originates such association is an open question, from both a theoretical and empirical point of view. In this regard, various models, which can be considered as complementary rather than competitive, have been introduced to explain this relationship. They include the long debated Mixture of Distributions Hypothesis (MDH); the Sequential Arrival of Information Hypothesis (SAIH); the Dispersion of Beliefs Hypothesis (DBH); the Noise Trader Hypothesis (NTH). In this work, we analyze whether stock market efficiency can explain the diversity of results achieved during the years. For this purpose, we propose an alternative measure of market efficiency, based on the pointwise regularity of a stochastic process, which is the Hurst–H¨older dynamic exponent. In particular, we model the stock market by means of the multifractional Brownian motion (mBm) that displays the property of a time-changing regularity. Mostly, such models have in common the fact that they locally behave as a fractional Brownian motion, in the sense that their local regularity at time t0 (measured by the local Hurst–H¨older exponent in a neighborhood of t0 equals the exponent of a fractional Brownian motion of parameter H(t0)). Assuming that the stock price follows an mBm, we introduce and theoretically justify the Hurst–H¨older dynamical exponent as a measure of market efficiency. This allows to measure, at any time t, markets’ departures from the martingale property, i.e. from efficiency as stated by the Efficient Market Hypothesis. This approach is applied to financial markets; using data for the SP500 index from 1978 to 2017, on the one hand we find that when efficiency is not accounted for, a positive contemporaneous relationship emerges and is stable over time. Conversely, it disappears as soon as efficiency is taken into account. In particular, this association is more pronounced during time frames of high volatility and tends to disappear when market becomes fully efficient.Keywords: volume–volatility relationship, efficient market hypothesis, martingale model, Hurst–Hölder exponent
Procedia PDF Downloads 762781 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 1532780 Selection of Social and Sustainability Criteria for Public Investment Project Evaluation in Developing Countries
Authors: Pintip Vajarothai, Saad Al-Jibouri, Johannes I. M. Halman
Abstract:
Public investment projects are primarily aimed at achieving development strategies to increase national economies of scale and overall improvement in a country. However, experience shows that public projects, particularly in developing countries, struggle or fail to fulfill the immediate needs of local communities. In many cases, the reason for that is that projects are selected in a subjective manner and that a major part of the problem is related to the evaluation criteria and techniques used. The evaluation process is often based on a broad strategic economic effects rather than real benefits of projects to society or on the various needs from different levels (e.g. national, regional, local) and conditions (e.g. long-term and short-term requirements). In this paper, an extensive literature review of the types of criteria used in the past by various researchers in project evaluation and selection process is carried out and the effectiveness of such criteria and techniques is discussed. The paper proposes substitute social and project sustainability criteria to improve the conditions of local people and in particular the disadvantaged groups of the communities. Furthermore, it puts forward a way for modelling the interaction between the selected criteria and the achievement of the social goals of the affected community groups. The described work is part of developing a broader decision model for public investment project selection by integrating various aspects and techniques into a practical methodology. The paper uses Thailand as a case to review what and how the various evaluation techniques are currently used and how to improve the project evaluation and selection process related to social and sustainability issues in the country. The paper also uses an example to demonstrates how to test the feasibility of various criteria and how to model the interaction between projects and communities. The proposed model could be applied to other developing and developed countries in the project evaluation and selection process to improve its effectiveness in the long run.Keywords: evaluation criteria, developing countries, public investment, project selection methodology
Procedia PDF Downloads 2732779 Study of Relation between Corporate Governance Mechanism and Investment Decisions Made by Companies Listed in Tehran Stock Exchange- IRAN
Authors: Roohollah Jamshidpour, Elaheh Ahmadi, Farhad Shah Veisi
Abstract:
Present research seeks to answer this question: Is there any relationship between corporate governance mechanisms and decision on corporate investments? Percentages of institutional, board of director’s, and stockholder’s ownership are among internal mechanisms of corporate governance relationship of which with investment-based decisions are studied by this research. Information on 103 companies during 1388 (2009)- 1393 (2014). Initially, research variables are identified; next, Rah Avard-e Novin software is used to gather Information. SPSS software is employed to test hypotheses with respect to descriptive and inferential statistics like correlation analysis. Research results show that percentage of institutional stockholders’ ownership has a significant direct relationship with investment decisions. For other cases, no significant relationship is observed between corporate governance mechanisms and investment decisions.Keywords: corporate governance, company size, free floating stock, institutional investors, major shareholders
Procedia PDF Downloads 2922778 Numerical Simulation of Wishart Diffusion Processes
Authors: Raphael Naryongo, Philip Ngare, Anthony Waititu
Abstract:
This paper deals with numerical simulation of Wishart processes for a single asset risky pricing model whose volatility is described by Wishart affine diffusion processes. The multi-factor specification of volatility will make the model more flexible enough to fit the stock market data for short or long maturities for better returns. The Wishart process is a stochastic process which is a positive semi-definite matrix-valued generalization of the square root process. The aim of the study is to model the log asset stock returns under the double Wishart stochastic volatility model. The solution of the log-asset return dynamics for Bi-Wishart processes will be obtained through Euler-Maruyama discretization schemes. The numerical results on the asset returns are compared to the existing models returns such as Heston stochastic volatility model and double Heston stochastic volatility modelKeywords: euler schemes, log-asset return, infinitesimal generator, wishart diffusion affine processes
Procedia PDF Downloads 3762777 Libyan Crude Oil Composition Analysis and Prediction
Authors: Omar Hussein El Ayadi, EmadY. El-Mansouri, Mohamed B. Dozan
Abstract:
Production oil process require specific details i.e. oil composition. Generally, types of oil or differentiation between reservoir fluids depend specifically on composition. The main purpose of this study is to correlate and predict the Libyan oil (reservoir fluid and residual) composition utilizing tri-angle-coordinate plots discovered and tasked with Excel. The reservoir fluid data (61 old + 47 new), the residual oil data (33 new) collected from most of Libyan reservoirs were correlated with each others. Moreover, find a relation between stock tank molecular weight and stock tank oil gravity (oAPI), the molecular weight oh (C7+) versus residual oil gravity (oAPI). The average value of every oil composition was estimated including non-hydrocarbon (H2S, CO2, and N2). Nevertheless, the isomers (i-…) and normal (n-…) structure of (C4) and (C5) were also obtained. The summary of the conclusion is; utilizing excel Microsoft office to draw triangle coordinates to find two unknown component if only one is known. However, it is recommended to use the obtained oil composition plots and equations for any oil composition dependents i.e. optimum separator pressure.Keywords: PVT, phase behavior, petroleum, chemical engineering
Procedia PDF Downloads 5122776 Consensus Reaching Process and False Consensus Effect in a Problem of Portfolio Selection
Authors: Viviana Ventre, Giacomo Di Tollo, Roberta Martino
Abstract:
The portfolio selection problem includes the evaluation of many criteria that are difficult to compare directly and is characterized by uncertain elements. The portfolio selection problem can be modeled as a group decision problem in which several experts are invited to present their assessment. In this context, it is important to study and analyze the process of reaching a consensus among group members. Indeed, due to the various diversities among experts, reaching consensus is not necessarily always simple and easily achievable. Moreover, the concept of consensus is accompanied by the concept of false consensus, which is particularly interesting in the dynamics of group decision-making processes. False consensus can alter the evaluation and selection phase of the alternative and is the consequence of the decision maker's inability to recognize that his preferences are conditioned by subjective structures. The present work aims to investigate the dynamics of consensus attainment in a group decision problem in which equivalent portfolios are proposed. In particular, the study aims to analyze the impact of the subjective structure of the decision-maker during the evaluation and selection phase of the alternatives. Therefore, the experimental framework is divided into three phases. In the first phase, experts are sent to evaluate the characteristics of all portfolios individually, without peer comparison, arriving independently at the selection of the preferred portfolio. The experts' evaluations are used to obtain individual Analytical Hierarchical Processes that define the weight that each expert gives to all criteria with respect to the proposed alternatives. This step provides insight into how the decision maker's decision process develops, step by step, from goal analysis to alternative selection. The second phase includes the description of the decision maker's state through Markov chains. In fact, the individual weights obtained in the first phase can be reviewed and described as transition weights from one state to another. Thus, with the construction of the individual transition matrices, the possible next state of the expert is determined from the individual weights at the end of the first phase. Finally, the experts meet, and the process of reaching consensus is analyzed by considering the single individual state obtained at the previous stage and the false consensus bias. The work contributes to the study of the impact of subjective structures, quantified through the Analytical Hierarchical Process, and how they combine with the false consensus bias in group decision-making dynamics and the consensus reaching process in problems involving the selection of equivalent portfolios.Keywords: analytical hierarchical process, consensus building, false consensus effect, markov chains, portfolio selection problem
Procedia PDF Downloads 922775 Machine Learning in Momentum Strategies
Authors: Yi-Min Lan, Hung-Wen Cheng, Hsuan-Ling Chang, Jou-Ping Yu
Abstract:
The study applies machine learning models to construct momentum strategies and utilizes the information coefficient as an indicator for selecting stocks with strong and weak momentum characteristics. Through this approach, the study has built investment portfolios capable of generating superior returns and conducted a thorough analysis. Compared to existing research on momentum strategies, machine learning is incorporated to capture non-linear interactions. This approach enhances the conventional stock selection process, which is often impeded by difficulties associated with timeliness, accuracy, and efficiency due to market risk factors. The study finds that implementing bidirectional momentum strategies outperforms unidirectional ones, and momentum factors with longer observation periods exhibit stronger correlations with returns. Optimizing the number of stocks in the portfolio while staying within a certain threshold leads to the highest level of excess returns. The study presents a novel framework for momentum strategies that enhances and improves the operational aspects of asset management. By introducing innovative financial technology applications to traditional investment strategies, this paper can demonstrate significant effectiveness.Keywords: information coefficient, machine learning, momentum, portfolio, return prediction
Procedia PDF Downloads 522774 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System
Authors: Saeed Poormoaied, Zumbul Atan
Abstract:
Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.
Procedia PDF Downloads 1402773 Investigation of Self-Assembling of Maghemite Nanoparticles into Chain–Like Structures Using Birefringence Measurements
Authors: C. R. Stein; K. Skeff Neto, K. L. C. Miranda, P. P. C. Sartoratto, M. E. Xavier, Z. G. M. Lacava, S. M. De Freita, P. C. Morais
Abstract:
In this study, static magnetic birefringence (SMB) and transmission electron microscopy (TEM) were used to investigate the self-assembling of maghemite nanoparticles suspended as biocompatible magnetic fluid (BMF) while incubated or not with the Black Eyed–Pea Trypsin Chymotripsin Inhibitor–BTCI protein. The stock samples herein studied are dextran coated maghemite nanoparticles (average core diameter of 7.1 nm, diameter dispersion of 0.26, and containing 4.6×1016 particle/mL) and the dextran coated maghemite nanoparticles associated with the BTCI protein. Several samples were prepared by diluting the stock samples with deionized water while following their colloidal stability. The diluted samples were investigated using SMB measurements to assess the average sizes of the self-assembled and suspended mesoscopic structures whereas the TEM micrographs provide the morphology of the as-suspended units. The SMB data were analyzed using a model that includes the particle-particle interaction within the mean field model picture.Keywords: biocompatible magnetic fluid, maghemite nanoparticles, self-assembling
Procedia PDF Downloads 4772772 Evaluating Models Through Feature Selection Methods Using Data Driven Approach
Authors: Shital Patil, Surendra Bhosale
Abstract:
Cardiac diseases are the leading causes of mortality and morbidity in the world, from recent few decades accounting for a large number of deaths have emerged as the most life-threatening disorder globally. Machine learning and Artificial intelligence have been playing key role in predicting the heart diseases. A relevant set of feature can be very helpful in predicting the disease accurately. In this study, we proposed a comparative analysis of 4 different features selection methods and evaluated their performance with both raw (Unbalanced dataset) and sampled (Balanced) dataset. The publicly available Z-Alizadeh Sani dataset have been used for this study. Four feature selection methods: Data Analysis, minimum Redundancy maximum Relevance (mRMR), Recursive Feature Elimination (RFE), Chi-squared are used in this study. These methods are tested with 8 different classification models to get the best accuracy possible. Using balanced and unbalanced dataset, the study shows promising results in terms of various performance metrics in accurately predicting heart disease. Experimental results obtained by the proposed method with the raw data obtains maximum AUC of 100%, maximum F1 score of 94%, maximum Recall of 98%, maximum Precision of 93%. While with the balanced dataset obtained results are, maximum AUC of 100%, F1-score 95%, maximum Recall of 95%, maximum Precision of 97%.Keywords: cardio vascular diseases, machine learning, feature selection, SMOTE
Procedia PDF Downloads 1162771 Investigation of the Main Trends of Tourist Expenses in Georgia
Authors: Nino Abesadze, Marine Mindorashvili, Nino Paresashvili
Abstract:
The main purpose of the article is to make complex statistical analysis of tourist expenses of foreign visitors. We used mixed technique of selection that implies rules of random and proportional selection. Computer software SPSS was used to compute statistical data for corresponding analysis. Corresponding methodology of tourism statistics was implemented according to international standards. Important information was collected and grouped from the major Georgian airports. Techniques of statistical observation were prepared. A representative population of foreign visitors and a rule of selection of respondents were determined. We have a trend of growth of tourist numbers and share of tourists from post-soviet countries constantly increases. Level of satisfaction with tourist facilities and quality of service has grown, but still we have a problem of disparity between quality of service and prices. The design of tourist expenses of foreign visitors is diverse; competitiveness of tourist products of Georgian tourist companies is higher.Keywords: tourist, expenses, methods, statistics, analysis
Procedia PDF Downloads 3362770 Bank, Stock Market Efficiency and Economic Growth: Lessons for ASEAN-5
Authors: Tan Swee Liang
Abstract:
This paper estimates bank and stock market efficiency associations with real per capita GDP growth by examining panel-data across three different regions using Panel-Corrected Standard Errors (PCSE) regression developed by Beck and Katz (1995). Data from five economies in ASEAN (Singapore, Malaysia, Thailand, Philippines, and Indonesia), five economies in Asia (Japan, China, Hong Kong SAR, South Korea, and India) and seven economies in OECD (Australia, Canada, Denmark, Norway, Sweden, United Kingdom U.K., and United States U.S.), between 1990 and 2017 are used. Empirical findings suggest one, for Asia-5 high bank net interest margin means greater bank profitability, hence spurring economic growth. Two, for OECD-7 low bank overhead costs (as a share of total assets) may reflect weak competition and weak investment in providing superior banking services, hence dampening economic growth. Three, stock market turnover ratio has negative association with OECD-7 economic growth, but a positive association with Asia-5, which suggest the relationship between liquidity and growth is ambiguous. Lastly, for ASEAN-5 high bank overhead costs (as a share of total assets) may suggest expenses have not been channelled efficiently to income generating activities. One practical implication of the findings is that policy makers should take necessary measures toward financial liberalisation policies that boost growth through the efficiency channel, so that funds are efficiently allocated through the financial system between financial and real sectors.Keywords: financial development, banking system, capital markets, economic growth
Procedia PDF Downloads 1362769 The Stock Price Effect of Apple Keynotes
Authors: Ethan Petersen
Abstract:
In this paper, we analyze the volatility of Apple’s stock beginning January 3, 2005 up to October 9, 2014, then focus on a range from 30 days prior to each product announcement until 30 days after. Product announcements are filtered; announcements whose 60 day range is devoid of other events are separated. This filtration is chosen to isolate, and study, a potential cross-effect. Concerning Apple keynotes, there are two significant dates: the day the invitations to the event are received and the day of the event itself. As such, the statistical analysis is conducted for both invite-centered and event-centered time frames. A comparison to the VIX is made to determine if the trend is simply following the market or deviating. Regardless of the filtration, we find that there is a clear deviation from the market. Comparing these data sets, there are significantly different trends: isolated events have a constantly decreasing, erratic trend in volatility but an increasing, linear trend is observed for clustered events. According to the Efficient Market Hypothesis, we would expect a change when new information is publicly known and the results of this study support this claim.Keywords: efficient market hypothesis, event study, volatility, VIX
Procedia PDF Downloads 2782768 An Analytic Network Process Approach towards Academic Staff Selection
Authors: Nasrullah khan
Abstract:
Today business environment is very dynamic and most of organizations are in tough competition for their added values and sustainable hold in market. To achieve such objectives, organizations must have dynamic and creative people as optimized process. To get these people, there should strong human resource management system in organizations. There are multiple approaches have been devised in literature to hire more job relevant and more suitable people. This study proposed an ANP (Analytic Network Process) approach to hire faculty members for a university system. This study consists of two parts. In fist part, a through literature survey and universities interview are conducted in order to find the common criteria for the selection of academic staff. In second part the available candidates are prioritized on the basis of the relative values of these criteria. According to results the GRE & foreign language, GPA and research paper writing were most important factors for the selection of academic staff.Keywords: creative people, ANP, academic staff, business environment
Procedia PDF Downloads 4132767 An Experimental Approach to the Influence of Tipping Points and Scientific Uncertainties in the Success of International Fisheries Management
Authors: Jules Selles
Abstract:
The Atlantic and Mediterranean bluefin tuna fishery have been considered as the archetype of an overfished and mismanaged fishery. This crisis has demonstrated the role of public awareness and the importance of the interactions between science and management about scientific uncertainties. This work aims at investigating the policy making process associated with a regional fisheries management organization. We propose a contextualized computer-based experimental approach, in order to explore the effects of key factors on the cooperation process in a complex straddling stock management setting. Namely, we analyze the effects of the introduction of a socio-economic tipping point and the uncertainty surrounding the estimation of the resource level. Our approach is based on a Gordon-Schaefer bio-economic model which explicitly represents the decision making process. Each participant plays the role of a stakeholder of ICCAT and represents a coalition of fishing nations involved in the fishery and decide unilaterally a harvest policy for the coming year. The context of the experiment induces the incentives for exploitation and collaboration to achieve common sustainable harvest plans at the Atlantic bluefin tuna stock scale. Our rigorous framework allows testing how stakeholders who plan the exploitation of a fish stock (a common pool resource) respond to two kinds of effects: i) the inclusion of a drastic shift in the management constraints (beyond a socio-economic tipping point) and ii) an increasing uncertainty in the scientific estimation of the resource level.Keywords: economic experiment, fisheries management, game theory, policy making, Atlantic Bluefin tuna
Procedia PDF Downloads 2532766 Impact of Climate Change on Energy Consumption of the Residential Building Stock in Turkey
Authors: Sadik Yigit
Abstract:
The energy consumed in the buildings constitutes a large portion of the total energy consumption in the world. In this study, it was aimed to measure the impact of climate change on the energy consumption of residential building stock by analyzing a typical mid-rise residential building in four different climate regions of Turkey. An integrated system was developed using the "Distribution Evolutionary Algorithms in Python" tool and Energy Plus. By using the developed integrated system, the energy performance of the typical residential building was analyzed under the effect of different climate change scenarios. The results indicated that predicted overheating will be experienced in the future, which will significantly increase the cooling energy loads of the buildings. In addition, design solutions to improve the future energy performance of the buildings were proposed, considering budget constraints. The results of the study will guide researchers studying in this area of research and designers in the sector in finding climate change resilient design solutions.Keywords: energy_efficient, residential buildings, climate change, energyplus
Procedia PDF Downloads 1022765 Decision Support System for Hospital Selection in Emergency Medical Services: A Discrete Event Simulation Approach
Authors: D. Tedesco, G. Feletti, P. Trucco
Abstract:
The present study aims to develop a Decision Support System (DSS) to support the operational decision of the Emergency Medical Service (EMS) regarding the assignment of medical emergency requests to Emergency Departments (ED). In the literature, this problem is also known as “hospital selection” and concerns the definition of policies for the selection of the ED to which patients who require further treatment are transported by ambulance. The employed research methodology consists of the first phase of revision of the technical-scientific literature concerning DSSs to support the EMS management and, in particular, the hospital selection decision. From the literature analysis, it emerged that current studies are mainly focused on the EMS phases related to the ambulance service and consider a process that ends when the ambulance is available after completing a request. Therefore, all the ED-related issues are excluded and considered as part of a separate process. Indeed, the most studied hospital selection policy turned out to be proximity, thus allowing to minimize the transport time and release the ambulance in the shortest possible time. The purpose of the present study consists in developing an optimization model for assigning medical emergency requests to the EDs, considering information relating to the subsequent phases of the process, such as the case-mix, the expected service throughput times, and the operational capacity of different EDs in hospitals. To this end, a Discrete Event Simulation (DES) model was created to evaluate different hospital selection policies. Therefore, the next steps of the research consisted of the development of a general simulation architecture, its implementation in the AnyLogic software and its validation on a realistic dataset. The hospital selection policy that produced the best results was the minimization of the Time To Provider (TTP), considered as the time from the beginning of the ambulance journey to the ED at the beginning of the clinical evaluation by the doctor. Finally, two approaches were further compared: a static approach, which is based on a retrospective estimate of the TTP, and a dynamic approach, which is based on a predictive estimate of the TTP determined with a constantly updated Winters model. Findings reveal that considering the minimization of TTP as a hospital selection policy raises several benefits. It allows to significantly reduce service throughput times in the ED with a minimum increase in travel time. Furthermore, an immediate view of the saturation state of the ED is produced and the case-mix present in the ED structures (i.e., the different triage codes) is considered, as different severity codes correspond to different service throughput times. Besides, the use of a predictive approach is certainly more reliable in terms of TTP estimation than a retrospective approach but entails a more difficult application. These considerations can support decision-makers in introducing different hospital selection policies to enhance EMSs performance.Keywords: discrete event simulation, emergency medical services, forecast model, hospital selection
Procedia PDF Downloads 882764 Node Pair Selection Scheme in Relay-Aided Communication Based on Stable Marriage Problem
Authors: Tetsuki Taniguchi, Yoshio Karasawa
Abstract:
This paper describes a node pair selection scheme in relay-aided multiple source multiple destination communication system based on stable marriage problem. A general case is assumed in which all of source, relay and destination nodes are equipped with multiantenna and carry out multistream transmission. Based on several metrics introduced from inter-node channel condition, the preference order is determined about all source-relay and relay-destination relations, and then the node pairs are determined using Gale-Shapley algorithm. The computer simulations show that the effectiveness of node pair selection is larger in multihop communication. Some additional aspects which are different from relay-less case are also investigated.Keywords: relay, multiple input multiple output (MIMO), multiuser, amplify and forward, stable marriage problem, Gale-Shapley algorithm
Procedia PDF Downloads 396