Search results for: resource estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4396

Search results for: resource estimation

4036 Ratio Type Estimators for the Estimation of Population Coefficient of Variation under Two-Stage Sampling

Authors: Muhammad Jabbar

Abstract:

In this paper we propose two ratio and ratio type exponential estimator for the estimation of population coefficient of variation using the auxiliary information under two-stage sampling. The properties of these estimators are derived up to first order of approximation. The efficiency conditions under which suggested estimator are more efficient, are obtained. Numerical and simulated studies are conducted to support the superiority of the estimators. Theoretically and numerically, we have found that our proposed estimator is always more efficient as compared to its competitor estimator.

Keywords: two-stage sampling, coefficient of variation, ratio type exponential estimator

Procedia PDF Downloads 529
4035 Exploring Selected Nigerian Fictional Work and Films as Sources of Peace Building and Conflict Resolution in the Natural Resource Extraction Regions of Nigeria: A Social Conflict Theoretical Perspective and Analysis

Authors: Joyce Onoromhenre Agofure

Abstract:

Research has shown how fictional work and films reflect the destruction of the environment due to the exploitation of oil, gas, gold, and forest products by multinational companies for profits but overlook discussions on conflict resolution and peacebuilding. However, this paper examines the manner art forms project peace and conflict resolution, thereby contributing to mediation and stability geared towards changing appalling situations in the resource extraction regions of Nigeria. This paper draws from selected Nigerian films- Blood and Oil (2019), directed by Curtis Graham, Black November (2012), directed by Jeta Amata, and a novel- Death of Eternity (2007), by Adamu Kyuka Usman. The study seeks to show that the disruptions caused in the natural resource regions of Nigeria have not only left adverse effects on the social well-being of the people but require resolutions through means of peacebuilding. By adopting the theoretical insights of Social Conflict, this paper focuses on artistic processes that enhance peacebuilding and conflict resolution in non-violent ways by using scenes, visual effects, themes, and images that can educate by shaping opinions, influencing attitudes, and changing ideas and behavioral patterns of individuals and communities. Put together; the research will open up critical perceptions brought about by the artists of study to shed light on the dire need to sustain peace and actively participate in conflict resolution in natural resource extraction spaces.

Keywords: natural resource, extraction, conflict resolution, peace building

Procedia PDF Downloads 81
4034 Integrating Deep Learning For Improved State Of Charge Estimation In Electric Bus

Authors: Ms. Hema Ramachandran, Dr. N. Vasudevan

Abstract:

Accurate estimation of the battery State of Charge (SOC) is essential for optimizing the range and performance of modern electric vehicles. This paper focuses on analysing historical driving data from electric buses, with an emphasis on feature extraction and data preprocessing of driving conditions. By selecting relevant parameters, a set of characteristic variables tailored to specific driving scenarios is established. A battery SOC prediction model based on a combination a bidirectional long short-term memory (LSTM) architecture and a standard fully connected neural network (FCNN) is then proposed, where various hyperparameters are identified and fine-tuned to enhance prediction accuracy. The results indicate that with optimized hyperparameters, the prediction achieves a Root Mean Square Error (RMSE) of 1.98% and a Mean Absolute Error (MAE) of 1.72%. This approach is expected to improve the efficiency of battery management systems and battery utilization in electric vehicles.

Keywords: long short-term memory (lstm), battery health monitoring, data-driven models, battery charge-discharge cycles, adaptive soc estimation, voltage and current sensing

Procedia PDF Downloads 10
4033 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.

Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance

Procedia PDF Downloads 440
4032 Genetic Algorithm and Multi Criteria Decision Making Approach for Compressive Sensing Based Direction of Arrival Estimation

Authors: Ekin Nurbaş

Abstract:

One of the essential challenges in array signal processing, which has drawn enormous research interest over the past several decades, is estimating the direction of arrival (DOA) of plane waves impinging on an array of sensors. In recent years, the Compressive Sensing based DoA estimation methods have been proposed by researchers, and it has been discovered that the Compressive Sensing (CS)-based algorithms achieved significant performances for DoA estimation even in scenarios where there are multiple coherent sources. On the other hand, the Genetic Algorithm, which is a method that provides a solution strategy inspired by natural selection, has been used in sparse representation problems in recent years and provides significant improvements in performance. With all of those in consideration, in this paper, a method that combines the Genetic Algorithm (GA) and the Multi-Criteria Decision Making (MCDM) approaches for Direction of Arrival (DoA) estimation in the Compressive Sensing (CS) framework is proposed. In this method, we generate a multi-objective optimization problem by splitting the norm minimization and reconstruction loss minimization parts of the Compressive Sensing algorithm. With the help of the Genetic Algorithm, multiple non-dominated solutions are achieved for the defined multi-objective optimization problem. Among the pareto-frontier solutions, the final solution is obtained with the multiple MCDM methods. Moreover, the performance of the proposed method is compared with the CS-based methods in the literature.

Keywords: genetic algorithm, direction of arrival esitmation, multi criteria decision making, compressive sensing

Procedia PDF Downloads 148
4031 Solid Waste Generation, Composition and Potentiality of Waste to Resource Recovery in Narayanganj City Corporation

Authors: Md. Jisan Ahmed, M. A. Taher

Abstract:

One of the cities in Bangladesh that is developing the fastest is Narayanganj City Corporation. In 2011, the municipality of Narayanganj was transformed into a city corporation, with 27 wards combining Kadamrasul Municipality, Siddhirganj Municipality, and Narayanganj Town. It is also one of Bangladesh's most important industrial centers in Bangladesh. Narayanganj City Corporation (NCC), which has had high development growth, is also generating more solid waste on a high per-capita basis. Because of the increasing rate of population expansion, business activity, industrial development, and fast urbanization, NCC is today creating more waste than ever before. The enormous amount of solid garbage produced in NCC is currently causing air pollution, soil contamination, water pollution, drainage system blockages, and an unpleasant urban environment. The study aimed to find out the amount of solid waste produced per day in NCC by exploring the waste composition and potentiality of resource recovery from the produced solid waste. This study considered household surveys, polythene bag surveys, questionnaire surveys in commercial and industrial sectors, KIIs, FGDs, and lab tests to identify the total amount of waste generated in NCC with waste composition and potentiality for energy recovery from the generated waste. This study has explored that NCC is producing about 922 tons of solid waste per day from households, commercial activities, and industrial sectors where the existing waste collection rate by NCC authority is only about 50% of total generated waste. This study has also explored that about 75% of daily-produced solid waste is perishable with comparatively high moisture content whereas 18 % and 7% are non-perishable and hazardous. It is also explored that there is no resource recovery plant for solid waste management in NCC. On the other hand, this study has explored that the calorific value of the produced solid waste favors resource recovery like waste to electricity. The generated solid waste composition is also in favor of waste-to-biogas, and waste-to-compost fertilizer production. This study has advocated that initiatives need to develop a solid waste management plant in NCC for resource recovery from solid waste. This research may provide a quick overview of the rate of solid waste generation, its composition, and the potential for resource recovery from solid waste in Bangladesh's metropolitan regions. It can also provide information and knowledge to other trash departments in different cities and municipalities in Bangladesh.

Keywords: solid waste, waste composition, waste management, resource recovery from solid waste

Procedia PDF Downloads 26
4030 A Unified Deep Framework for Joint 3d Pose Estimation and Action Recognition from a Single Color Camera

Authors: Huy Hieu Pham, Houssam Salmane, Louahdi Khoudour, Alain Crouzil, Pablo Zegers, Sergio Velastin

Abstract:

We present a deep learning-based multitask framework for joint 3D human pose estimation and action recognition from color video sequences. Our approach proceeds along two stages. In the first, we run a real-time 2D pose detector to determine the precise pixel location of important key points of the body. A two-stream neural network is then designed and trained to map detected 2D keypoints into 3D poses. In the second, we deploy the Efficient Neural Architecture Search (ENAS) algorithm to find an optimal network architecture that is used for modeling the Spatio-temporal evolution of the estimated 3D poses via an image-based intermediate representation and performing action recognition. Experiments on Human3.6M, Microsoft Research Redmond (MSR) Action3D, and Stony Brook University (SBU) Kinect Interaction datasets verify the effectiveness of the proposed method on the targeted tasks. Moreover, we show that our method requires a low computational budget for training and inference.

Keywords: human action recognition, pose estimation, D-CNN, deep learning

Procedia PDF Downloads 147
4029 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 375
4028 Bayesian Estimation under Different Loss Functions Using Gamma Prior for the Case of Exponential Distribution

Authors: Md. Rashidul Hasan, Atikur Rahman Baizid

Abstract:

The Bayesian estimation approach is a non-classical estimation technique in statistical inference and is very useful in real world situation. The aim of this paper is to study the Bayes estimators of the parameter of exponential distribution under different loss functions and then compared among them as well as with the classical estimator named maximum likelihood estimator (MLE). In our real life, we always try to minimize the loss and we also want to gather some prior information (distribution) about the problem to solve it accurately. Here the gamma prior is used as the prior distribution of exponential distribution for finding the Bayes estimator. In our study, we also used different symmetric and asymmetric loss functions such as squared error loss function, quadratic loss function, modified linear exponential (MLINEX) loss function and non-linear exponential (NLINEX) loss function. Finally, mean square error (MSE) of the estimators are obtained and then presented graphically.

Keywords: Bayes estimator, maximum likelihood estimator (MLE), modified linear exponential (MLINEX) loss function, Squared Error (SE) loss function, non-linear exponential (NLINEX) loss function

Procedia PDF Downloads 385
4027 Role of Non-Timber Forest Products in Local Livelihood and Household Economies in Resource-Rich vs. Resource Poor Forest Area of Mizoram

Authors: Uttam Kumar Sahoo, K. Lalhmingsangi, J. H. Lalremruati

Abstract:

Non-timber forest resources particularly the high-value, low volume NTFPs has drawn interest as an activity all over the world during the past three decades that could raise standards of living for the rural folks while being compatible with forest conservation. This is particularly true for the people living in and around or fringes of protected areas. However, the economics that plays between resources’ stock and its utilization by the humans is yet to be validated and evaluated logistically. A study was therefore designed to understand the linkages between resource (especially NTFPs) availability and their utilization, existing threats to this biodiversity conservation and the role of NTFPs within the livelihood systems of those households that are most directly involved in creating conservation threats. About 25% of the households were sampled from the two sites ‘resource-rich’ and ‘resource poor’ area of Dampa Tiger Reserve (Western boundary). Our preliminary findings suggest that the collection of relatively high-volume and low value NTFPs such as fuelwood, fodder has caused degradation of forest resources while the low-volume and high-value NTFPs such as wild edible mushrooms, vegetables, other specialty food products, inputs to crafts, medicinal plants have resulted into species promotion/conservation through their domestication in traditional agroforestry systems including home gardens and/or collateral protection of the Tiger Reserve. It is thus suggested that proper assessment of these biodiversities, their direct and indirect valuation, market and non-market profits etc be carried out in greater details which would result in prescribing effective management plans around the park.

Keywords: household economy, livelihood strategies, non-timber forest products, species conservation

Procedia PDF Downloads 191
4026 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques

Authors: Kouzi Katia

Abstract:

This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.

Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table

Procedia PDF Downloads 345
4025 Comparative Life Cycle Assessment of High Barrier Polymer Packaging for Selecting Resource Efficient and Environmentally Low-Impact Materials

Authors: D. Kliaugaitė, J. K, Staniškis

Abstract:

In this study tree types of multilayer gas barrier plastic packaging films were compared using life cycle assessment as a tool for resource efficient and environmentally low-impact materials selection. The first type of multilayer packaging film (PET-AlOx/LDPE) consists of polyethylene terephthalate with barrier layer AlOx (PET-AlOx) and low density polyethylene (LDPE). The second type of polymer film (PET/PE-EVOH-PE) is made of polyethylene terephthalate (PET) and co-extrusion film PE-EVOH-PE as barrier layer. And the third one type of multilayer packaging film (PET-PVOH/LDPE) is formed from polyethylene terephthalate with barrier layer PVOH (PET-PVOH) and low density polyethylene (LDPE). All of analyzed packaging has significant impact to resource depletion, because of raw materials extraction and energy use and production of different kind of plastics. Nevertheless the impact generated during life cycle of functional unit of II type of packaging (PET/PE-EVOH-PE) was about 25% lower than impact generated by I type (PET-AlOx/LDPE) and III type (PET-PVOH/LDPE) of packaging. Result revealed that the contribution of different gas barrier type to the overall environmental problem of packaging is not significant. The impact are mostly generated by using energy and materials during raw material extraction and production of different plastic materials as plastic polymers material as PE, LDPE and PET, but not gas barrier materials as AlOx, PVOH and EVOH. The LCA results could be useful in different decision-making processes, for selecting resource efficient and environmentally low-impact materials.

Keywords: life cycle assessment, polymer packaging, resource efficiency, materials extraction, polyethylene terephthalate

Procedia PDF Downloads 364
4024 The Impact of Natural Resources on Financial Development: The Global Perspective

Authors: Remy Jonkam Oben

Abstract:

Using a time series approach, this study investigates how natural resources impact financial development from a global perspective over the 1980-2019 period. Some important determinants of financial development (economic growth, trade openness, population growth, and investment) have been added to the model as control variables. Unit root tests have revealed that all the variables are integrated into order one. Johansen's cointegration test has shown that the variables are in a long-run equilibrium relationship. The vector error correction model (VECM) has estimated the coefficient of the error correction term (ECT), which suggests that the short-run values of natural resources, economic growth, trade openness, population growth, and investment contribute to financial development converging to its long-run equilibrium level by a 23.63% annual speed of adjustment. The estimated coefficients suggest that global natural resource rent has a statistically-significant negative impact on global financial development in the long-run (thereby validating the financial resource curse) but not in the short-run. Causality test results imply that neither global natural resource rent nor global financial development Granger-causes each other.

Keywords: financial development, natural resources, resource curse hypothesis, time series analysis, Granger causality, global perspective

Procedia PDF Downloads 173
4023 Robustified Asymmetric Logistic Regression Model for Global Fish Stock Assessment

Authors: Osamu Komori, Shinto Eguchi, Hiroshi Okamura, Momoko Ichinokawa

Abstract:

The long time-series data on population assessments are essential for global ecosystem assessment because the temporal change of biomass in such a database reflects the status of global ecosystem properly. However, the available assessment data usually have limited sample sizes and the ratio of populations with low abundance of biomass (collapsed) to those with high abundance (non-collapsed) is highly imbalanced. To allow for the imbalance and uncertainty involved in the ecological data, we propose a binary regression model with mixed effects for inferring ecosystem status through an asymmetric logistic model. In the estimation equation, we observe that the weights for the non-collapsed populations are relatively reduced, which in turn puts more importance on the small number of observations of collapsed populations. Moreover, we extend the asymmetric logistic regression model using propensity score to allow for the sample biases observed in the labeled and unlabeled datasets. It robustified the estimation procedure and improved the model fitting.

Keywords: double robust estimation, ecological binary data, mixed effect logistic regression model, propensity score

Procedia PDF Downloads 269
4022 The Sustainable Governance of Aquifer Injection Using Treated Coal Seam Gas Water in Queensland, Australia: Lessons for Integrated Water Resource Management

Authors: Jacqui Robertson

Abstract:

The sustainable governance of groundwater is of the utmost importance in an arid country like Australia. Groundwater has been relied on by our agricultural and pastoral communities since the State was settled by European colonialists. Nevertheless, the rapid establishment of a coal seam gas (CSG) industry in Queensland, Australia, has had extensive impacts on the pre-existing groundwater users. Managed aquifer recharge of important aquifers in Queensland, Australia, using treated coal seam gas produced water has been used to reduce the impacts of CSG development in Queensland Australia. However, the process has not been widely adopted. Negative environmental outcomes are now acknowledged as not only engineering, scientific or technical problems to be solved but also the result of governance failures. An analysis of the regulatory context for aquifer injection using treated CSG water in Queensland, Australia, using Ostrom’s Common Pool Resource (CPR) theory and a ‘heat map’ designed by the author, highlights the importance of governance arrangements. The analysis reveals the costs and benefits for relevant stakeholders of artificial recharge of groundwater resources in this context. The research also reveals missed opportunities to further active management of the aquifer and resolve existing conflicts between users. The research illustrates the importance of strategically and holistically evaluating innovations in technology that impact water resources to reveal incentives that impact resource user behaviors. The paper presents a proactive step that can be adapted to support integrated water resource management and sustainable groundwater development.

Keywords: managed aquifer recharge, groundwater regulation, common-pool resources, integrated water resource management, Australia

Procedia PDF Downloads 240
4021 A New Block Cipher for Resource-Constrained Internet of Things Devices

Authors: Muhammad Rana, Quazi Mamun, Rafiqul Islam

Abstract:

In the Internet of Things (IoT), many devices are connected and accumulate a sheer amount of data. These Internet-driven raw data need to be transferred securely to the end-users via dependable networks. Consequently, the challenges of IoT security in various IoT domains are paramount. Cryptography is being applied to secure the networks for authentication, confidentiality, data integrity and access control. However, due to the resource constraint properties of IoT devices, the conventional cipher may not be suitable in all IoT networks. This paper designs a robust and effective lightweight cipher to secure the IoT environment and meet the resource-constrained nature of IoT devices. We also propose a symmetric and block-cipher based lightweight cryptographic algorithm. The proposed algorithm increases the complexity of the block cipher, maintaining the lowest computational requirements possible. The proposed algorithm efficiently constructs the key register updating technique, reduces the number of encryption rounds, and adds a new layer between the encryption and decryption processes.

Keywords: internet of things, cryptography block cipher, S-box, key management, security, network

Procedia PDF Downloads 114
4020 Research and Application of the Three-Dimensional Visualization Geological Modeling of Mine

Authors: Bin Wang, Yong Xu, Honggang Qu, Rongmei Liu, Zhenji Gao

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three dimensional visualization geological modeling of mine is the digital characterization of mineral deposit, and is one of the key technology of digital mine. The three-dimensional geological modeling is a technology that combines the geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in three-dimensional environment with computer technology, and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provided scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 72
4019 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model

Authors: David A. Padilla, Rodolfo Villamizar

Abstract:

In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.

Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova

Procedia PDF Downloads 265
4018 Approaches and Implications of Working on Gender Equality under Corporate Social Responsibility: A Case Study of Two Corporate Social Responsibilities in India

Authors: Shilpa Vasavada

Abstract:

One of the 17 SustainableDevelopmentGoals focuses on gender equality. The paper is based on the learning derived from working with two Corporate Social Responsibility cases in India: one, CSR of an International Corporate and the other, CSR of a multi state national level corporate -on their efforts to integrate gender perspective in their agriculture and livestock based rural livelihood programs. The author tries to dissect how ‘gender equality’ is seen by these two CSRs, where the goals are different. The implications of a CSR’sunderstandingon ‘gender equality’ as a goal; versus CSR’s understanding of working 'with women for enhancing quantity or quality of production’ gets reflected in their orientation to staff, resource allocation, strategic level and in processes followed at the rural grassroots level. The paper comes up with examples of changes made at programmatic front when CSR understands and works with the focus on gender equality as a goal. On the other hand, the paper also explores the differential, at times, the negative impact on women and the programmes;- when the goals differ. The paper concludes with recommendations for CSRs to take up at their resource allocation and strategic level if gender equality is the goal- which has direct implication at their grassroots programmatic work. The author argues that if gender equality has to be implemented actually in spirit by a CSR, it requires change in mindset and thus an openness to changes in strategies and resource allocation pattern of the CSR and not simply adding on women in the way intervention has been going on.

Keywords: gender equality, approaches, differential impact, resource allocation

Procedia PDF Downloads 197
4017 Estimation of Missing Values in Aggregate Level Spatial Data

Authors: Amitha Puranik, V. S. Binu, Seena Biju

Abstract:

Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.

Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis

Procedia PDF Downloads 383
4016 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 131
4015 A Task Scheduling Algorithm in Cloud Computing

Authors: Ali Bagherinia

Abstract:

Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this.

Keywords: cloud computing, task scheduling, virtualization, SLA

Procedia PDF Downloads 404
4014 Optimisation of B2C Supply Chain Resource Allocation

Authors: Firdaous Zair, Zoubir Elfelsoufi, Mohammed Fourka

Abstract:

The allocation of resources is an issue that is needed on the tactical and operational strategic plan. This work considers the allocation of resources in the case of pure players, manufacturers and Click & Mortars that have launched online sales. The aim is to improve the level of customer satisfaction and maintaining the benefits of e-retailer and of its cooperators and reducing costs and risks. Our contribution is a decision support system and tool for improving the allocation of resources in logistics chains e-commerce B2C context. We first modeled the B2C chain with all operations that integrates and possible scenarios since online retailers offer a wide selection of personalized service. The personalized services that online shopping companies offer to the clients can be embodied in many aspects, such as the customizations of payment, the distribution methods, and after-sales service choices. In addition, every aspect of customized service has several modes. At that time, we analyzed the optimization problems of supply chain resource allocation in customized online shopping service mode, which is different from the supply chain resource allocation under traditional manufacturing or service circumstances. Then we realized an optimization model and algorithm for the development based on the analysis of the allocation of the B2C supply chain resources. It is a multi-objective optimization that considers the collaboration of resources in operations, time and costs but also the risks and the quality of services as well as dynamic and uncertain characters related to the request.

Keywords: e-commerce, supply chain, B2C, optimisation, resource allocation

Procedia PDF Downloads 275
4013 Economic and Human Development in Nigeria: Resources, Production Technology and Transactions Costs, 1949 to 2010

Authors: David Bywaters, Paweł Młodkowski

Abstract:

The paper assesses the roles of resource growth and technology in development for Nigeria, India, and the UK and concludes by assessing the contribution of technological progress in the economic function of exchange on technological progress in the economic function of production. The evidence suggests for Nigeria, India, and the UK that increases in specialisation, as measured by the variable denoted exchtech in this paper, are the most statistically significant explanation of production technology, compared to education and capital per worker. This paper builds on theoretical work by the authors, which shows that reductions in resource use per transaction are a cause of economic growth, as well as increases in resource quantity and improvements in production technology using mathematical programming. That work is briefly reviewed and then extended to include the economic activities of consumption, from stock, production, and exchange to government, investing activities, financing activities, and exchange within and outside one economy to facilitate application to national accounts and other data.

Keywords: economic growth, Nigeria, transactions costs, Ronald Coase

Procedia PDF Downloads 7
4012 Relevancy Measures of Errors in Displacements of Finite Elements Analysis Results

Authors: A. B. Bolkhir, A. Elshafie, T. K. Yousif

Abstract:

This paper highlights the methods of error estimation in finite element analysis (FEA) results. It indicates that the modeling error could be eliminated by performing finite element analysis with successively finer meshes or by extrapolating response predictions from an orderly sequence of relatively low degree of freedom analysis results. In addition, the paper eliminates the round-off error by running the code at a higher precision. The paper provides application in finite element analysis results. It draws a conclusion based on results of application of methods of error estimation.

Keywords: finite element analysis (FEA), discretization error, round-off error, mesh refinement, richardson extrapolation, monotonic convergence

Procedia PDF Downloads 500
4011 Improved Multi-Channel Separation Algorithm for Satellite-Based Automatic Identification System Signals Based on Artificial Bee Colony and Adaptive Moment Estimation

Authors: Peng Li, Luan Wang, Haifeng Fei, Renhong Xie, Yibin Rui, Shanhong Guo

Abstract:

The applications of satellite-based automatic identification system (S-AIS) pave the road for wide-range maritime traffic monitoring and management. But the coverage of satellite’s view includes multiple AIS self-organizing networks, which leads to the collision of AIS signals from different cells. The contribution of this work is to propose an improved multi-channel blind source separation algorithm based on Artificial Bee Colony (ABC) and advanced stochastic optimization to perform separation of the mixed AIS signals. The proposed approach adopts modified ABC algorithm to get an optimized initial separating matrix, which can expedite the initialization bias correction, and utilizes the Adaptive Moment Estimation (Adam) to update the separating matrix by adjusting the learning rate for each parameter dynamically. Simulation results show that the algorithm can speed up convergence and lead to better performance in separation accuracy.

Keywords: satellite-based automatic identification system, blind source separation, artificial bee colony, adaptive moment estimation

Procedia PDF Downloads 187
4010 A Theorem Related to Sample Moments and Two Types of Moment-Based Density Estimates

Authors: Serge B. Provost

Abstract:

Numerous statistical inference and modeling methodologies are based on sample moments rather than the actual observations. A result justifying the validity of this approach is introduced. More specifically, it will be established that given the first n moments of a sample of size n, one can recover the original n sample points. This implies that a sample of size n and its first associated n moments contain precisely the same amount of information. However, it is efficient to make use of a limited number of initial moments as most of the relevant distributional information is included in them. Two types of density estimation techniques that rely on such moments will be discussed. The first one expresses a density estimate as the product of a suitable base density and a polynomial adjustment whose coefficients are determined by equating the moments of the density estimate to the sample moments. The second one assumes that the derivative of the logarithm of a density function can be represented as a rational function. This gives rise to a system of linear equations involving sample moments, the density estimate is then obtained by solving a differential equation. Unlike kernel density estimation, these methodologies are ideally suited to model ‘big data’ as they only require a limited number of moments, irrespective of the sample size. What is more, they produce simple closed form expressions that are amenable to algebraic manipulations. They also turn out to be more accurate as will be shown in several illustrative examples.

Keywords: density estimation, log-density, polynomial adjustments, sample moments

Procedia PDF Downloads 166
4009 Factors Affecting Human Resource Managers Information Behavior

Authors: Sevim Oztimurlenk

Abstract:

This is an exploratory study on the information behavior of human resource managers. This study is conducted by using a questionnaire survey and an interview. The data is gathered from 140 HR managers who are members of the People Management Association of Turkey (PERYÖN), and the 15 interviewees were chosen among those 140 survey participants randomly. The goal of this exploratory study is to investigate the impact of some factors (i.e., gender, age, work experience, number of employee reporting, company size, industry type) on HR managers’ information behavior. More specifically, it examines if there is a relationship between those factors and HR managers’ information behavior in terms of what kind of information sources they consult and reviews and whom they prefer to communicate with for information sharing. It also aims to find out additional factors influencing the information behavior of HR managers. The results of the study show that age and industry type are the two factors affecting the information behavior of HR managers, among other factors investigated in terms of information source, use and share. Moreover, personality, technology, education, organizational culture, and culture are the top five factors among the 24 additional factors suggested by HR managers who participated in this study.

Keywords: information behavior, information use, information source, information share, human resource managers

Procedia PDF Downloads 146
4008 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac

Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang

Abstract:

Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.

Keywords: three-dimensional geological modeling, geological database, geostatistics, block model

Procedia PDF Downloads 80
4007 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm

Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park

Abstract:

For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.

Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure

Procedia PDF Downloads 536