Search results for: imperial competitive algorithm
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4898

Search results for: imperial competitive algorithm

4598 High Speed Image Rotation Algorithm

Authors: Hee-Choul Kwon, Hyungjin Cho, Heeyong Kwon

Abstract:

Image rotation is one of main pre-processing step in image processing or image pattern recognition. It is implemented with rotation matrix multiplication. However it requires lots of floating point arithmetic operations and trigonometric function calculations, so it takes long execution time. We propose a new high speed image rotation algorithm without two major time-consuming operations. We compare the proposed algorithm with the conventional rotation one with various size images. Experimental results show that the proposed algorithm is superior to the conventional rotation ones.

Keywords: high speed rotation operation, image processing, image rotation, pattern recognition, transformation matrix

Procedia PDF Downloads 506
4597 A Robust and Adaptive Unscented Kalman Filter for the Air Fine Alignment of the Strapdown Inertial Navigation System/GPS

Authors: Jian Shi, Baoguo Yu, Haonan Jia, Meng Liu, Ping Huang

Abstract:

Adapting to the flexibility of war, a large number of guided weapons launch from aircraft. Therefore, the inertial navigation system loaded in the weapon needs to undergo an alignment process in the air. This article proposes the following methods to the problem of inaccurate modeling of the system under large misalignment angles, the accuracy reduction of filtering caused by outliers, and the noise changes in GPS signals: first, considering the large misalignment errors of Strapdown Inertial Navigation System (SINS)/GPS, a more accurate model is made rather than to make a small-angle approximation, and the Unscented Kalman Filter (UKF) algorithms are used to estimate the state; then, taking into account the impact of GPS noise changes on the fine alignment algorithm, the innovation adaptive filtering algorithm is introduced to estimate the GPS’s noise in real-time; at the same time, in order to improve the anti-interference ability of the air fine alignment algorithm, a robust filtering algorithm based on outlier detection is combined with the air fine alignment algorithm to improve the robustness of the algorithm. The algorithm can improve the alignment accuracy and robustness under interference conditions, which is verified by simulation.

Keywords: air alignment, fine alignment, inertial navigation system, integrated navigation system, UKF

Procedia PDF Downloads 166
4596 Optimized Algorithm for Particle Swarm Optimization

Authors: Fuzhang Zhao

Abstract:

Particle swarm optimization (PSO) is becoming one of the most important swarm intelligent paradigms for solving global optimization problems. Although some progress has been made to improve PSO algorithms over the last two decades, additional work is still needed to balance parameters to achieve better numerical properties of accuracy, efficiency, and stability. In the optimal PSO algorithm, the optimal weightings of (√ 5 − 1)/2 and (3 − √5)/2 are used for the cognitive factor and the social factor, respectively. By the same token, the same optimal weightings have been applied for intensification searches and diversification searches, respectively. Perturbation and constriction effects are optimally balanced. Simulations of the de Jong, the Rosenbrock, and the Griewank functions show that the optimal PSO algorithm indeed achieves better numerical properties and outperforms the canonical PSO algorithm.

Keywords: diversification search, intensification search, optimal weighting, particle swarm optimization

Procedia PDF Downloads 582
4595 CompPSA: A Component-Based Pairwise RNA Secondary Structure Alignment Algorithm

Authors: Ghada Badr, Arwa Alturki

Abstract:

The biological function of an RNA molecule depends on its structure. The objective of the alignment is finding the homology between two or more RNA secondary structures. Knowing the common functionalities between two RNA structures allows a better understanding and a discovery of other relationships between them. Besides, identifying non-coding RNAs -that is not translated into a protein- is a popular application in which RNA structural alignment is the first step A few methods for RNA structure-to-structure alignment have been developed. Most of these methods are partial structure-to-structure, sequence-to-structure, or structure-to-sequence alignment. Less attention is given in the literature to the use of efficient RNA structure representation and the structure-to-structure alignment methods are lacking. In this paper, we introduce an O(N2) Component-based Pairwise RNA Structure Alignment (CompPSA) algorithm, where structures are given as a component-based representation and where N is the maximum number of components in the two structures. The proposed algorithm compares the two RNA secondary structures based on their weighted component features rather than on their base-pair details. Extensive experiments are conducted illustrating the efficiency of the CompPSA algorithm when compared to other approaches and on different real and simulated datasets. The CompPSA algorithm shows an accurate similarity measure between components. The algorithm gives the flexibility for the user to align the two RNA structures based on their weighted features (position, full length, and/or stem length). Moreover, the algorithm proves scalability and efficiency in time and memory performance.

Keywords: alignment, RNA secondary structure, pairwise, component-based, data mining

Procedia PDF Downloads 458
4594 Competitive Advantage Challenges in the Apparel Manufacturing Industries of South Africa: Application of Porter’s Factor Conditions

Authors: Sipho Mbatha, Anne Mastament-Mason

Abstract:

South African manufacturing global competitiveness was ranked 22nd (out of 38 countries), dropped to 24th in 2013 and is expected to drop further to 25th by 2018. These impacts negatively on the industrialisation project of South Africa. For industrialization to be achieved through labour intensive industries like the Apparel Manufacturing Industries of South Africa (AMISA), South Africa needs to identify and respond to factors negatively impacting on the development of competitive advantage This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialisation policy were interviewed The paper points out that while AMISA have basic factor conditions necessary for competitive advantage in the clothing and textiles industries, Advance factor coordination has proven to be a challenging task for the AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response as a result of lack of advanced technologies. The use of Porter’s Factor Conditions as a tool to analyse the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyse the situation of the AMISA for the purposes of improving competitive advantage.

Keywords: compliance rule, apparel manufacturing industry, factor conditions, advance skills and South African industrial policy

Procedia PDF Downloads 362
4593 The Impact of Perceived Banking Service Quality on Customer Satisfaction

Authors: Muhammad Waqas

Abstract:

In this competitive environment, organizations in the service sector and industrial sector are trying their best to win the loyalty of their customers by providing superior quality services and innovative products to remain competitive in the market. The objective of this study is to focus on the concept that public dealing and tripping of electricity have a significant impact on customer satisfaction. This study is focused on the banking sector. It is concluded that quality in service sectors strongly depends on employees' commitment to the organization for providing superior services to the customers to enhance customers' satisfaction.

Keywords: customer complaints, banking sector, customer satisfaction, Islamic banking

Procedia PDF Downloads 87
4592 Competitive Effects of Differential Voting Rights and Promoter Control in Indian Start-Ups

Authors: Prateek Bhattacharya

Abstract:

The definition of 'control' in India is a rapidly evolving concept, owing to varying rights attached to varying securities. Shares with differential voting rights (DVRs) provide the holder with differential rights as to voting, as compared to ordinary equity shareholders of the company. Such DVRs can amount to both superior voting rights and inferior voting rights, where DVRs with superior voting rights amount to providing the holder with golden shares in the company. While DVRs are not a novel concept in India having been recognized since 2000, they were placed on a back burner by the Securities and Exchange Board of India (SEBI) in 2010 after issuance of DVRs with superior voting rights was restricted. In June 2019, the SEBI rekindled the ebbing fire of DVRs, keeping mind the fast-paced nature of the global economy, the government's faith that India’s ‘new age technology companies’ (i.e., Start-Ups) will lead the charge in achieving its goal of India becoming a $5 trillion dollar economy by 2024, and recognizing that the promoters of such Start-Ups seek to raise capital without losing control over their companies. DVRs with superior voting rights guarantee promoters with up to 74% shareholding in Start-Ups for a period of 5 years, meaning that the holder of such DVRs can exercise sole control and material influence over the company for that period. This manner of control has the potential of causing both pro-competitive and anti-competitive effects in the markets where these companies operate. On the one hand, DVRs will allow Start-Up promoters/founders to retain control of their companies and protect its business interests from foreign elements such as private/public investors – in a scenario where such investors have multiple investments in firms engaged in associated lines of business (whether on a horizontal or vertical level) and would seek to influence these firms to enter into potential anti-competitive arrangements with one another, DVRs will enable the promoters to thwart such scenarios. On the other hand, promoters/founders who themselves have multiple investments in Start-Ups, which are in associated lines of business run the risk of influencing these associated Start-Ups to engage in potentially anti-competitive arrangements in the name of profit maximisation. This paper shall be divided into three parts: Part I shall deal with the concept of ‘control’, as deliberated upon and decided by the SEBI and the Competition Commission of India (CCI) under both company/securities law and competition law; Part II shall review this definition of ‘control’ through the lens of DVRs, and Part III shall discuss the aforementioned potential pro-competitive and anti-competitive effects caused by the DVRs by examining the current Indian Start-Up scenario. The paper shall conclude by providing suggestions for the CCI to incorporate a clearer and more progressive concept of ‘control’.

Keywords: competition law, competitive effects, control, differential voting rights, DVRs, investor shareholding, merger control, start-ups

Procedia PDF Downloads 123
4591 A Genetic Algorithm for the Load Balance of Parallel Computational Fluid Dynamics Computation with Multi-Block Structured Mesh

Authors: Chunye Gong, Ming Tie, Jie Liu, Weimin Bao, Xinbiao Gan, Shengguo Li, Bo Yang, Xuguang Chen, Tiaojie Xiao, Yang Sun

Abstract:

Large-scale CFD simulation relies on high-performance parallel computing, and the load balance is the key role which affects the parallel efficiency. This paper focuses on the load-balancing problem of parallel CFD simulation with structured mesh. A mathematical model for this load-balancing problem is presented. The genetic algorithm, fitness computing, two-level code are designed. Optimal selector, robust operator, and local optimization operator are designed. The properties of the presented genetic algorithm are discussed in-depth. The effects of optimal selector, robust operator, and local optimization operator are proved by experiments. The experimental results of different test sets, DLR-F4, and aircraft design applications show the presented load-balancing algorithm is robust, quickly converged, and is useful in real engineering problems.

Keywords: genetic algorithm, load-balancing algorithm, optimal variation, local optimization

Procedia PDF Downloads 185
4590 Genetic Algorithm for Solving the Flexible Job-Shop Scheduling Problem

Authors: Guilherme Baldo Carlos

Abstract:

The flexible job-shop scheduling problem (FJSP) is an NP-hard combinatorial optimization problem, which can be applied to model several applications in a wide array of industries. This problem will have its importance increase due to the shift in the production mode that modern society is going through. The demands are increasing and for products personalized and customized. This work aims to apply a meta-heuristic called a genetic algorithm (GA) to solve this problem. A GA is a meta-heuristic inspired by the natural selection of Charles Darwin; it produces a population of individuals (solutions) and selects, mutates, and mates the individuals through generations in order to find a good solution for the problem. The results found indicate that the GA is suitable for FJSP solving.

Keywords: genetic algorithm, evolutionary algorithm, scheduling, flexible job-shop scheduling

Procedia PDF Downloads 147
4589 Lane Detection Using Labeling Based RANSAC Algorithm

Authors: Yeongyu Choi, Ju H. Park, Ho-Youl Jung

Abstract:

In this paper, we propose labeling based RANSAC algorithm for lane detection. Advanced driver assistance systems (ADAS) have been widely researched to avoid unexpected accidents. Lane detection is a necessary system to assist keeping lane and lane departure prevention. The proposed vision based lane detection method applies Canny edge detection, inverse perspective mapping (IPM), K-means algorithm, mathematical morphology operations and 8 connected-component labeling. Next, random samples are selected from each labeling region for RANSAC. The sampling method selects the points of lane with a high probability. Finally, lane parameters of straight line or curve equations are estimated. Through the simulations tested on video recorded at daytime and nighttime, we show that the proposed method has better performance than the existing RANSAC algorithm in various environments.

Keywords: Canny edge detection, k-means algorithm, RANSAC, inverse perspective mapping

Procedia PDF Downloads 244
4588 Investigation of the Stability of the F* Iterative Algorithm on Strong Peudocontractive Mappings and Its Applications

Authors: Felix Damilola Ajibade, Opeyemi O. Enoch, Taiwo Paul Fajusigbe

Abstract:

This paper is centered on conducting an inquiry into the stability of the F* iterative algorithm to the fixed point of a strongly pseudo-contractive mapping in the framework of uniformly convex Banach spaces. To achieve the desired result, certain existing inequalities in convex Banach spaces were utilized, as well as the stability criteria of Harder and Hicks. Other necessary conditions for the stability of the F* algorithm on strong pseudo-contractive mapping were also obtained. Through a numerical approach, we prove that the F* iterative algorithm is H-stable for strongly pseudo-contractive mapping. Finally, the solution of the mixed-type Volterra-Fredholm functional non-linear integral equation is estimated using our results.

Keywords: stability, F* -iterative algorithm, pseudo-contractive mappings, uniformly convex Banach space, mixed-type Volterra-Fredholm integral equation

Procedia PDF Downloads 104
4587 An Efficient Resource Management Algorithm for Mobility Management in Wireless Mesh Networks

Authors: Mallikarjuna Rao Yamarthy, Subramanyam Makam Venkata, Satya Prasad Kodati

Abstract:

The main objective of the proposed work is to reduce the overall network traffic incurred by mobility management, packet delivery cost and to increase the resource utilization. The proposed algorithm, An Efficient Resource Management Algorithm (ERMA) for mobility management in wireless mesh networks, relies on pointer based mobility management scheme. Whenever a mesh client moves from one mesh router to another, the pointer is set up dynamically between the previous mesh router and current mesh router based on the distance constraints. The algorithm evaluated for signaling cost, data delivery cost and total communication cost performance metrics. The proposed algorithm is demonstrated for both internet sessions and intranet sessions. The proposed algorithm yields significantly better performance in terms of signaling cost, data delivery cost, and total communication cost.

Keywords: data delivery cost, mobility management, pointer forwarding, resource management, wireless mesh networks

Procedia PDF Downloads 367
4586 Comparison of Parallel CUDA and OpenMP Implementations of Memetic Algorithms for Solving Optimization Problems

Authors: Jason Digalakis, John Cotronis

Abstract:

Memetic algorithms (MAs) are useful for solving optimization problems. It is quite difficult to search the search space of the optimization problem with large dimensions. There is a challenge to use all the cores of the system. In this study, a sequential implementation of the memetic algorithm is converted into a concurrent version, which is executed on the cores of both CPU and GPU. For this reason, CUDA and OpenMP libraries are operated on the parallel algorithm to make a concurrent execution on CPU and GPU, respectively. The aim of this study is to compare CPU and GPU implementation of the memetic algorithm. For this purpose, fourteen benchmark functions are selected as test problems. The obtained results indicate that our approach leads to speedups up to five thousand times higher compared to one CPU thread while maintaining a reasonable results quality. This clearly shows that GPUs have the potential to acceleration of MAs and allow them to solve much more complex tasks.

Keywords: memetic algorithm, CUDA, GPU-based memetic algorithm, open multi processing, multimodal functions, unimodal functions, non-linear optimization problems

Procedia PDF Downloads 102
4585 Creation of S-Box in Blowfish Using AES

Authors: C. Rekha, G. N. Krishnamurthy

Abstract:

This paper attempts to develop a different approach for key scheduling algorithm which uses both Blowfish and AES algorithms. The main drawback of Blowfish algorithm is, it takes more time to create the S-box entries. To overcome this, we are replacing process of S-box creation in blowfish, by using key dependent S-box creation from AES without affecting the basic operation of blowfish. The method proposed in this paper uses good features of blowfish as well as AES and also this paper demonstrates the performance of blowfish and new algorithm by considering different aspects of security namely Encryption Quality, Key Sensitivity, and Correlation of horizontally adjacent pixels in an encrypted image.

Keywords: AES, blowfish, correlation coefficient, encryption quality, key sensitivity, s-box

Procedia PDF Downloads 226
4584 Nonuniformity Correction Technique in Infrared Video Using Feedback Recursive Least Square Algorithm

Authors: Flavio O. Torres, Maria J. Castilla, Rodrigo A. Augsburger, Pedro I. Cachana, Katherine S. Reyes

Abstract:

In this paper, we present a scene-based nonuniformity correction method using a modified recursive least square algorithm with a feedback system on the updates. The feedback is designed to remove impulsive noise contamination images produced by a recursive least square algorithm by measuring the output of the proposed algorithm. The key advantage of the method is based on its capacity to estimate detectors parameters and then compensate for impulsive noise contamination image in a frame by frame basics. We define the algorithm and present several experimental results to demonstrate the efficacy of the proposed method in comparison to several previously published recursive least square-based methods. We show that the proposed method removes impulsive noise contamination image.

Keywords: infrared focal plane arrays, infrared imaging, least mean square, nonuniformity correction

Procedia PDF Downloads 143
4583 3D Mesh Coarsening via Uniform Clustering

Authors: Shuhua Lai, Kairui Chen

Abstract:

In this paper, we present a fast and efficient mesh coarsening algorithm for 3D triangular meshes. Theis approach can be applied to very complex 3D meshes of arbitrary topology and with millions of vertices. The algorithm is based on the clustering of the input mesh elements, which divides the faces of an input mesh into a given number of clusters for clustering purpose by approximating the Centroidal Voronoi Tessellation of the input mesh. Once a clustering is achieved, it provides us an efficient way to construct uniform tessellations, and therefore leads to good coarsening of polygonal meshes. With proliferation of 3D scanners, this coarsening algorithm is particularly useful for reverse engineering applications of 3D models, which in many cases are dense, non-uniform, irregular and arbitrary topology. Examples demonstrating effectiveness of the new algorithm are also included in the paper.

Keywords: coarsening, mesh clustering, shape approximation, mesh simplification

Procedia PDF Downloads 381
4582 A Quantitative Study about Assessing the Effectiveness of Electronic Customer Relationship Management: A Case of Two Hotels in Mauritius

Authors: Shaheena Erkiah, Adjnu Damar Ladkoo

Abstract:

Worldwide, improving tourism competitiveness has been on the agendas of many stakeholders of the hotel sector, and they seem to have agreed that one of the best ways to compete is via the implementation of electronic customer relationship management (e-CRM). In so doing, the organizations enjoy strategic positioning on the competitive market by managing better not only the customers but, other business components including knowledge and employee management. Over the recent years, the tourism industry in Mauritius has witnessed a drastic economic boom at international and national levels; providing a new outlook to boost business performance through existing and potential customers. E-CRM has been one of the management tools used to achieving this position. Thus, this insightful context- Mauritius- was opted for the study. The aim was to assess the effectiveness of e-CRM as a strategic tool in the hotel sector in Mauritius through the implementation of business strategy to create competitive advantage and impact on the business performance. To achieve the objectives of the study, a quantitative research methodology was adopted and the research revealed that e-CRM is indeed an effective strategic tool in the hotel industry in Mauritius that can provide a competitive advantage and impact positively on the organization’s performance.

Keywords: customer, electronic, management, relationship, strategic

Procedia PDF Downloads 146
4581 Proposing a Boundary Coverage Algorithm ‎for Underwater Sensor Network

Authors: Seyed Mohsen Jameii

Abstract:

Wireless underwater sensor networks are a type of sensor networks that are located in underwater environments and linked together by acoustic waves. The application of these kinds of network includes monitoring of pollutants (chemical, biological, and nuclear), oil fields detection, prediction of the likelihood of a tsunami in coastal areas, the use of wireless sensor nodes to monitor the passing submarines, and determination of appropriate locations for anchoring ships. This paper proposes a boundary coverage algorithm for intrusion detection in underwater sensor networks. In the first phase of the proposed algorithm, optimal deployment of nodes is done in the water. In the second phase, after the employment of nodes at the proper depth, clustering is executed to reduce the exchanges of messages between the sensors. In the third phase, the algorithm of "divide and conquer" is used to save energy and increase network efficiency. The simulation results demonstrate the efficiency of the proposed algorithm.

Keywords: boundary coverage, clustering, divide and ‎conquer, underwater sensor nodes

Procedia PDF Downloads 342
4580 Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation

Authors: Tobias Horstmann, Thomas Le Garrec, Daniel-Ciprian Mincu, Emmanuel Lévêque

Abstract:

Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface.

Keywords: algorithm coupling, finite volume formulation, grid refinement, Lattice Boltzmann method

Procedia PDF Downloads 379
4579 Model and Algorithm for Dynamic Wireless Electric Vehicle Charging Network Design

Authors: Trung Hieu Tran, Jesse O'Hanley, Russell Fowler

Abstract:

When in-wheel wireless charging technology for electric vehicles becomes mature, a need for such integrated charging stations network development is essential. In this paper, we thus investigate the optimisation problem of in-wheel wireless electric vehicle charging network design. A mixed-integer linear programming model is formulated to solve into optimality the problem. In addition, a meta-heuristic algorithm is proposed for efficiently solving large-sized instances within a reasonable computation time. A parallel computing strategy is integrated into the algorithm to speed up its computation time. Experimental results carried out on the benchmark instances show that our model and algorithm can find the optimal solutions and their potential for practical applications.

Keywords: electric vehicle, wireless charging station, mathematical programming, meta-heuristic algorithm, parallel computing

Procedia PDF Downloads 79
4578 A Modified NSGA-II Algorithm for Solving Multi-Objective Flexible Job Shop Scheduling Problem

Authors: Aydin Teymourifar, Gurkan Ozturk, Ozan Bahadir

Abstract:

NSGA-II is one of the most well-known and most widely used evolutionary algorithms. In addition to its new versions, such as NSGA-III, there are several modified types of this algorithm in the literature. In this paper, a hybrid NSGA-II algorithm has been suggested for solving the multi-objective flexible job shop scheduling problem. For a better search, new neighborhood-based crossover and mutation operators are defined. To create new generations, the neighbors of the selected individuals by the tournament selection are constructed. Also, at the end of each iteration, before sorting, neighbors of a certain number of good solutions are derived, except for solutions protected by elitism. The neighbors are generated using a constraint-based neural network that uses various constructs. The non-dominated sorting and crowding distance operators are same as the classic NSGA-II. A comparison based on some multi-objective benchmarks from the literature shows the efficiency of the algorithm.

Keywords: flexible job shop scheduling problem, multi-objective optimization, NSGA-II algorithm, neighborhood structures

Procedia PDF Downloads 229
4577 Development of Algorithms for Solving and Analyzing Special Problems Transports Type

Authors: Dmitri Terzi

Abstract:

The article presents the results of an algorithmic study of a special optimization problem of the transport type (traveling salesman problem): 1) To solve the problem, a new natural algorithm has been developed based on the decomposition of the initial data into convex hulls, which has a number of advantages; it is applicable for a fairly large dimension, does not require a large amount of memory, and has fairly good performance. The relevance of the algorithm lies in the fact that, in practice, programs for problems with the number of traversal points of no more than twenty are widely used. For large-scale problems, the availability of algorithms and programs of this kind is difficult. The proposed algorithm is natural because the optimal solution found by the exact algorithm is not always feasible due to the presence of many other factors that may require some additional restrictions. 2) Another inverse problem solved here is to describe a class of traveling salesman problems that have a predetermined optimal solution. The constructed algorithm 2 allows us to characterize the structure of traveling salesman problems, as well as construct test problems to evaluate the effectiveness of algorithms and other purposes. 3) The appendix presents a software implementation of Algorithm 1 (in MATLAB), which can be used to solve practical problems, as well as in the educational process on operations research and optimization methods.

Keywords: traveling salesman problem, solution construction algorithm, convex hulls, optimality verification

Procedia PDF Downloads 75
4576 Sentiment Classification of Documents

Authors: Swarnadip Ghosh

Abstract:

Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.

Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation

Procedia PDF Downloads 403
4575 Satellite Image Classification Using Firefly Algorithm

Authors: Paramjit Kaur, Harish Kundra

Abstract:

In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.

Keywords: image classification, firefly algorithm, satellite image classification, terrain classification

Procedia PDF Downloads 401
4574 Adaptive Multipath Mitigation Acquisition Approach for Global Positioning System Software Receivers

Authors: Animut Meseret Simachew

Abstract:

Parallel Code Phase Search Acquisition (PCSA) Algorithm has been considered as a promising method in GPS software receivers for detection and estimation of the accurate correlation peak between the received Global Positioning System (GPS) signal and locally generated replicas. GPS signal acquisition in highly dense multipath environments is the main research challenge. In this work, we proposed a robust variable step-size (RVSS) PCSA algorithm based on fast frequency transform (FFT) filtering technique to mitigate short time delay multipath signals. Simulation results reveal the effectiveness of the proposed algorithm over the conventional PCSA algorithm. The proposed RVSS-PCSA algorithm equalizes the received carrier wiped-off signal with locally generated C/A code.

Keywords: adaptive PCSA, detection and estimation, GPS signal acquisition, GPS software receiver

Procedia PDF Downloads 117
4573 Test Suite Optimization Using an Effective Meta-Heuristic BAT Algorithm

Authors: Anuradha Chug, Sunali Gandhi

Abstract:

Regression Testing is a very expensive and time-consuming process carried out to ensure the validity of modified software. Due to the availability of insufficient resources to re-execute all the test cases in time constrained environment, efforts are going on to generate test data automatically without human efforts. Many search based techniques have been proposed to generate efficient, effective as well as optimized test data, so that the overall cost of the software testing can be minimized. The generated test data should be able to uncover all potential lapses that exist in the software or product. Inspired from the natural behavior of bat for searching her food sources, current study employed a meta-heuristic, search-based bat algorithm for optimizing the test data on the basis certain parameters without compromising their effectiveness. Mathematical functions are also applied that can effectively filter out the redundant test data. As many as 50 Java programs are used to check the effectiveness of proposed test data generation and it has been found that 86% saving in testing efforts can be achieved using bat algorithm while covering 100% of the software code for testing. Bat algorithm was found to be more efficient in terms of simplicity and flexibility when the results were compared with another nature inspired algorithms such as Firefly Algorithm (FA), Hill Climbing Algorithm (HC) and Ant Colony Optimization (ACO). The output of this study would be useful to testers as they can achieve 100% path coverage for testing with minimum number of test cases.

Keywords: regression testing, test case selection, test case prioritization, genetic algorithm, bat algorithm

Procedia PDF Downloads 381
4572 A Novel Approach of Secret Communication Using Douglas-Peucker Algorithm

Authors: R. Kiruthika, A. Kannan

Abstract:

Steganography is the problem of hiding secret messages in 'innocent – looking' public communication so that the presence of the secret message cannot be detected. This paper introduces a steganographic security in terms of computational in-distinguishability from a channel of probability distributions on cover messages. This method first splits the cover image into two separate blocks using Douglas – Peucker algorithm. The text message and the image will be hided in the Least Significant Bit (LSB) of the cover image.

Keywords: steganography, lsb, embedding, Douglas-Peucker algorithm

Procedia PDF Downloads 363
4571 A Novel Probablistic Strategy for Modeling Photovoltaic Based Distributed Generators

Authors: Engy A. Mohamed, Y. G. Hegazy

Abstract:

This paper presents a novel algorithm for modeling photovoltaic based distributed generators for the purpose of optimal planning of distribution networks. The proposed algorithm utilizes sequential Monte Carlo method in order to accurately consider the stochastic nature of photovoltaic based distributed generators. The proposed algorithm is implemented in MATLAB environment and the results obtained are presented and discussed.

Keywords: comulative distribution function, distributed generation, Monte Carlo

Procedia PDF Downloads 585
4570 Orthogonal Regression for Nonparametric Estimation of Errors-In-Variables Models

Authors: Anastasiia Yu. Timofeeva

Abstract:

Two new algorithms for nonparametric estimation of errors-in-variables models are proposed. The first algorithm is based on penalized regression spline. The spline is represented as a piecewise-linear function and for each linear portion orthogonal regression is estimated. This algorithm is iterative. The second algorithm involves locally weighted regression estimation. When the independent variable is measured with error such estimation is a complex nonlinear optimization problem. The simulation results have shown the advantage of the second algorithm under the assumption that true smoothing parameters values are known. Nevertheless the use of some indexes of fit to smoothing parameters selection gives the similar results and has an oversmoothing effect.

Keywords: grade point average, orthogonal regression, penalized regression spline, locally weighted regression

Procedia PDF Downloads 416
4569 LiDAR Based Real Time Multiple Vehicle Detection and Tracking

Authors: Zhongzhen Luo, Saeid Habibi, Martin v. Mohrenschildt

Abstract:

Self-driving vehicle require a high level of situational awareness in order to maneuver safely when driving in real world condition. This paper presents a LiDAR based real time perception system that is able to process sensor raw data for multiple target detection and tracking in dynamic environment. The proposed algorithm is nonparametric and deterministic that is no assumptions and priori knowledge are needed from the input data and no initializations are required. Additionally, the proposed method is working on the three-dimensional data directly generated by LiDAR while not scarifying the rich information contained in the domain of 3D. Moreover, a fast and efficient for real time clustering algorithm is applied based on a radially bounded nearest neighbor (RBNN). Hungarian algorithm procedure and adaptive Kalman filtering are used for data association and tracking algorithm. The proposed algorithm is able to run in real time with average run time of 70ms per frame.

Keywords: lidar, segmentation, clustering, tracking

Procedia PDF Downloads 424