Search results for: Network Time Protocol
19276 Correlation between Sprint Performance and Vertical Jump Height in Elite Female Football Players
Authors: Svetlana Missina, Anatoliy Shipilov, Alexandr Vavaev
Abstract:
The purpose of the present study was to investigate the relationship between sprint and vertical jump performance in elite female football players. Twenty four professional female football players (age, 18.6±3.1 years; height, 168.3±6.3 cm, body mass 61.6±7.4 kg; mean±SD) were tested for 30-m sprint time, 10-m sprint time and vertical countermovement (CMJ) and squat (SJ) jumps height. Participants performed three countermovement jumps and three squat jumps for maximal height on a force platform. Mean values of three trials were used in statistical analysis. The displacement of center of mass (COM) during flight phase (e.g. jump height) was calculated using the vertical velocity of the COM at the moment of take-off. 30-m and 10-m sprint time were measured using OptoGait optical system. The best of three trials were used for analysis. A significant negative correlation was found between 30-m sprint time and CMJ, SJ height (r = -0.85, r = -0.79 respectively), between 10-m sprint time and CMJ, SJ height (r = -0.73, r = -0.8 respectively), and step frequency was significantly related to CMJ peak power (r = -0.57). Our study indicates that there is strong correlation between sprint and jump performance in elite female football players, thus vertical jump test can be considered as a good sprint and agility predictor in female football.Keywords: agility, female football players, sprint performance, vertical jump height
Procedia PDF Downloads 47319275 Multi-Criteria Evolutionary Algorithm to Develop Efficient Schedules for Complex Maintenance Problems
Authors: Sven Tackenberg, Sönke Duckwitz, Andreas Petz, Christopher M. Schlick
Abstract:
This paper introduces an extension to the well-established Resource-Constrained Project Scheduling Problem (RCPSP) to apply it to complex maintenance problems. The problem is to assign technicians to a team which has to process several tasks with multi-level skill requirements during a work shift. Here, several alternative activities for a task allow both, the temporal shift of activities or the reallocation of technicians and tools. As a result, switches from one valid work process variant to another can be considered and may be selected by the developed evolutionary algorithm based on the present skill level of technicians or the available tools. An additional complication of the observed scheduling problem is that the locations of the construction sites are only temporarily accessible during a day. Due to intensive rail traffic, the available time slots for maintenance and repair works are extremely short and are often distributed throughout the day. To identify efficient working periods, a first concept of a Bayesian network is introduced and is integrated into the extended RCPSP with pre-emptive and non-pre-emptive tasks. Thereby, the Bayesian network is used to calculate the probability of a maintenance task to be processed during a specific period of the shift. Focusing on the domain of maintenance of the railway infrastructure in metropolitan areas as the most unproductive implementation process at construction site, the paper illustrates how the extended RCPSP can be applied for maintenance planning support. A multi-criteria evolutionary algorithm with a problem representation is introduced which is capable of revising technician-task allocations, whereas the duration of the task may be stochastic. The approach uses a novel activity list representation to ensure easily describable and modifiable elements which can be converted into detailed shift schedules. Thereby, the main objective is to develop a shift plan which maximizes the utilization of each technician due to a minimization of the waiting times caused by rail traffic. The results of the already implemented core algorithm illustrate a fast convergence towards an optimal team composition for a shift, an efficient sequence of tasks and a high probability of the subsequent implementation due to the stochastic durations of the tasks. In the paper, the algorithm for the extended RCPSP is analyzed in experimental evaluation using real-world example problems with various size, resource complexity, tightness and so forth.Keywords: maintenance management, scheduling, resource constrained project scheduling problem, genetic algorithms
Procedia PDF Downloads 23619274 A Comparative Study on ANN, ANFIS and SVM Methods for Computing Resonant Frequency of A-Shaped Compact Microstrip Antennas
Authors: Ahmet Kayabasi, Ali Akdagli
Abstract:
In this study, three robust predicting methods, namely artificial neural network (ANN), adaptive neuro fuzzy inference system (ANFIS) and support vector machine (SVM) were used for computing the resonant frequency of A-shaped compact microstrip antennas (ACMAs) operating at UHF band. Firstly, the resonant frequencies of 144 ACMAs with various dimensions and electrical parameters were simulated with the help of IE3D™ based on method of moment (MoM). The ANN, ANFIS and SVM models for computing the resonant frequency were then built by considering the simulation data. 124 simulated ACMAs were utilized for training and the remaining 20 ACMAs were used for testing the ANN, ANFIS and SVM models. The performance of the ANN, ANFIS and SVM models are compared in the training and test process. The average percentage errors (APE) regarding the computed resonant frequencies for training of the ANN, ANFIS and SVM were obtained as 0.457%, 0.399% and 0.600%, respectively. The constructed models were then tested and APE values as 0.601% for ANN, 0.744% for ANFIS and 0.623% for SVM were achieved. The results obtained here show that ANN, ANFIS and SVM methods can be successfully applied to compute the resonant frequency of ACMAs, since they are useful and versatile methods that yield accurate results.Keywords: a-shaped compact microstrip antenna, artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), support vector machine (SVM)
Procedia PDF Downloads 44619273 A Hybrid Genetic Algorithm for Assembly Line Balancing In Automotive Sector
Authors: Qazi Salman Khalid, Muhammad Khalid, Shahid Maqsood
Abstract:
This paper presents a solution for optimizing the cycle time in an assembly line with human-robot collaboration and diverse operators. A genetic algorithm with tailored parameters is used to address the assembly line balancing problem in the automobile sector. A mathematical model is developed, depicting the problem. Currently, the firm runs on the largest candidate rule; however, it causes a lag in orders, which ultimately gets penalized. The results of the study show that the proposed GA is effective in providing efficient solutions and that the cycle time has significantly impacted productivity.Keywords: line balancing, cycle time, genetic algorithm, productivity
Procedia PDF Downloads 14119272 Road Accident Blackspot Analysis: Development of Decision Criteria for Accident Blackspot Safety Strategies
Authors: Tania Viju, Bimal P., Naseer M. A.
Abstract:
This study aims to develop a conceptual framework for the decision support system (DSS), that helps the decision-makers to dynamically choose appropriate safety measures for each identified accident blackspot. An accident blackspot is a segment of road where the frequency of accident occurrence is disproportionately greater than other sections on roadways. According to a report by the World Bank, India accounts for the highest, that is, eleven percent of the global death in road accidents with just one percent of the world’s vehicles. Hence in 2015, the Ministry of Road Transport and Highways of India gave prime importance to the rectification of accident blackspots. To enhance road traffic safety and reduce the traffic accident rate, effectively identifying and rectifying accident blackspots is of great importance. This study helps to understand and evaluate the existing methods in accident blackspot identification and prediction that are used around the world and their application in Indian roadways. The decision support system, with the help of IoT, ICT and smart systems, acts as a management and planning tool for the government for employing efficient and cost-effective rectification strategies. In order to develop a decision criterion, several factors in terms of quantitative as well as qualitative data that influence the safety conditions of the road are analyzed. Factors include past accident severity data, occurrence time, light, weather and road conditions, visibility, driver conditions, junction type, land use, road markings and signs, road geometry, etc. The framework conceptualizes decision-making by classifying blackspot stretches based on factors like accident occurrence time, different climatic and road conditions and suggesting mitigation measures based on these identified factors. The decision support system will help the public administration dynamically manage and plan the necessary safety interventions required to enhance the safety of the road network.Keywords: decision support system, dynamic management, road accident blackspots, road safety
Procedia PDF Downloads 14919271 Evaluation of Quick Covering Machine for Grain Drying Pavement
Authors: Fatima S. Rodriguez, Victorino T. Taylan, Manolito C. Bulaong, Helen F. Gavino, Vitaliana U. Malamug
Abstract:
In sundrying the quality of the grains are greatly reduced when paddy grains were caught by the rain unsacked and unstored resulting to reduced profit. The objectives of this study were to design and fabricate a quick covering machine for grain drying pavement; to test and evaluate the operating characteristics of the machine according to its deployment speed, recovery speed, deployment time, recovery time, power consumption, aesthetics of laminated sack; and to conduct partial budget and cost curve analysis. The machine was able to cover the grains in a 12.8 m x 22.5 m grain drying pavement at an average time of 17.13 s. It consumed 0.53 W-hr for the deployment and recovery of the cover. The machine entailed an investment cost of $1,344.40 and an annual cost charge of $647.32. Moreover, the savings per year using the quick covering machine was $101.83.Keywords: quick covering machine, grain drying pavement, laminated polypropylene, recovery time
Procedia PDF Downloads 33019270 A Protocol Study of Accessibility: Physician’s Perspective Regarding Disability and Continuum of Care
Authors: Sidra Jawed
Abstract:
The accessibility constructs and the body privilege discourse has been a major problem while dealing with health inequities and inaccessibility. The inherent problem in this arbitrary view of disability is that disability would never be the productive way of living. For past thirty years, disability activists have been working to differentiate ‘impairment’ from ‘disability’ and probing for more understanding of limitation imposed by society, this notion is ultimately known as the Social Model of Disability. The vulnerable population as disability community remains marginalized and seen relentlessly fighting to highlight the importance of social factors. It does not only constitute physical architectural barriers and famous blue symbol of access to the healthcare but also invisible, intangible barriers as attitudes and behaviours. Conventionally the idea of ‘disability’ has been laden with prejudiced perception amalgamating with biased attitude. Equity in contemporary setup necessitates the restructuring of organizational structure. Apparently simple, the complex interplay of disability and contemporary healthcare set up often ends up at negotiating vital components of basic healthcare needs. The role of society is indispensable when it comes to people with disability (PWD), everything from the access to healthcare to timely interventions are strongly related to the set up in place and the attitude of healthcare providers. It is vital to understand the association between assumptions and the quality of healthcare PWD receives in our global healthcare setup. Most of time the crucial physician-patient relationship with PWD is governed by the negative assumptions of the physicians. The multifaceted, troubled patient-physicians’ relationship has been neglected in past. To compound it, insufficient work has been done to explore physicians’ perspective about the disability and access to healthcare PWD have currently. This research project is directed towards physicians’ perspective on the intersection of health and access of healthcare for PWD. The principal aim of the study is to explore the perception of disability in family medicine physicians, highlighting the underpinning of medical perspective in healthcare institution. In the quest of removing barriers, the first step must be to identify the barriers and formulate a plan for future policies, involving all the stakeholders. There would be semi-structured interviews to explore themes as accessibility, medical training, construct of social model and medical model of disability, time limitations, financial constraints. The main research interest is to identify the obstacles to inclusion and marginalization continuing from the basic living necessities to wide health inequity in present society. Physicians point of view is largely missing from the research landscape and the current forum of knowledge with regards to physicians’ standpoint. This research will provide policy makers with a starting point and comprehensive background knowledge that can be a stepping stone for future researches and furthering the knowledge translation process to strengthen healthcare. Additionally, it would facilitate the process of knowledge translation between the much needed medical and disability community.Keywords: disability, physicians, social model, accessibility
Procedia PDF Downloads 22619269 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine
Authors: Hira Lal Gope, Hidekazu Fukai
Abstract:
The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine
Procedia PDF Downloads 14819268 Investigating the Road Maintenance Performance in Developing Countries
Authors: Jamaa Salih, Francis Edum-Fotwe, Andrew Price
Abstract:
One of the most critical aspects of the management of road infrastructure is the type and scale of maintenance systems adopted and the consequences of their inadequacy. The performance of road maintenance systems can be assessed by a number of important indicators such as: cost, safety, environmental impact, and level of complaints by users. A review of practice reveals that insufficient level of expenditure or poor management of the road network often has serious consequences for the economic and social life of a country in terms of vehicle operating costs (VOC), travel time costs, accident costs and environmental impact. Despite an increase in the attention paid by global road agencies to the environmental and the road users’ satisfaction, the overwhelming evidence from the available literature agree on the lack of similar levels of attention for the two factors in many developing countries. While many sources agree that the road maintenance backlog is caused by either the shortage of expenditures or lack of proper management or both, it appears that managing the available assets particularly in the developing countries is the main issue. To address this subject, this paper will concentrate on exposing the various issues related to this field.Keywords: environmental impact, performance indicators, road maintenance, users’ satisfaction
Procedia PDF Downloads 35819267 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees
Authors: Federico Hahn Schlam, Fermín Martínez Solís
Abstract:
Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption
Procedia PDF Downloads 16319266 Slowness in Architecture: The Pace of Human Engagement with the Built Environment
Authors: Jaidev Tripathy
Abstract:
A human generation’s lifestyle, behaviors, habits, and actions are governed heavily by homogenous mindsets. But the current scenario is witnessing a rapid gap in this homogeneity as a result of an intervention, or rather, the dominance of the digital revolution in the human lifestyle. The current mindset for mass production, employment, multi-tasking, rapid involvement, and stiff competition to stay above the rest has led to a major shift in human consciousness. Architecture, as an entity, is being perceived differently. The screens are replacing the skies. The pace at which operation and evolution is taking place has increased. It is paradoxical, that time seems to be moving faster despite the intention to save time. Parallelly, there is an evident shift in architectural typologies spanning across different generations. The architecture of today is now seems influenced heavily from here and there. Mass production of buildings and over-exploitation of resources giving shape to uninspiring algorithmic designs, ambiguously catering to multiple user groups, has become a prevalent theme. Borrow-and-steal replaces influence, and the diminishing depth in today’s designs reflects a lack of understanding and connection. The digitally dominated world, perceived as an aid to connect and network, is making humans less capable of real-life interactions and understanding. It is not wrong, but it doesn’t seem right either. The engagement level between human beings and the built environment is a concern which surfaces. This leads to a question: Does human engagement drive architecture, or does architecture drive human engagement? This paper attempts to relook at architecture's capacity and its relativity with pace to influence the conscious decisions of a human being. Secondary research, supported with case examples, helps in understanding the translation of human engagement with the built environment through physicality of architecture. The procedure, or theme, is pace and the role of slowness in the context of human behaviors, thus bridging the widening gap between the human race and the architecture themselves give shape to, avoiding a possible future dystopian world.Keywords: junkspace, pace, perception, slowness
Procedia PDF Downloads 11319265 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 30019264 Impact of Facility Disruptions on Demand Allocation Strategies in Reliable Facility Location Models
Authors: Abdulrahman R. Alenezi
Abstract:
This research investigates the effects of facility disruptions on-demand allocation within the context of the Reliable Facility Location Problem (RFLP). We explore two distinct scenarios: one where primary and backup facilities can fail simultaneously and another where such simultaneous failures are not possible. The RFLP model is tailored to reflect these scenarios, incorporating different approaches to transportation cost calculations. Utilizing a Lagrange relaxation method, the model achieves high efficiency, yielding an average optimality gap of 0.1% within 12.2 seconds of CPU time. Findings indicate that primary facilities are typically sited closer to demand points than backup facilities. In cases where simultaneous failures are prohibited, demand points are predominantly assigned to the nearest available facility. Conversely, in scenarios permitting simultaneous failures, demand allocation may prioritize factors beyond mere proximity, such as failure rates. This study highlights the critical influence of facility reliability on strategic location decisions, providing insights for enhancing resilience in supply chain networks.Keywords: reliable supply chain network, facility location problem, reliable facility location model, LaGrange relaxation
Procedia PDF Downloads 3319263 Quantum Statistical Machine Learning and Quantum Time Series
Authors: Omar Alzeley, Sergey Utev
Abstract:
Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series
Procedia PDF Downloads 47219262 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 32319261 Intrusion Detection in Computer Networks Using a Hybrid Model of Firefly and Differential Evolution Algorithms
Authors: Mohammad Besharatloo
Abstract:
Intrusion detection is an important research topic in network security because of increasing growth in the use of computer network services. Intrusion detection is done with the aim of detecting the unauthorized use or abuse in the networks and systems by the intruders. Therefore, the intrusion detection system is an efficient tool to control the user's access through some predefined regulations. Since, the data used in intrusion detection system has high dimension, a proper representation is required to show the basis structure of this data. Therefore, it is necessary to eliminate the redundant features to create the best representation subset. In the proposed method, a hybrid model of differential evolution and firefly algorithms was employed to choose the best subset of properties. In addition, decision tree and support vector machine (SVM) are adopted to determine the quality of the selected properties. In the first, the sorted population is divided into two sub-populations. These optimization algorithms were implemented on these sub-populations, respectively. Then, these sub-populations are merged to create next repetition population. The performance evaluation of the proposed method is done based on KDD Cup99. The simulation results show that the proposed method has better performance than the other methods in this context.Keywords: intrusion detection system, differential evolution, firefly algorithm, support vector machine, decision tree
Procedia PDF Downloads 9719260 Operator Optimization Based on Hardware Architecture Alignment Requirements
Authors: Qingqing Gai, Junxing Shen, Yu Luo
Abstract:
Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator’s speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances.Keywords: convolution, deconvolution, W2C, C2W, alignment, hardware accelerator
Procedia PDF Downloads 11119259 Deep Reinforcement Learning Model Using Parameterised Quantum Circuits
Authors: Lokes Parvatha Kumaran S., Sakthi Jay Mahenthar C., Sathyaprakash P., Jayakumar V., Shobanadevi A.
Abstract:
With the evolution of technology, the need to solve complex computational problems like machine learning and deep learning has shot up. But even the most powerful classical supercomputers find it difficult to execute these tasks. With the recent development of quantum computing, researchers and tech-giants strive for new quantum circuits for machine learning tasks, as present works on Quantum Machine Learning (QML) ensure less memory consumption and reduced model parameters. But it is strenuous to simulate classical deep learning models on existing quantum computing platforms due to the inflexibility of deep quantum circuits. As a consequence, it is essential to design viable quantum algorithms for QML for noisy intermediate-scale quantum (NISQ) devices. The proposed work aims to explore Variational Quantum Circuits (VQC) for Deep Reinforcement Learning by remodeling the experience replay and target network into a representation of VQC. In addition, to reduce the number of model parameters, quantum information encoding schemes are used to achieve better results than the classical neural networks. VQCs are employed to approximate the deep Q-value function for decision-making and policy-selection reinforcement learning with experience replay and the target network.Keywords: quantum computing, quantum machine learning, variational quantum circuit, deep reinforcement learning, quantum information encoding scheme
Procedia PDF Downloads 13919258 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 41619257 Relationship Between Pain Intensity at the Time of the Hamstring Muscle Injury and Hamstring Muscle Lesion Volume Measured by Magnetic Resonance Imaging
Authors: Grange Sylvain, Plancher Ronan, Reurink Guustav, Croisille Pierre, Edouard Pascal
Abstract:
The primary objective of this study was to analyze the potential correlation between the pain experienced at the time of a hamstring muscle injury and the volume of the lesion measured on MRI. The secondary objectives were to analyze a correlation between this pain and the lesion grade as well as the affected hamstring muscle. We performed a retrospective analysis of the data collected in a prospective, multicenter, non-interventional cohort study (HAMMER). Patients with suspected hamstring muscle injury had an MRI after the injury and at the same time were evaluated for their pain intensity experienced at the time of the injury with a Numerical Pain Rating Scale (NPRS) from 0 to 10. A total of 61 patients were included in the present analysis. MRIs were performed in an average of less than 8 days. There was a significant correlation between pain and the injury volume (r=0.287; p=0.025). There was no significant correlation between the pain and the lesion grade (p>0.05), nor between the pain and affected hamstring muscle (p>0.05). Pain at the time of injury appeared to be correlated with the volume of muscle affected. These results confirm the value of a clinical approach in the initial evaluation of hamstring injuries to better select patients eligible for further imaging.Keywords: hamstring muscle injury, MRI, volume lesion, pain
Procedia PDF Downloads 10119256 Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes
Authors: Shreemoyee Sarkar, Vikhyat Chadha
Abstract:
In this paper, the local fractal properties and chaotic properties of financial time series are investigated by calculating two exponents, the Local Hurst Exponent: LHE and Lyapunov Exponent in a moving time window of a financial series.y. For the purpose of this paper, the Dow Jones Industrial Average (DIJA) and S&P 500, two of the major indices of United States have been considered. The behaviour of the above-mentioned exponents prior to some major crashes (1998 and 2008 crashes in S&P 500 and 2002 and 2008 crashes in DIJA) is discussed. Also, the optimal length of the window for obtaining the best possible results is decided. Based on the outcomes of the above, an attempt is made to predict the crashes and accuracy of such an algorithm is decided.Keywords: local hurst exponent, lyapunov exponent, market crash prediction, time series chaos, time series local fractal properties
Procedia PDF Downloads 15719255 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol
Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska
Abstract:
Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise
Procedia PDF Downloads 8419254 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation
Authors: Kulwinder Singh Mann
Abstract:
The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images
Procedia PDF Downloads 30719253 Non-Targeted Adversarial Object Detection Attack: Fast Gradient Sign Method
Authors: Bandar Alahmadi, Manohar Mareboyana, Lethia Jackson
Abstract:
Today, there are many applications that are using computer vision models, such as face recognition, image classification, and object detection. The accuracy of these models is very important for the performance of these applications. One challenge that facing the computer vision models is the adversarial examples attack. In computer vision, the adversarial example is an image that is intentionally designed to cause the machine learning model to misclassify it. One of very well-known method that is used to attack the Convolution Neural Network (CNN) is Fast Gradient Sign Method (FGSM). The goal of this method is to find the perturbation that can fool the CNN using the gradient of the cost function of CNN. In this paper, we introduce a novel model that can attack Regional-Convolution Neural Network (R-CNN) that use FGSM. We first extract the regions that are detected by R-CNN, and then we resize these regions into the size of regular images. Then, we find the best perturbation of the regions that can fool CNN using FGSM. Next, we add the resulted perturbation to the attacked region to get a new region image that looks similar to the original image to human eyes. Finally, we placed the regions back to the original image and test the R-CNN with the attacked images. Our model could drop the accuracy of the R-CNN when we tested with Pascal VOC 2012 dataset.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 19719252 Increased Reaction and Movement Times When Text Messaging during Simulated Driving
Authors: Adriana M. Duquette, Derek P. Bornath
Abstract:
Reaction Time (RT) and Movement Time (MT) are important components of everyday life that have an effect on the way in which we move about our environment. These measures become even more crucial when an event can be caused (or avoided) in a fraction of a second, such as the RT and MT required while driving. The purpose of this study was to develop a more simple method of testing RT and MT during simulated driving with or without text messaging, in a university-aged population (n = 170). In the control condition, a randomly-delayed red light stimulus flashed on a computer interface after the participant began pressing the ‘gas’ pedal on a foot switch mat. Simple RT was defined as the time between the presentation of the light stimulus and the initiation of lifting the foot from the switch mat ‘gas’ pedal; while MT was defined as the time after the initiation of lifting the foot, to the initiation of depressing the switch mat ‘brake’ pedal. In the texting condition, upon pressing the ‘gas’ pedal, a ‘text message’ appeared on the computer interface in a dialog box that the participant typed on their cell phone while waiting for the light stimulus to turn red. In both conditions, the sequence was repeated 10 times, and an average RT (seconds) and average MT (seconds) were recorded. Condition significantly (p = .000) impacted overall RTs, as the texting condition (0.47 s) took longer than the no-texting (control) condition (0.34 s). Longer MTs were also recorded during the texting condition (0.28 s) than in the control condition (0.23 s), p = .001. Overall increases in Response Time (RT + MT) of 189 ms during the texting condition would equate to an additional 4.2 meters (to react to the stimulus and begin braking) if the participant had been driving an automobile at 80 km per hour. In conclusion, increasing task complexity due to the dual-task demand of text messaging during simulated driving caused significant increases in RT (41%), MT (23%) and Response Time (34%), thus further strengthening the mounting evidence against text messaging while driving.Keywords: simulated driving, text messaging, reaction time, movement time
Procedia PDF Downloads 52619251 A Study of Social Media Users’ Switching Behavior
Authors: Chiao-Chen Chang, Yang-Chieh Chin
Abstract:
Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.Keywords: social media, switching, social media fatigue, alternative attractiveness
Procedia PDF Downloads 14519250 Novel Adaptive Radial Basis Function Neural Networks Based Approach for Short-Term Load Forecasting of Jordanian Power Grid
Authors: Eyad Almaita
Abstract:
In this paper, a novel adaptive Radial Basis Function Neural Networks (RBFNN) algorithm is used to forecast the hour by hour electrical load demand in Jordan. A small and effective RBFNN model is used to forecast the hourly total load demand based on a small number of features. These features are; the load in the previous day, the load in the same day in the previous week, the temperature in the same hour, the hour number, the day number, and the day type. The proposed adaptive RBFNN model can enhance the reliability of the conventional RBFNN after embedding the network in the system. This is achieved by introducing an adaptive algorithm that allows the change of the weights of the RBFNN after the training process is completed, which will eliminates the need to retrain the RBFNN model again. The data used in this paper is real data measured by National Electrical Power co. (Jordan). The data for the period Jan./2012-April/2013 is used train the RBFNN models and the data for the period May/2013- Sep. /2013 is used to validate the models effectiveness.Keywords: load forecasting, adaptive neural network, radial basis function, short-term, electricity consumption
Procedia PDF Downloads 35219249 Exploring the ‘Many Worlds’ Interpretation in Both a Philosophical and Creative Literary Framework
Authors: Jane Larkin
Abstract:
Combining elements of philosophy, science, and creative writing, this investigation explores how a philosophically structured science-fiction novel can challenge the theory of linearity and singularity of time through the ‘many worlds’ theory. This concept is addressed through the creation of a research exegesis and accompanying creative artefact, designed to be read in conjunction with each other in an explorative, interwoven manner. Research undertaken into scientific concepts, such as the ‘many worlds’ interpretation of quantum mechanics and diverse philosophers and their ideologies on time, is embodied in an original science-fiction narrative titled, It Goes On. The five frames that make up the creative artefact are enhanced not only by five leading philosophers and their philosophies on time but by an appreciation of the research, which comes first in the paper. Research into traditional approaches to storytelling is creatively and innovatively inverted in several ways, thus challenging the singularity and linearity of time. Further nonconventional approaches to literary techniques include an abstract narrator, embodied by time, a concept, and a figure in the text, whose voice and vantage point in relation to death furthers the unreliability of the notion of time. These further challenge individuals’ understanding of complex scientific and philosophical views in a variety of ways. The science-fiction genre is essential when considering the speculative nature of It Goes On, which deals with parallel realities and is a fantastical exploration of human ingenuity in plausible futures. Therefore, this paper documents the research-led methodology used to create It Goes On, the application of the ‘many worlds’ theory within a framed narrative, and the many innovative techniques used to contribute new knowledge in a variety of fields.Keywords: time, many-worlds theory, Heideggerian philosophy, framed narrative
Procedia PDF Downloads 9219248 Collective Intelligence-Based Early Warning Management for Agriculture
Authors: Jarbas Lopes Cardoso Jr., Frederic Andres, Alexandre Guitton, Asanee Kawtrakul, Silvio E. Barbin
Abstract:
The important objective of the CyberBrain Mass Agriculture Alarm Acquisition and Analysis (CBMa4) project is to minimize the impacts of diseases and disasters on rice cultivation. For example, early detection of insects will reduce the volume of insecticides that is applied to the rice fields through the use of CBMa4 platform. In order to reach this goal, two major factors need to be considered: (1) the social network of smart farmers; and (2) the warning data alarm acquisition and analysis component. This paper outlines the process for collecting the warning and improving the decision-making result to the warning. It involves two sub-processes: the warning collection and the understanding enrichment. Human sensors combine basic suitable data processing techniques in order to extract warning related semantic according to collective intelligence. We identify each warning by a semantic content called 'warncons' with multimedia metaphors and metadata related to these metaphors. It is important to describe the metric to measuring the relation among warncons. With this knowledge, a collective intelligence-based decision-making approach determines the action(s) to be launched regarding one or a set of warncons.Keywords: agricultural engineering, warning systems, social network services, context awareness
Procedia PDF Downloads 38919247 Dependence of the Electro-Stimulation of Saccharomyces cerevisiae by Pulsed Electric Field at the Yeast Growth Phase
Authors: Jessy Mattar, Mohamad Turk, Maurice Nonus, Nikolai Lebovka, Henri El Zakhem, Eugene Vorobiev
Abstract:
The effects of electro-stimulation of S. cerevisiae cells in colloidal suspension by Pulsed Electric Fields (PEF) with electric field strength E = 20 – 2000 V.cm-1 and effective PEF treatment time tPEF = 10^−5 – 1 s were investigated. The applied experimental procedure includes variations in the preliminary fermentation time and electro-stimulation by PEF-treatment. Plate counting was performed. At relatively high electric fields (E ≥ 1000 V.cm-1) and moderate PEF treatment time (tPEF > 100 µs), the extraction of ionic components from yeast was observed by conductivity measurements, which can be related to electroporation of cell membranes. Cell counting revealed a dependency of the colonies’ size on the time of preliminary fermentation tf and the power consumption W, however no dependencies were noticeable by varying the initial yeast concentration in the treated suspensions.Keywords: intensification, yeast, fermentation, electroporation, biotechnology
Procedia PDF Downloads 472