Search results for: Fourier series analysis
29825 Short Life Cycle Time Series Forecasting
Authors: Shalaka Kadam, Dinesh Apte, Sagar Mainkar
Abstract:
The life cycle of products is becoming shorter and shorter due to increased competition in market, shorter product development time and increased product diversity. Short life cycles are normal in retail industry, style business, entertainment media, and telecom and semiconductor industry. The subject of accurate forecasting for demand of short lifecycle products is of special enthusiasm for many researchers and organizations. Due to short life cycle of products the amount of historical data that is available for forecasting is very minimal or even absent when new or modified products are launched in market. The companies dealing with such products want to increase the accuracy in demand forecasting so that they can utilize the full potential of the market at the same time do not oversupply. This provides the challenge to develop a forecasting model that can forecast accurately while handling large variations in data and consider the complex relationships between various parameters of data. Many statistical models have been proposed in literature for forecasting time series data. Traditional time series forecasting models do not work well for short life cycles due to lack of historical data. Also artificial neural networks (ANN) models are very time consuming to perform forecasting. We have studied the existing models that are used for forecasting and their limitations. This work proposes an effective and powerful forecasting approach for short life cycle time series forecasting. We have proposed an approach which takes into consideration different scenarios related to data availability for short lifecycle products. We then suggest a methodology which combines statistical analysis with structured judgement. Also the defined approach can be applied across domains. We then describe the method of creating a profile from analogous products. This profile can then be used for forecasting products with historical data of analogous products. We have designed an application which combines data, analytics and domain knowledge using point-and-click technology. The forecasting results generated are compared using MAPE, MSE and RMSE error scores. Conclusion: Based on the results it is observed that no one approach is sufficient for short life-cycle forecasting and we need to combine two or more approaches for achieving the desired accuracy.Keywords: forecast, short life cycle product, structured judgement, time series
Procedia PDF Downloads 36029824 Suitability Evaluation of Human Settlements Using a Global Sensitivity Analysis Method: A Case Study in of China
Authors: Feifei Wu, Pius Babuna, Xiaohua Yang
Abstract:
The suitability evaluation of human settlements over time and space is essential to track potential challenges towards suitable human settlements and provide references for policy-makers. This study established a theoretical framework of human settlements based on the nature, human, economy, society and residence subsystems. Evaluation indicators were determined with the consideration of the coupling effect among subsystems. Based on the extended Fourier amplitude sensitivity test algorithm, the global sensitivity analysis that considered the coupling effect among indicators was used to determine the weights of indicators. The human settlement suitability was evaluated at both subsystems and comprehensive system levels in 30 provinces of China between 2000 and 2016. The findings were as follows: (1) human settlements suitability index (HSSI) values increased significantly in all 30 provinces from 2000 to 2016. Among the five subsystems, the suitability index of the residence subsystem in China exhibited the fastest growinggrowth, fol-lowed by the society and economy subsystems. (2) HSSI in eastern provinces with a developed economy was higher than that in western provinces with an underdeveloped economy. In con-trast, the growing rate of HSSI in eastern provinces was significantly higher than that in western provinces. (3) The inter-provincial difference of in HSSI decreased from 2000 to 2016. For sub-systems, it decreased for the residence system, whereas it increased for the economy system. (4) The suitability of the natural subsystem has become a limiting factor for the improvement of human settlements suitability, especially in economically developed provinces such as Beijing, Shanghai, and Guangdong. The results can be helpful to support decision-making and policy for improving the quality of human settlements in a broad nature, human, economy, society and residence context.Keywords: human settlements, suitability evaluation, extended fourier amplitude, human settlement suitability
Procedia PDF Downloads 8229823 The Preparation of 2H-Indazolo [2, 1-b] Phthalazinetriones by One-Pot 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica
Authors: Aigin Bashti
Abstract:
Preparation of multicomponent reactions (MCRs) via a simple one-pot strategy is considered a novel procedure which has attracted a lot of interest from organic and medicinal chemists. Due to the great importance of phthalazide triones, it was decided to introduce a novel and cost-effective green procedure for the preparation of these derivatives. In this methodology, an efficient 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica functionalized catalyst (BP-SBA-15) was utilized. The catalyst was characterized by X-ray diffraction analysis (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermo-gravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FT-IR) analysis. In conclusion, it should be mentioned that this methodology has some advantages, including short reaction time, high yield of the products, recyclable catalyst, green procedure, and facile work-up procedure. The catalyst was successfully utilized for the one-pot preparation of various phthalazinetrione derivatives.Keywords: dimedone, green procedure, multicomponent reactions, phthalhydrazide
Procedia PDF Downloads 9929822 Empirical Investigation into Climate Change and Climate-Smart Agriculture for Food Security in Nigeria
Authors: J. Julius Adebayo
Abstract:
The objective of this paper is to assess the agro-climatic condition of Ibadan in the rain forest ecological zone of Nigeria, using rainfall pattern and temperature between 1978-2018. Data on rainfall and temperature in Ibadan, Oyo State for a period of 40 years were obtained from Meteorological Section of Forestry Research Institute of Nigeria, Ibadan and Oyo State Meteorology Centre. Time series analysis was employed to analyze the data. The trend revealed that rainfall is decreasing slowly and temperature is averagely increasing year after year. The model for rainfall and temperature are Yₜ = 1454.11-8*t and Yₜ = 31.5995 + 2.54 E-02*t respectively, where t is the time. On this basis, a forecast of 20 years (2019-2038) was generated, and the results showed a further downward trend on rainfall and upward trend in temperature, this indicates persistence rainfall shortage and very hot weather for agricultural practices in the southwest rain forest ecological zone. Suggestions on possible solutions to avert climate change crisis and also promote climate-smart agriculture for sustainable food and nutrition security were also discussed.Keywords: climate change, rainfall pattern, temperature, time series analysis, food and nutrition security
Procedia PDF Downloads 14529821 Comparison of Rainfall Trends in the Western Ghats and Coastal Region of Karnataka, India
Authors: Vinay C. Doranalu, Amba Shetty
Abstract:
In recent days due to climate change, there is a large variation in spatial distribution of daily rainfall within a small region. Rainfall is one of the main end climatic variables which affect spatio-temporal patterns of water availability. The real task postured by the change in climate is identification, estimation and understanding the uncertainty of rainfall. This study intended to analyze the spatial variations and temporal trends of daily precipitation using high resolution (0.25º x 0.25º) gridded data of Indian Meteorological Department (IMD). For the study, 38 grid points were selected in the study area and analyzed for daily precipitation time series (113 years) over the period 1901-2013. Grid points were divided into two zones based on the elevation and situated location of grid points: Low Land (exposed to sea and low elevated area/ coastal region) and High Land (Interior from sea and high elevated area/western Ghats). Time series were applied to examine the spatial analysis and temporal trends in each grid points by non-parametric Mann-Kendall test and Theil-Sen estimator to perceive the nature of trend and magnitude of slope in trend of rainfall. Pettit-Mann-Whitney test is applied to detect the most probable change point in trends of the time period. Results have revealed remarkable monotonic trend in each grid for daily precipitation of the time series. In general, by the regional cluster analysis found that increasing precipitation trend in shoreline region and decreasing trend in Western Ghats from recent years. Spatial distribution of rainfall can be partly explained by heterogeneity in temporal trends of rainfall by change point analysis. The Mann-Kendall test shows significant variation as weaker rainfall towards the rainfall distribution over eastern parts of the Western Ghats region of Karnataka.Keywords: change point analysis, coastal region India, gridded rainfall data, non-parametric
Procedia PDF Downloads 29529820 In vitro Biological Activity of Some Synthesized Monoazo Heterocycles Based On Thiophene and Thiazolyl-Thiophene Analogue
Authors: Mohamed E. Khalifa, Adil A. Gobouri
Abstract:
Potential synthesis of a series of 3-amino-4-arylazothiophene derivatives from reaction of 2-cyano-2-phenylthiocarbamoyl acetamide and the appropriate α-halogenated reagents, followed by coupling with different aryl diazonium salts (Japp-Klingemann reaction), and another series of 5-arylazo-thiazol-2-ylcarbamoyl-thiophene derivatives from base-catalyzed intramolecular condensation of 5-arylazo-2-(N-chloroacetyl)amino-thiazole with selected B-keto compounds (Thorpe-Ziegler reaction) was performed. The biological activity of the two series was studied in vitro. Their versatility for pharmaceutical purposes was reported, where they displayed remarkable activities against selected pathogenic microorganisms; Bacillus subtilize, Staphylococcus aureus (Gram positive bacteria), Escherichia coli, Pseudomonas aeruginosa (Gram negative bacteria) and Aspergillus flavus, Candida albicans (fungi) with various degrees related to their chemical structures.Keywords: thiophene, 2-aminothiazole, compounds, antioxidant, antitumor, antimicrobial
Procedia PDF Downloads 34429819 Modified CUSUM Algorithm for Gradual Change Detection in a Time Series Data
Authors: Victoria Siriaki Jorry, I. S. Mbalawata, Hayong Shin
Abstract:
The main objective in a change detection problem is to develop algorithms for efficient detection of gradual and/or abrupt changes in the parameter distribution of a process or time series data. In this paper, we present a modified cumulative (MCUSUM) algorithm to detect the start and end of a time-varying linear drift in mean value of a time series data based on likelihood ratio test procedure. The design, implementation and performance of the proposed algorithm for a linear drift detection is evaluated and compared to the existing CUSUM algorithm using different performance measures. An approach to accurately approximate the threshold of the MCUSUM is also provided. Performance of the MCUSUM for gradual change-point detection is compared to that of standard cumulative sum (CUSUM) control chart designed for abrupt shift detection using Monte Carlo Simulations. In terms of the expected time for detection, the MCUSUM procedure is found to have a better performance than a standard CUSUM chart for detection of the gradual change in mean. The algorithm is then applied and tested to a randomly generated time series data with a gradual linear trend in mean to demonstrate its usefulness.Keywords: average run length, CUSUM control chart, gradual change detection, likelihood ratio test
Procedia PDF Downloads 29929818 A Novel Computer-Generated Hologram (CGH) Achieved Scheme Generated from Point Cloud by Using a Lens Array
Authors: Wei-Na Li, Mei-Lan Piao, Nam Kim
Abstract:
We proposed a novel computer-generated hologram (CGH) achieved scheme, wherein the CGH is generated from a point cloud which is transformed by a mapping relationship of a series of elemental images captured from a real three-dimensional (3D) object by using a lens array. This scheme is composed of three procedures: mapping from elemental images to point cloud, hologram generation, and hologram display. A mapping method is figured out to achieve a virtual volume date (point cloud) from a series of elemental images. This mapping method consists of two steps. Firstly, the coordinate (x, y) pairs and its appearing number are calculated from the series of sub-images, which are generated from the elemental images. Secondly, a series of corresponding coordinates (x, y, z) are calculated from the elemental images. Then a hologram is generated from the volume data that is calculated by the previous two steps. Eventually, a spatial light modulator (SLM) and a green laser beam are utilized to display this hologram and reconstruct the original 3D object. In this paper, in order to show a more auto stereoscopic display of a real 3D object, we successfully obtained the actual depth data of every discrete point of the real 3D object, and overcame the inherent drawbacks of the depth camera by obtaining point cloud from the elemental images.Keywords: elemental image, point cloud, computer-generated hologram (CGH), autostereoscopic display
Procedia PDF Downloads 58529817 Investigating Selected Traditional African Medicinal Plants for Anti-fibrotic Potential: Identification and Characterization of Bioactive Compounds Through Fourier-Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry Analysis
Authors: G. V. Manzane, S. J. Modise
Abstract:
Uterine fibroids, also known as leiomyomas or myomas, are non-cancerous growths that develop in the muscular wall of the uterus during the reproductive years. The cause of uterine fibroids includes hormonal, genetic, growth factors, and extracellular matrix factors. Common symptoms of uterine fibroids include heavy and prolonged menstrual bleeding which can lead to a high risk of anemia, lower abdominal pains, pelvic pressure, infertility, and pregnancy loss. The growth of this tumor is a concern because of its negative impact on women’s health and the increase in their economic burden. Traditional medicinal plants have long been used in Africa for their potential therapeutic effects against various ailments. In this study, we aimed to identify and characterize bioactive compounds from selected African medicinal plants with potential anti-fibrotic properties using Fourier-transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GCMS) analysis. Two medicinal plant species known for their traditional use in fibrosis-related conditions were selected for investigation. Aqueous extracts were prepared from the plant materials, and FTIR analysis was conducted to determine the functional groups present in the extracts. GCMS analysis was performed to identify the chemical constituents of the extracts. The FTIR analysis revealed the presence of various functional groups, such as phenols, flavonoids, terpenoids, and alkaloids, known for their potential therapeutic activities. These functional groups are associated with antioxidant, anti-inflammatory, and anti-fibrotic properties. The GCMS analysis identified several bioactive compounds, including flavonoids, alkaloids, terpenoids, and phenolic compounds, which are known for their pharmacological activities. The discovery of bioactive compounds in African medicinal plants that exhibit anti-fibrotic effects, opens up promising avenues for further research and development of potential treatments for fibrosis. This suggests the potential of these plants as a valuable source of novel therapeutic agents for treating fibrosis-related conditions. In conclusion, our study identified and characterized bioactive compounds from selected African medicinal plants using FTIR and GCMS analysis. The presence of compounds with known antifibrotic properties suggests that these plants hold promise as a potential source of natural products for the development of novel anti-fibrotic therapies.Keywords: uterine fibroids, african medicinal plants, bioactive compounds, identify and characterized
Procedia PDF Downloads 10329816 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study
Authors: Chokri Slim
Abstract:
The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.Keywords: stationarity, cointegration, dynamic models, causality, VECM models
Procedia PDF Downloads 36629815 Impact of Workers’ Remittances on Poverty in Pakistan: A Time Series Analysis by Ardl
Authors: Syed Aziz Rasool, Ayesha Zaman
Abstract:
Poverty is one of the most important problems for any developing nation. Workers’ remittances and investment plays a crucial role in development of any country by reducing the poverty level in Pakistan. This research studies the relationship between workers’ remittances and poverty alleviation. It also focused the significant effect on poverty reduction. This study uses time series data for the period of 1972-2013. Autoregressive Distributed Lag (ARDL)Model and Error Correction (ECM)Model has been used in order to find out the long run and short run relationship between the worker’s remittances and poverty level respectively. Thus, inflow of remittances showed the significant and negative impact on poverty level. Moreover, coefficient of error correction model explains the adjustment towards convergence and it has highly significant and negative value. According to this research, Policy makers should strongly focus on positive and effective policies to attract more remittances. JELCODE: JEL: J61 Procedia PDF Downloads 28729814 Conventional Synthesis and Characterization of Zirconium Molybdate, Nd2Zr3(MoO4)9
Authors: G. Çelik Gül, F. Kurtuluş
Abstract:
Rare earths containing complex metal oxides have drawn much attention due to physical, chemical and optical properties which make them feasible in so many areas such as non-linear optical materials and ion exchanger. We have researched a systematic study to obtain rare earth containing zirconium molybdate compound, characterization, investigation of crystal system and calculation of unit cell parameters. After a successful synthesis of Nd2Zr3(MoO4)9 which is a member of rare earth metal containing complex oxides family, X-ray diffraction (XRD), High Score Plus/Rietveld refinement analysis, and Fourier Transform Infrared Spectroscopy (FTIR) were completed to determine the crystal structure. Morphological properties and elemental composition were determined by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. Thermal properties were observed via Thermogravimetric-differential thermal analysis (TG/DTA).Keywords: Nd₂Zr₃(MoO₄)₉, powder x-ray diffraction, solid state synthesis, zirconium molybdates
Procedia PDF Downloads 39829813 Synthetic Daily Flow Duration Curves for the Çoruh River Basin, Turkey
Authors: Ibrahim Can, Fatih Tosunoğlu
Abstract:
The flow duration curve (FDC) is an informative method that represents the flow regime’s properties for a river basin. Therefore, the FDC is widely used for water resource projects such as hydropower, water supply, irrigation and water quality management. The primary purpose of this study is to obtain synthetic daily flow duration curves for Çoruh Basin, Turkey. For this aim, we firstly developed univariate auto-regressive moving average (ARMA) models for daily flows of 9 stations located in Çoruh basin and then these models were used to generate 100 synthetic flow series each having same size as historical series. Secondly, flow duration curves of each synthetic series were drawn and the flow values exceeded 10, 50 and 95 % of the time and 95% confidence limit of these flows were calculated. As a result, flood, mean and low flows potential of Çoruh basin will comprehensively be represented.Keywords: ARMA models, Çoruh basin, flow duration curve, Turkey
Procedia PDF Downloads 40729812 Analysis of Extreme Rainfall Trends in Central Italy
Authors: Renato Morbidelli, Carla Saltalippi, Alessia Flammini, Marco Cifrodelli, Corrado Corradini
Abstract:
The trend of magnitude and frequency of extreme rainfalls seems to be different depending on the investigated area of the world. In this work, the impact of climate change on extreme rainfalls in Umbria, an inland region of central Italy, is examined using data recorded during the period 1921-2015 by 10 representative rain gauge stations. The study area is characterized by a complex orography, with altitude ranging from 200 to more than 2000 m asl. The climate is very different from zone to zone, with mean annual rainfall ranging from 650 to 1450 mm and mean annual air temperature from 3.3 to 14.2°C. Over the past 15 years, this region has been affected by four significant droughts as well as by six dangerous flood events, all with very large impact in economic terms. A least-squares linear trend analysis of annual maximums over 60 time series selected considering 6 different durations (1 h, 3 h, 6 h, 12 h, 24 h, 48 h) showed about 50% of positive and 50% of negative cases. For the same time series the non-parametrical Mann-Kendall test with a significance level 0.05 evidenced only 3% of cases characterized by a negative trend and no positive case. Further investigations have also demonstrated that the variance and covariance of each time series can be considered almost stationary. Therefore, the analysis on the magnitude of extreme rainfalls supplies the indication that an evident trend in the change of values in the Umbria region does not exist. However, also the frequency of rainfall events, with particularly high rainfall depths values, occurred during a fixed period has also to be considered. For all selected stations the 2-day rainfall events that exceed 50 mm were counted for each year, starting from the first monitored year to the end of 2015. Also, this analysis did not show predominant trends. Specifically, for all selected rain gauge stations the annual number of 2-day rainfall events that exceed the threshold value (50 mm) was slowly decreasing in time, while the annual cumulated rainfall depths corresponding to the same events evidenced trends that were not statistically significant. Overall, by using a wide available dataset and adopting simple methods, the influence of climate change on the heavy rainfalls in the Umbria region is not detected.Keywords: climate changes, rainfall extremes, rainfall magnitude and frequency, central Italy
Procedia PDF Downloads 23629811 Dynamics and Advection in a Vortex Parquet on the Plane
Authors: Filimonova Alexanra
Abstract:
Inviscid incompressible fluid flows are considered. The object of the study is a vortex parquet – a structure consisting of distributed vortex spots of different directions, occupying the entire plane. The main attention is paid to the study of advection processes of passive particles in the corresponding velocity field. The dynamics of the vortex structures is considered in a rectangular region under the assumption that periodic boundary conditions are imposed on the stream function. Numerical algorithms are based on the solution of the initial-boundary value problem for nonstationary Euler equations in terms of vorticity and stream function. For this, the spectral-vortex meshless method is used. It is based on the approximation of the stream function by the Fourier series cut and the approximation of the vorticity field by the least-squares method from its values in marker particles. A vortex configuration, consisting of four vortex patches is investigated. Results of a numerical study of the dynamics and interaction of the structure are presented. The influence of the patch radius and the relative position of positively and negatively directed patches on the processes of interaction and mixing is studied. The obtained results correspond to the following possible scenarios: the initial configuration does not change over time; the initial configuration forms a new structure, which is maintained for longer times; the initial configuration returns to its initial state after a certain period of time. The processes of mass transfer of vorticity by liquid particles on a plane were calculated and analyzed. The results of a numerical analysis of the particles dynamics and trajectories on the entire plane and the field of local Lyapunov exponents are presented.Keywords: ideal fluid, meshless methods, vortex structures in liquids, vortex parquet.
Procedia PDF Downloads 6429810 Fault Detection of Pipeline in Water Distribution Network System
Authors: Shin Je Lee, Go Bong Choi, Jeong Cheol Seo, Jong Min Lee, Gibaek Lee
Abstract:
Water pipe network is installed underground and once equipped; it is difficult to recognize the state of pipes when the leak or burst happens. Accordingly, post management is often delayed after the fault occurs. Therefore, the systematic fault management system of water pipe network is required to prevent the accident and minimize the loss. In this work, we develop online fault detection system of water pipe network using data of pipes such as flow rate or pressure. The transient model describing water flow in pipelines is presented and simulated using Matlab. The fault situations such as the leak or burst can be also simulated and flow rate or pressure data when the fault happens are collected. Faults are detected using statistical methods of fast Fourier transform and discrete wavelet transform, and they are compared to find which method shows the better fault detection performance.Keywords: fault detection, water pipeline model, fast Fourier transform, discrete wavelet transform
Procedia PDF Downloads 51329809 Co-Integration and Error Correction Mechanism of Supply Response of Sugarcane in Pakistan (1980-2012)
Authors: Himayatullah Khan
Abstract:
This study estimates supply response function of sugarcane in Pakistan from 1980-81 to 2012-13. The study uses co-integration approach and error correction mechanism. Sugarcane production, area and price series were tested for unit root using Augmented Dickey Fuller (ADF). The study found that these series were stationary at their first differenced level. Using the Augmented Engle-Granger test and Cointegrating Regression Durbin-Watson (CRDW) test, the study found that “production and price” and “area and price” were co-integrated suggesting that the two sets of time series had long-run or equilibrium relationship. The results of the error correction models for the two sets of series showed that there was disequilibrium in the short run there may be disequilibrium. The Engle-Granger residual may be thought of as the equilibrium error which can be used to tie the short-run behavior of the dependent variable to its long-run value. The Granger-Causality test results showed that log of price granger caused both the long of production and log of area whereas, the log of production and log of area Granger caused each other.Keywords: co-integration, error correction mechanism, Granger-causality, sugarcane, supply response
Procedia PDF Downloads 43629808 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction
Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba
Abstract:
Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform
Procedia PDF Downloads 5529807 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container
Authors: Mohammad R. Jalali
Abstract:
Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions
Procedia PDF Downloads 40029806 Forecasting Exchange Rate between Thai Baht and the US Dollar Using Time Series Analysis
Authors: Kunya Bowornchockchai
Abstract:
The objective of this research is to forecast the monthly exchange rate between Thai baht and the US dollar and to compare two forecasting methods. The methods are Box-Jenkins’ method and Holt’s method. Results show that the Box-Jenkins’ method is the most suitable method for the monthly Exchange Rate between Thai Baht and the US Dollar. The suitable forecasting model is ARIMA (1,1,0) without constant and the forecasting equation is Yt = Yt-1 + 0.3691 (Yt-1 - Yt-2) When Yt is the time series data at time t, respectively.Keywords: Box–Jenkins method, Holt’s method, mean absolute percentage error (MAPE), exchange rate
Procedia PDF Downloads 25529805 Role of Climatic Conditions on Pacific Bluefin Tuna Thunnus orientalis Stock Structure
Authors: Ashneel Ajay Singh, Kazumi Sakuramoto, Naoki Suzuki, Kalla Alok, Nath Paras
Abstract:
Bluefin (Thunnus orientalis) tuna is one of the most economically valuable tuna species in the world. In recent years the stock has been observed to decline. It is suspected that the stock-recruitment relationship and population structure is influenced by environmental and climatic variables. This study was aimed at investigating the influence of environmental and climatic conditions on the trajectory of the different life stages of the North Pacific bluefin tuna. Exploratory analysis was performed for the North Pacific sea surface temperature (SST) and Pacific Decadal Oscillation (PDO) on the time series of the bluefin tuna cohorts (age-0, 1, 2,…,9, 10+). General Additive Modeling (GAM) was used to reconstruct the recruitment (R) trajectory. The spatial movement of the SST was also monitored from 1953 to 2012 in the distribution area of the bluefin tuna. Exploratory analysis showed significance influence of the North Pacific Sea Surface temperature (SST) and Pacific Decadal Oscillation (PDO) on the time series of the age-0 group. Other age group (1, 2,…,9, 10+) time series did not exhibit any significant correlations. PDO showed most significant relationship in the months of October to December. Although the stock-recruitment relationship is of biological significance, the recruits (age-0) showed poor correlation with the Spawning Stock Biomass (SSB). Indeed the most significant model incorporated the SSB, SST and PDO. The results show that the stock-recruitment relationship of the North Pacific bluefin tuna is multi-dimensional and cannot be adequately explained by the SSB alone. SST and PDO forcing of the population structure is of significant importance and needs to be accounted for when making harvesting plans for bluefin tuna in the North Pacific.Keywords: pacific bluefin tuna, Thunnus orientalis, cohorts, recruitment, spawning stock biomass, sea surface temperature, pacific decadal oscillation, general additive model
Procedia PDF Downloads 23629804 The Relationships between Carbon Dioxide (CO2) Emissions, Energy Consumption, and GDP for Turkey: Time Series Analysis, 1980-2010
Authors: Jinhoa Lee
Abstract:
The relationships between environmental quality, energy use and economic output have created growing attention over the past decades among researchers and policy makers. Focusing on the empirical aspects of the role of CO2 emissions and energy use in affecting the economic output, this paper is an effort to fulfill the gap in a comprehensive case study at a country level using modern econometric techniques. To achieve the goal, this country-specific study examines the short-run and long-run relationships among energy consumption (using disaggregated energy sources: crude oil, coal, natural gas, electricity), carbon dioxide (CO2) emissions and gross domestic product (GDP) for Turkey using time series analysis from the year 1980-2010. To investigate the relationships between the variables, this paper employs the Phillips–Perron (PP) test for stationarity, Johansen maximum likelihood method for cointegration and a Vector Error Correction Model (VECM) for both short- and long-run causality among the research variables for the sample. All the variables in this study show very strong significant effects on GDP in the country for the long term. The long-run equilibrium in the VECM suggests negative long-run causalities from consumption of petroleum products and the direct combustion of crude oil, coal and natural gas to GDP. Conversely, positive impacts of CO2 emissions and electricity consumption on GDP are found to be significant in Turkey during the period. There exists a short-run bidirectional relationship between electricity consumption and natural gas consumption. There exists a positive unidirectional causality running from electricity consumption to natural gas consumption, while there exists a negative unidirectional causality running from natural gas consumption to electricity consumption. Moreover, GDP has a negative effect on electricity consumption in Turkey in the short run. Overall, the results support arguments that there are relationships among environmental quality, energy use and economic output but the associations can to be differed by the sources of energy in the case of Turkey over of period 1980-2010.Keywords: CO2 emissions, energy consumption, GDP, Turkey, time series analysis
Procedia PDF Downloads 50929803 KUCERIA: A Media to Increase Students’ Reading Interest and Nutrition Knowledge
Authors: Luthfia A. Eka, Bertri M. Masita, G. Indah Lestari, Rizka. Ryanindya, Anindita D. Nur, Asih. Setiarini
Abstract:
The preferred habit nowadays is to watch television or listen to the radio rather than reading a newspaper or magazine. The low interest in reading is the reason to the Indonesian government passed a regulation to foster interest in reading early in schoolchildren through literacy programs. Literacy programs are held for the first 10 - 15 minutes before classes begin and children are asked to read books other than textbooks such as storybooks or magazines. In addition, elementary school children have a tendency to buy less healthy snacks around the school and do not know the nutrition fact from the food purchased. Whereas snacks contribute greatly in the fulfillment of energy and nutrients of children every day. The purpose of this study was to increase reading interest as well as knowledge of nutrition and health for elementary school students. This study used quantitative method with experimental study design for four months with twice intervention per week and deepened by qualitative method in the form of interview. The participants were 130 students consisting of 3rd and 4th graders in selected elementary school in Depok City. The Interventions given using KUCERIA (Child Storybook) which were storybooks with pictures consisting of 12 series about nutrition and health given at school literacy hours. There were five questions given by using the crossword method to find out the students' understanding of the story content in each series. To maximize the understanding and absorption of information, two students were asked to retell the story in front of the class and one student to fill the crossword on the board for each series. In addition, interviews were conducted by asking questions about students' interest in reading books. Intervention involved not only students but also teachers and parents in order to optimize students' reading habits. Analysis showed > 80% of student could answer 3 of 5 questions correctly in each series, which showed they had an interest in what they read. Research data on nutrition and health knowledge were analyzed using Wilcoxon and Chi-Square Test to see the relationship. However, only 46% of students completed 12 series and the rest lost to follow up due to school schedule incompatibility with the program. The results showed that there was a significant increase of knowledge (p = 0.000) between before intervention with 66,53 score and after intervention with 81,47 score. Retention of knowledge was conducted one month after the last intervention was administered and the analysis result showed no significant decrease of knowledge (p = 0,000) from 79,17 score to 75,48 score. There is also no relationship between sex and class with knowledge. Hence, an increased interest in reading of elementary school students and nutritional knowledge interventions using KUCERIA was proved successful. These interventions may be replicated in other schools or learning communities.Keywords: literation, reading interest, nutrition knowledge, school children
Procedia PDF Downloads 14829802 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication
Authors: Vedant Janapaty
Abstract:
Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.Keywords: estuary, remote sensing, machine learning, Fourier transform
Procedia PDF Downloads 10429801 Income-Consumption Relationships in Pakistan (1980-2011): A Cointegration Approach
Authors: Himayatullah Khan, Alena Fedorova
Abstract:
The present paper analyses the income-consumption relationships in Pakistan using annual time series data from 1980-81 to 2010-1. The paper uses the Augmented Dickey-Fuller test to check the unit root and stationarity in these two time series. The paper finds that the two time series are nonstationary but stationary at their first difference levels. The Augmented Engle-Granger test and the Cointegrating Regression Durbin-Watson test imply that the two time series of consumption and income are cointegrated and that long-run marginal propensity to consume is 0.88 which is given by the estimated (static) equilibrium relation. The paper also used the error correction mechanism to find out to model dynamic relationship. The purpose of the ECM is to indicate the speed of adjustment from the short-run equilibrium to the long-run equilibrium state. The results show that MPC is equal to 0.93 and is highly significant. The coefficient of Engle-Granger residuals is negative but insignificant. Statistically, the equilibrium error term is zero, which suggests that consumption adjusts to changes in GDP in the same period. The short-run changes in GDP have a positive impact on short-run changes in consumption. The paper concludes that we may interpret 0.93 as the short-run MPC. The pair-wise Granger Causality test shows that both GDP and consumption Granger cause each other.Keywords: cointegrating regression, Augmented Dickey Fuller test, Augmented Engle-Granger test, Granger causality, error correction mechanism
Procedia PDF Downloads 41629800 A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization
Authors: V. P. Muhamed Shajudheen, K. Viswanathan, K. Anitha Rani, A. Uma Maheswari, S. Saravana Kumar
Abstract:
In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)4 to titanium oxide, TiO2 was investigated. The as-prepared Ti(OH)4 precipitate was annealed at 800°C to obtain TiO2 nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO2 nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO2 nanoparticles and it has the potential to be applied to other systems for photocatalytic activity.Keywords: TiO2 nanoparticles, chemical precipitation route, phase transition, Fourier Transform Infra-Red spectroscopy (FTIR), micro-Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)
Procedia PDF Downloads 32429799 Dorsal Root Ganglion Neuromodulation as an Alternative to Opioids in the Evolving Healthcare Crisis
Authors: Adam J. Carinci
Abstract:
Background: The opioid epidemic is the most pressing healthcare crisis of our time. There is increasing recognition that opioids have limited long-term efficacy and are associated with hyperalgesia, addiction, and increased morbidity and mortality. Therefore, alternative strategies to combat chronic pain are paramount. We initiated a multicenter retrospective case series to review the efficacy of DRG stimulation in facilitating opioid tapering, opioid discontinuation and as a viable alternative to chronic opioid therapy. Purpose: The dorsal root ganglion (DRG) plays a key role in the development and maintenance of pain. Recent innovations in neuromodulation, specifically, dorsal root ganglion stimulation, offers an effective alternative to opioids in the treatment of chronic pain. This retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy. Procedure: This small multicenter retrospective case series provides preliminary evidence that DRG stimulation facilitates opioid weaning, opioid tapering and is a viable option to opioid therapy in the treatment of chronic pain. A retrospective analysis was completed. Visual analog scale pain scores and pain medication usage were collected at the baseline visit and after four weeks, 3 months and 6 months of treatment. Ten consecutive patients across two study centers were included. The pain was rated 7.38 at baseline and decreased to 1.50 at the 4-week follow-up, a reduction of 79.5%. All patients significantly decreased their opioid pain medication use with an average > 30% reduction in morphine equivalents and four were able to discontinue their medications entirely. Conclusion: This Retrospective case series demonstrates preliminary evidence that DRG stimulation facilitates opioid tapering, opioid discontinuation and presents a viable alternative to chronic opioid therapy.Keywords: dorsal root ganglion, neuromodulation, opioid sparing, stimulation
Procedia PDF Downloads 11529798 Forecasting Stock Indexes Using Bayesian Additive Regression Tree
Authors: Darren Zou
Abstract:
Forecasting the stock market is a very challenging task. Various economic indicators such as GDP, exchange rates, interest rates, and unemployment have a substantial impact on the stock market. Time series models are the traditional methods used to predict stock market changes. In this paper, a machine learning method, Bayesian Additive Regression Tree (BART) is used in predicting stock market indexes based on multiple economic indicators. BART can be used to model heterogeneous treatment effects, and thereby works well when models are misspecified. It also has the capability to handle non-linear main effects and multi-way interactions without much input from financial analysts. In this research, BART is proposed to provide a reliable prediction on day-to-day stock market activities. By comparing the analysis results from BART and with time series method, BART can perform well and has better prediction capability than the traditional methods.Keywords: BART, Bayesian, predict, stock
Procedia PDF Downloads 13129797 Comparative Study of Compressive Strength of Triangular Polyester Fiber with Fly Ash Roller Compacted Concrete Using Ultrasonic Pulse Velocity Method
Authors: Pramod Keshav Kolase, Atul K. Desai
Abstract:
This paper presents the experimental investigation results of Ultrasonic Pulse Velocity (UPV) tests conducted on roller compacted concrete pavement (RCCP) material containing Class F fly ash of as mineral admixture and triangular polyester fiber as a secondary reinforcement. The each mix design series fly ash content is varied from 0% to 45 % and triangular polyester fiber 0% to 0.75% by volume fraction. In each series and for different ages of curing (i.e. 7, 28 and 90 days) forty-eight cube specimens are cast and tested for compressive strength and UPV. The UPV of fly ash was found to be lower for all mixtures at 7 days in comparison with control mix concrete. But at 28, 56 days and 90 days the UPV were significantly improved for all the mixes. Relationships between compressive strength of RCCP and UPV and Dynamic Elastic Modulus are proposed for all series mixes.Keywords: compressive strength, dynamic elastic modulus, fly ash, fiber, roller compacted concrete, ultrasonic pulse velocity
Procedia PDF Downloads 22029796 What the Future Holds for Social Media Data Analysis
Authors: P. Wlodarczak, J. Soar, M. Ally
Abstract:
The dramatic rise in the use of Social Media (SM) platforms such as Facebook and Twitter provide access to an unprecedented amount of user data. Users may post reviews on products and services they bought, write about their interests, share ideas or give their opinions and views on political issues. There is a growing interest in the analysis of SM data from organisations for detecting new trends, obtaining user opinions on their products and services or finding out about their online reputations. A recent research trend in SM analysis is making predictions based on sentiment analysis of SM. Often indicators of historic SM data are represented as time series and correlated with a variety of real world phenomena like the outcome of elections, the development of financial indicators, box office revenue and disease outbreaks. This paper examines the current state of research in the area of SM mining and predictive analysis and gives an overview of the analysis methods using opinion mining and machine learning techniques.Keywords: social media, text mining, knowledge discovery, predictive analysis, machine learning
Procedia PDF Downloads 425