Search results for: inter turn stator fault
3165 Park’s Vector Approach to Detect an Inter Turn Stator Fault in a Doubly Fed Induction Machine by a Neural Network
Authors: Amel Ourici
Abstract:
An electrical machine failure that is not identified in an initial stage may become catastrophic and it may suffer severe damage. Thus, undetected machine faults may cascade in it failure, which in turn may cause production shutdowns. Such shutdowns are costly in terms of lost production time, maintenance costs, and wasted raw materials. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator fault in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect this fault, is based on Park’s Vector Approach, using a neural network.Keywords: doubly fed induction machine, PWM inverter, inter turn stator fault, Park’s vector approach, neural network
Procedia PDF Downloads 6083164 Induction Motor Stator Fault Analysis Using Phase-Angle and Magnitude of the Line Currents Spectra
Authors: Ahmed Hamida Boudinar, Noureddine Benouzza, Azeddine Bendiabdellah, Mohamed El Amine Khodja
Abstract:
This paper describes a new diagnosis approach for identification of the progressive stator winding inter-turn short-circuit fault in induction motor. This approach is based on a simple monitoring of the combined information related to both magnitude and phase-angle obtained from the fundamental by the three line currents frequency analysis. In addition, to simplify the interpretation and analysis of the data; a new graphical tool based on a triangular representation is suggested. This representation, depending on its size, enables to visualize in a simple and clear manner, the existence of the stator inter-turn short-circuit fault and its discrimination with respect to a healthy stator. Experimental results show well the benefit and effectiveness of the proposed approach.Keywords: induction motor, magnitude, phase-angle, spectral analysis, stator fault
Procedia PDF Downloads 3613163 Stator Short-Circuits Fault Diagnosis in Induction Motors
Authors: K. Yahia, M. Sahraoui, A. Guettaf
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental results, show the effectiveness of the used method.Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 4573162 Stator Short-Circuits Fault Diagnosis in Induction Motors Using Extended Park’s Vector Approach through the Discrete Wavelet Transform
Authors: K. Yahia, A. Ghoggal, A. Titaouine, S. E. Zouzou, F. Benchabane
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: Induction Motors (IMs), Inter-turn Short-Circuits Diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 5633161 Fault Diagnosis in Induction Motors Using the Discrete Wavelet Transform
Authors: Khaled Yahia
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: induction motors (IMs), inter-turn short-circuits diagnosis, discrete wavelet transform (DWT), current park’s vector modulus (CPVM)
Procedia PDF Downloads 5693160 Fault Diagnosis in Induction Motors Using Discrete Wavelet Transform
Authors: K. Yahia, A. Titaouine, A. Ghoggal, S. E. Zouzou, F. Benchabane
Abstract:
This paper deals with the problem of stator faults diagnosis in induction motors. Using the discrete wavelet transform (DWT) for the current Park’s vector modulus (CPVM) analysis, the inter-turn short-circuit faults diagnosis can be achieved. This method is based on the decomposition of the CPVM signal, where wavelet approximation and detail coefficients of this signal have been extracted. The energy evaluation of a known bandwidth detail permits to define a fault severity factor (FSF). This method has been tested through the simulation of an induction motor using a mathematical model based on the winding-function approach. Simulation, as well as experimental, results show the effectiveness of the used method.Keywords: Induction Motors (IMs), inter-turn short-circuits diagnosis, Discrete Wavelet Transform (DWT), Current Park’s Vector Modulus (CPVM)
Procedia PDF Downloads 5533159 A Fault Analysis Cracked-Rotor-to-Stator Rub and Unbalance by Vibration Analysis Technique
Authors: B. X. Tchomeni, A. A. Alugongo, L. M. Masu
Abstract:
An analytical 4-DOF nonlinear model of a de Laval rotor-stator system based on Energy Principles has been used theoretically and experimentally to investigate fault symptoms in a rotating system. The faults, namely rotor-stator-rub, crack and unbalance are modelled as excitations on the rotor shaft. Mayes steering function is used to simulate the breathing behaviour of the crack. The fault analysis technique is based on waveform signal, orbits and Fast Fourier Transform (FFT) derived from simulated and real measured signals. Simulated and experimental results manifest considerable mutual resemblance of elliptic-shaped orbits and FFT for a same range of test data.Keywords: a breathing crack, fault, FFT, nonlinear, orbit, rotor-stator rub, vibration analysis
Procedia PDF Downloads 3083158 Fault Analysis of Induction Machine Using Finite Element Method (FEM)
Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi
Abstract:
The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis
Procedia PDF Downloads 3003157 Root Mean Square-Based Method for Fault Diagnosis and Fault Detection and Isolation of Current Fault Sensor in an Induction Machine
Authors: Ahmad Akrad, Rabia Sehab, Fadi Alyoussef
Abstract:
Nowadays, induction machines are widely used in industry thankful to their advantages comparing to other technologies. Indeed, there is a big demand because of their reliability, robustness and cost. The objective of this paper is to deal with diagnosis, detection and isolation of faults in a three-phase induction machine. Among the faults, Inter-turn short-circuit fault (ITSC), current sensors fault and single-phase open circuit fault are selected to deal with. However, a fault detection method is suggested using residual errors generated by the root mean square (RMS) of phase currents. The application of this method is based on an asymmetric nonlinear model of Induction Machine considering the winding fault of the three axes frame state space. In addition, current sensor redundancy and sensor fault detection and isolation (FDI) are adopted to ensure safety operation of induction machine drive. Finally, a validation is carried out by simulation in healthy and faulty operation modes to show the benefit of the proposed method to detect and to locate with, a high reliability, the three types of faults.Keywords: induction machine, asymmetric nonlinear model, fault diagnosis, inter-turn short-circuit fault, root mean square, current sensor fault, fault detection and isolation
Procedia PDF Downloads 1993156 Induction Motor Eccentricity Fault Recognition Using Rotor Slot Harmonic with Stator Current Technique
Authors: Nouredine Benouzza, Ahmed Hamida Boudinar, Azeddine Bendiabdellah
Abstract:
An algorithm for Eccentricity Fault Detection (EFD) applied to a squirrel cage induction machine is proposed in this paper. This algorithm employs the behavior of the stator current spectral analysis and the localization of the Rotor Slot Harmonic (RSH) frequency to detect eccentricity faults in three phase induction machine. The RHS frequency once obtained is used as a key parameter into a simple developed expression to directly compute the eccentricity fault frequencies in the induction machine. Experimental tests performed for both a healthy motor and a faulty motor with different eccentricity fault severities illustrate the effectiveness and merits of the proposed EFD algorithm.Keywords: squirrel cage motor, diagnosis, eccentricity faults, current spectral analysis, rotor slot harmonic
Procedia PDF Downloads 4873155 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 3503154 Online Electric Current Based Diagnosis of Stator Faults on Squirrel Cage Induction Motors
Authors: Alejandro Paz Parra, Jose Luis Oslinger Gutierrez, Javier Olaya Ochoa
Abstract:
In the present paper, five electric current based methods to analyze electric faults on the stator of induction motors (IM) are used and compared. The analysis tries to extend the application of the multiple reference frames diagnosis technique. An eccentricity indicator is presented to improve the application of the Park’s Vector Approach technique. Most of the fault indicators are validated and some others revised, agree with the technical literatures and published results. A tri-phase 3hp squirrel cage IM, especially modified to establish different fault levels, is used for validation purposes.Keywords: motor fault diagnosis, induction motor, MCSA, ESA, Extended Park´s vector approach, multiparameter analysis
Procedia PDF Downloads 3483153 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 683152 Diagnosis of Induction Machine Faults by DWT
Authors: Hamidreza Akbari
Abstract:
In this paper, for detection of inclined eccentricity in an induction motor, time–frequency analysis of the stator startup current is carried out. For this purpose, the discrete wavelet transform is used. Data are obtained from simulations, using winding function approach. The results show the validity of the approach for detecting the fault and discriminating with respect to other faults.Keywords: induction machine, fault, DWT, electric
Procedia PDF Downloads 3503151 High Performance of Direct Torque and Flux Control of a Double Stator Induction Motor Drive with a Fuzzy Stator Resistance Estimator
Authors: K. Kouzi
Abstract:
In order to have stable and high performance of direct torque and flux control (DTFC) of double star induction motor drive (DSIM), proper on-line adaptation of the stator resistance is very important. This is inevitably due to the variation of the stator resistance during operating conditions, which introduces error in estimated flux position and the magnitude of the stator flux. Error in the estimated stator flux deteriorates the performance of the DTFC drive. Also, the effect of error in estimation is very important especially at low speed. Due to this, our aim is to overcome the sensitivity of the DTFC to the stator resistance variation by proposing on-line fuzzy estimation stator resistance. The fuzzy estimation method is based on an on-line stator resistance correction through the variations of the stator current estimation error and its variations. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of the suggested algorithm control is to avoid the drive instability that may occur in certain situations and ensure the tracking of the actual stator resistance. The validity of the technique and the improvement of the whole system performance are proved by the results.Keywords: direct torque control, dual stator induction motor, Fuzzy Logic estimation, stator resistance adaptation
Procedia PDF Downloads 3253150 Current-Based Multiple Faults Detection in Electrical Motors
Authors: Moftah BinHasan
Abstract:
Induction motors (IM) are vital components in industrial processes whose failure may yield to an unexpected interruption at the industrial plant, with highly incurred consequences in costs, product quality, and safety. Among different detection approaches proposed in the literature, that based on stator current monitoring termed as Motor Current Signature Analysis (MCSA) is the most preferred. MCSA is advantageous due to its non-invasive properties. The popularity of motor current signature analysis comes from being that the current consists of motor harmonics, around the supply frequency, which show some properties related to different situations of healthy and faulty conditions. One of the techniques used with machine line current resorts to spectrum analysis. Besides discussing the fundamentals of MCSA and its applications in the condition monitoring arena, this paper shows a summary of the most frequent faults and their consequence signatures on the stator current spectrum of an induction motor. In addition, this article presents different case studies of induction motor fault diagnosis. These faults were seeded in the machine which was run for more than an hour for each test before the results were recorded for the faulty situations. These results are then compared with those for the healthy cases that were recorded earlier.Keywords: induction motor, condition monitoring, fault diagnosis, MCSA, rotor, stator, bearing, eccentricity
Procedia PDF Downloads 4593149 Effect of Fault Depth on Near-Fault Peak Ground Velocity
Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun
Abstract:
Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.Keywords: fault depth, near-fault, PGV, numerical simulation
Procedia PDF Downloads 3463148 BLDC Motor Design Considering Core Loss Caused by Welding
Authors: Hyun-Seok Hong, In-Gun Kim, Ye-Jun Oh, Ju Lee
Abstract:
This paper deals with the effects of welding performed for the manufacture of laminations in a stator in the case of prototype motors that are manufactured in small quantity. As a result of performing the no-load test for an IPM (interior permanent magnet)-type BLDC (blushless direct current) motor manufactured by welding both inside and outside of the stator, it was found that more DC input than expected was provided. To verify the effects of welding, a stator was re-manufactured by bonding, and DC inputs provided during the no-load test were compared.Keywords: welding, stator, Eddy current, BLDC
Procedia PDF Downloads 5633147 Design Optimization of Doubly Fed Induction Generator Performance by Differential Evolution
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generators (DFIG) due to their advantages like speed variation and four-quadrant operation, find its application in wind turbines. DFIG besides supplying power to the grid has to support reactive power (kvar) under grid voltage variations, should contribute minimum fault current during faults, have high efficiency, minimum weight, adequate rotor protection during crow-bar-operation from +20% to -20% of rated speed. To achieve the optimum performance, a good electromagnetic design of DFIG is required. In this paper, a simple and heuristic global optimization – Differential Evolution has been used. Variables considered are lamination details such as slot dimensions, stack diameters, air gap length, and generator stator and rotor stack length. Two operating conditions have been considered - voltage and speed variations. Constraints included were reactive power supplied to the grid and limiting fault current and torque. The optimization has been executed separately for three objective functions - maximum efficiency, weight reduction, and grid fault stator currents. Subsequent calculations led to the conclusion that designs determined through differential evolution help in determining an optimum electrical design for each objective function.Keywords: design optimization, performance, DFIG, differential evolution
Procedia PDF Downloads 1503146 Improvement of Direct Torque and Flux Control of Dual Stator Induction Motor Drive Using Intelligent Techniques
Authors: Kouzi Katia
Abstract:
This paper proposes a Direct Torque Control (DTC) algorithm of dual Stator Induction Motor (DSIM) drive using two approach intelligent techniques: Artificial Neural Network (ANN) approach replaces the switching table selector block of conventional DTC and Mamdani Fuzzy Logic controller (FLC) is used for stator resistance estimation. The fuzzy estimation method is based on an online stator resistance correction through the variations of stator current estimation error and its variation. The fuzzy logic controller gives the future stator resistance increment at the output. The main advantage of suggested algorithm control is to reduce the hardware complexity of conventional selectors, to avoid the drive instability that may occur in certain situation and ensure the tracking of the actual of the stator resistance. The effectiveness of the technique and the improvement of the whole system performance are proved by results.Keywords: artificial neural network, direct torque control, dual stator induction motor, fuzzy logic estimator, switching table
Procedia PDF Downloads 3453145 CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine
Authors: Alireza Rasekh, Peter Sergeant, Jan Vierendeels
Abstract:
This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum.Keywords: AFPM, CFD, magnet parameters, stator heat transfer
Procedia PDF Downloads 2503144 Simulation Study of a Fault at the Switch on the Operation of the Doubly Fed Induction Generator Based on the Wind Turbine
Authors: N. Zerzouri, N. Benalia, N. Bensiali
Abstract:
This work is devoted to an analysis of the operation of a doubly fed induction generator (DFIG) integrated with a wind system. The power transfer between the stator and the network is carried out by acting on the rotor via a bidirectional signal converter. The analysis is devoted to the study of a fault in the converter due to an interruption of the control of a semiconductor. Simulation results obtained by the MATLAB / Simulink software illustrate the quality of the power generated at the default.Keywords: doubly fed induction generator (DFIG), wind power generation, back to back PWM converter, default switching
Procedia PDF Downloads 4653143 The Effect of Dynamic Eccentricity on the Stator Current Spectrum of 550 kW Induction Motor
Authors: Saleh Elawgali
Abstract:
In order to present the effect of the dynamic eccentricity on the stator currents of squirrel cage induction machines, the current spectrums of a 550 kW induction motor was calculated for the cases of full symmetry and dynamic eccentricity. The calculations presented in this paper are based on the Poly-Harmonic Model accounting for static and dynamic eccentricity, stator and rotor slotting, parallel branches as well as cage asymmetry. The calculations were followed by Fourier analysis of the stator currents in steady state operation. The paper presents the stator current spectrums for full symmetry and dynamic eccentricity cases, and demonstrates the harmonics present in each case. The effect of dynamic eccentricity is demonstrating via comparing the current spectrums related to dynamic eccentricity cases with the full symmetry one.Keywords: current spectrum, dynamic eccentricity, harmonics, Induction machine, slot harmonic zone.
Procedia PDF Downloads 3993142 A Novel Stator Resistance Estimation Method and Control Design of Speed-Sensorless Induction Motor Drives
Authors: N. Ben Si Ali, N. Benalia, N. Zarzouri
Abstract:
Speed sensorless systems are intensively studied during recent years; this is mainly due to their economical benefit and fragility of mechanical sensors and also the difficulty of installing this type of sensor in many applications. These systems suffer from instability problems and sensitivity to parameter mismatch at low speed operation. In this paper an analysis of adaptive observer stability with stator resistance estimation is given.Keywords: motor drive, sensorless control, adaptive observer, stator resistance estimation
Procedia PDF Downloads 3753141 Actuator Fault Detection and Fault Tolerant Control of a Nonlinear System Using Sliding Mode Observer
Authors: R. Loukil, M. Chtourou, T. Damak
Abstract:
In this work, we use the Fault detection and isolation and the Fault tolerant control based on sliding mode observer in order to introduce the well diagnosis of a nonlinear system. The robustness of the proposed observer for the two techniques is tested through a physical example. The results in this paper show the interaction between the Fault tolerant control and the Diagnosis procedure.Keywords: fault detection and isolation FDI, fault tolerant control FTC, sliding mode observer, nonlinear system, robustness, stability
Procedia PDF Downloads 3743140 Asynchronous Sequential Machines with Fault Detectors
Authors: Seong Woo Kwak, Jung-Min Yang
Abstract:
A strategy of fault diagnosis and tolerance for asynchronous sequential machines is discussed in this paper. With no synchronizing clock, it is difficult to diagnose an occurrence of permanent or stuck-in faults in the operation of asynchronous machines. In this paper, we present a fault detector comprised of a timer and a set of static functions to determine the occurrence of faults. In order to realize immediate fault tolerance, corrective control theory is applied to designing a dynamic feedback controller. Existence conditions for an appropriate controller and its construction algorithm are presented in terms of reachability of the machine and the feature of fault occurrences.Keywords: asynchronous sequential machines, corrective control, fault diagnosis and tolerance, fault detector
Procedia PDF Downloads 3493139 A Review of HVDC Modular Multilevel Converters Subjected to DC and AC Faults
Authors: Jude Inwumoh, Adam P. R. Taylor, Kosala Gunawardane
Abstract:
Modular multilevel converters (MMC) exhibit a highly scalable and modular characteristic with good voltage/power expansion, fault tolerance capability, low output harmonic content, good redundancy, and a flexible front-end configuration. Fault detection, location, and isolation, as well as maintaining fault ride-through (FRT), are major challenges to MMC reliability and power supply sustainability. Different papers have been reviewed to seek the best MMC configuration with fault capability. DC faults are the most common fault, while the probability that AC fault occurs in a modular multilevel converter (MCC) is low; though, AC faults consequence are severe. This paper reviews several MMC topologies and modulation techniques in tackling faults. These fault control strategies are compared based on cost, complexity, controllability, and power loss. A meshed network of half-bridge (HB) MMC topology was optimal in rendering fault ride through than any other MMC topologies but only when combined with DC circuit breakers (CBS), AC CBS, and fault current limiters (FCL).Keywords: MMC-HVDC, DC faults, fault current limiters, control scheme
Procedia PDF Downloads 1393138 A Neural Network Approach for an Automatic Detection and Localization of an Open Phase Circuit of a Five-Phase Induction Machine Used in a Drivetrain of an Electric Vehicle
Authors: Saad Chahba, Rabia Sehab, Ahmad Akrad, Cristina Morel
Abstract:
Nowadays, the electric machines used in urban electric vehicles are, in most cases, three-phase electric machines with or without a magnet in the rotor. Permanent Magnet Synchronous Machine (PMSM) and Induction Machine (IM) are the main components of drive trains of electric and hybrid vehicles. These machines have very good performance in healthy operation mode, but they are not redundant to ensure safety in faulty operation mode. Faced with the continued growth in the demand for electric vehicles in the automotive market, improving the reliability of electric vehicles is necessary over the lifecycle of the electric vehicle. Multiphase electric machines respond well to this constraint because, on the one hand, they have better robustness in the event of a breakdown (opening of a phase, opening of an arm of the power stage, intern-turn short circuit) and, on the other hand, better power density. In this work, a diagnosis approach using a neural network for an open circuit fault or more of a five-phase induction machine is developed. Validation on the simulator of the vehicle drivetrain, at reduced power, is carried out, creating one and more open circuit stator phases showing the efficiency and the reliability of the new approach to detect and to locate on-line one or more open phases of a five-induction machine.Keywords: electric vehicle drivetrain, multiphase drives, induction machine, control, open circuit (OC) fault diagnosis, artificial neural network
Procedia PDF Downloads 2083137 Influence of Insulation System Methods on Dissipation Factor and Voltage Endurance
Authors: Farzad Yavari, Hamid Chegini, Saeed Lotfi
Abstract:
This paper reviews the comparison of Resin Rich (RR) and Vacuum Pressure Impregnation (VPI) insulation system qualities for stator bar of rotating electrical machines. Voltage endurance and tangent delta are two diagnostic tests to determine the quality of insulation systems. The paper describes the trend of dissipation factor while performing voltage endurance test for different stator bar samples made with RR and VPI insulation system methods. Some samples were made with the same strands and insulation thickness but with different main wall material to prove the influence of insulation system methods on stator bar quality. Also, some of the samples were subjected to voltage at the temperature of their insulation class, and their dissipation factor changes were measured and studied.Keywords: VPI, resin rich, insulation, stator bar, dissipation factor, voltage endurance
Procedia PDF Downloads 1973136 Analysis of Microstructure around Opak River Pleret Area, Bantul Regency, Special Region of Yogyakarta Province, Indonesia, as a Result of Opak Fault Reactivation, Using Stereographic Method
Authors: Gayus Pratama Polunggu, Pamela Felita Adibrata, Hafidh Fathur Riza
Abstract:
Opak Fault is a large fault that extends from the northeast to the southwest of Yogyakarta Special Region. Opak Fault allegedly re-active after the 2006 Yogyakarta earthquake, about eleven years ago. Opak Fault is a big fault, therefore the activation will bring up the microstructure around the Opak River. This microstructure will reveal a different direction of force from the Opak Fault because the trigger for the emergence of the microstructure is the reactivation of the Opak Fault. In other words, this microstructure is a potentially severe weak area during a tectonic disaster. This research was conducted to find out the impact from the reactivation of Opak Fault that triggered the emergence of microstructure around Opak River which is very useful for disaster mitigation information around research area. This research used the approach from literature study in the form of the journal of structural geology and field study. The method used is a laboratory analysis in the form of stereographic analysis.Keywords: Opak fault, reactivation, microstructure, stereographic
Procedia PDF Downloads 184