World Academy of Science, Engineering and Technology
[Mathematical and Computational Sciences]
Online ISSN : 1307-6892
626 Topological Sensitivity Analysis for Reconstruction of the Inverse Source Problem from Boundary Measurement
Authors: Maatoug Hassine, Mourad Hrizi
Abstract:
In this paper, we consider a geometric inverse source problem for the heat equation with Dirichlet and Neumann boundary data. We will reconstruct the exact form of the unknown source term from additional boundary conditions. Our motivation is to detect the location, the size and the shape of source support. We present a one-shot algorithm based on the Kohn-Vogelius formulation and the topological gradient method. The geometric inverse source problem is formulated as a topology optimization one. A topological sensitivity analysis is derived from a source function. Then, we present a non-iterative numerical method for the geometric reconstruction of the source term with unknown support using a level curve of the topological gradient. Finally, we give several examples to show the viability of our presented method.Keywords: geometric inverse source problem, heat equation, topological optimization, topological sensitivity, Kohn-Vogelius formulation
Procedia PDF Downloads 300625 Efficiency of Robust Heuristic Gradient Based Enumerative and Tunneling Algorithms for Constrained Integer Programming Problems
Authors: Vijaya K. Srivastava, Davide Spinello
Abstract:
This paper presents performance of two robust gradient-based heuristic optimization procedures based on 3n enumeration and tunneling approach to seek global optimum of constrained integer problems. Both these procedures consist of two distinct phases for locating the global optimum of integer problems with a linear or non-linear objective function subject to linear or non-linear constraints. In both procedures, in the first phase, a local minimum of the function is found using the gradient approach coupled with hemstitching moves when a constraint is violated in order to return the search to the feasible region. In the second phase, in one optimization procedure, the second sub-procedure examines 3n integer combinations on the boundary and within hypercube volume encompassing the result neighboring the result from the first phase and in the second optimization procedure a tunneling function is constructed at the local minimum of the first phase so as to find another point on the other side of the barrier where the function value is approximately the same. In the next cycle, the search for the global optimum commences in both optimization procedures again using this new-found point as the starting vector. The search continues and repeated for various step sizes along the function gradient as well as that along the vector normal to the violated constraints until no improvement in optimum value is found. The results from both these proposed optimization methods are presented and compared with one provided by popular MS Excel solver that is provided within MS Office suite and other published results.Keywords: constrained integer problems, enumerative search algorithm, Heuristic algorithm, Tunneling algorithm
Procedia PDF Downloads 325624 Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making
Authors: I. Arockiarani
Abstract:
The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems.Keywords: entropy measure, Hausdorff distance, neutrosophic set, soft set
Procedia PDF Downloads 257623 Generalized Central Paths for Convex Programming
Authors: Li-Zhi Liao
Abstract:
The central path has played the key role in the interior point method. However, the convergence of the central path may not be true even in some convex programming problems with linear constraints. In this paper, the generalized central paths are introduced for convex programming. One advantage of the generalized central paths is that the paths will always converge to some optimal solutions of the convex programming problem for any initial interior point. Some additional theoretical properties for the generalized central paths will be also reported.Keywords: central path, convex programming, generalized central path, interior point method
Procedia PDF Downloads 327622 Development of a Model Based on Wavelets and Matrices for the Treatment of Weakly Singular Partial Integro-Differential Equations
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
We present a new model based on viscoelasticity for the Non-Newtonian fluids.We use a matrix formulated algorithm to approximate solutions of a class of partial integro-differential equations with the given initial and boundary conditions. Some numerical results are presented to simplify application of operational matrix formulation and reduce the computational cost. Convergence analysis, error estimation and numerical stability of the method are also investigated. Finally, some test examples are given to demonstrate accuracy and efficiency of the proposed method.Keywords: Legendre Wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 336621 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: optimal control, stochastic systems, discrete-time systems, probabilistic constraints
Procedia PDF Downloads 278620 Non-Differentiable Mond-Weir Type Symmetric Duality under Generalized Invexity
Authors: Jai Prakash Verma, Khushboo Verma
Abstract:
In the present paper, a pair of Mond-Weir type non-differentiable multiobjective second-order programming problems, involving two kernel functions, where each of the objective functions contains support function, is formulated. We prove weak, strong and converse duality theorem for the second-order symmetric dual programs under η-pseudoinvexity conditions.Keywords: non-differentiable multiobjective programming, second-order symmetric duality, efficiency, support function, eta-pseudoinvexity
Procedia PDF Downloads 249619 On the Solidness of the Polar of Recession Cones
Authors: Sima Hassankhali, Ildar Sadeqi
Abstract:
In the theory of Pareto efficient points, the existence of a bounded base for a cone K of a normed space X is so important. In this article, we study the geometric structure of a nonzero closed convex cone K with a bounded base. For this aim, we study the structure of the polar cone K# of K. Furthermore, we obtain a necessary and sufficient condition for a nonempty closed convex set C so that its recession cone C∞ has a bounded base.Keywords: solid cones, recession cones, polar cones, bounded base
Procedia PDF Downloads 267618 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 392617 Semilocal Convergence of a Three Step Fifth Order Iterative Method under Hölder Continuity Condition in Banach Spaces
Authors: Ramandeep Behl, Prashanth Maroju, S. S. Motsa
Abstract:
In this paper, we study the semilocal convergence of a fifth order iterative method using recurrence relation under the assumption that first order Fréchet derivative satisfies the Hölder condition. Also, we calculate the R-order of convergence and provide some a priori error bounds. Based on this, we give existence and uniqueness region of the solution for a nonlinear Hammerstein integral equation of the second kind.Keywords: Holder continuity condition, Frechet derivative, fifth order convergence, recurrence relations
Procedia PDF Downloads 612616 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations
Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa
Abstract:
In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method
Procedia PDF Downloads 312615 Mathematical Modeling of Human Cardiovascular System: A Lumped Parameter Approach and Simulation
Authors: Ketan Naik, P. H. Bhathawala
Abstract:
The purpose of this work is to develop a mathematical model of Human Cardiovascular System using lumped parameter method. The model is divided in three parts: Systemic Circulation, Pulmonary Circulation and the Heart. The established mathematical model has been simulated by MATLAB software. The innovation of this study is in describing the system based on the vessel diameters and simulating mathematical equations with active electrical elements. Terminology of human physical body and required physical data like vessel’s radius, thickness etc., which are required to calculate circuit parameters like resistance, inductance and capacitance, are proceeds from well-known medical books. The developed model is useful to understand the anatomic of human cardiovascular system and related syndromes. The model is deal with vessel’s pressure and blood flow at certain time.Keywords: cardiovascular system, lumped parameter method, mathematical modeling, simulation
Procedia PDF Downloads 333614 Application of Wavelet Based Approximation for the Solution of Partial Integro-Differential Equation Arising from Viscoelasticity
Authors: Somveer Singh, Vineet Kumar Singh
Abstract:
This work contributes a numerical method based on Legendre wavelet approximation for the treatment of partial integro-differential equation (PIDE). Operational matrices of Legendre wavelets reduce the solution of PIDE into the system of algebraic equations. Some useful results concerning the computational order of convergence and error estimates associated to the suggested scheme are presented. Illustrative examples are provided to show the effectiveness and accuracy of proposed numerical method.Keywords: legendre wavelets, operational matrices, partial integro-differential equation, viscoelasticity
Procedia PDF Downloads 448613 Approximations of Fractional Derivatives and Its Applications in Solving Non-Linear Fractional Variational Problems
Authors: Harendra Singh, Rajesh Pandey
Abstract:
The paper presents a numerical method based on operational matrix of integration and Ryleigh method for the solution of a class of non-linear fractional variational problems (NLFVPs). Chebyshev first kind polynomials are used for the construction of operational matrix. Using operational matrix and Ryleigh method the NLFVP is converted into a system of non-linear algebraic equations, and solving these equations we obtained approximate solution for NLFVPs. Convergence analysis of the proposed method is provided. Numerical experiment is done to show the applicability of the proposed numerical method. The obtained numerical results are compared with exact solution and solution obtained from Chebyshev third kind. Further the results are shown graphically for different fractional order involved in the problems.Keywords: non-linear fractional variational problems, Rayleigh-Ritz method, convergence analysis, error analysis
Procedia PDF Downloads 298612 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity
Authors: Tania Sharmin Khaleque, Mohammad Ferdows
Abstract:
The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.Keywords: free convection, heat generation, thermal diffusivity, variable viscosity
Procedia PDF Downloads 353611 Application All Digits Number Benford Law in Financial Statement
Authors: Teguh Sugiarto
Abstract:
Background: The research aims to explore if there is fraud in a financial statement, use the Act stated that Benford's distribution all digits must compare the number will follow the trend of lower number. Research methods: This research uses all the analysis number being in Benford's law. After receiving the results of the analysis of all the digits, the author makes a distinction between implementation using the scale above and below 5%, the rate of occurrence of difference. With the number which have differences in the range of 5%, then can do the follow-up and the detection of the onset of fraud against the financial statements. The findings: From the research that has been done can be drawn the conclusion that the average of all numbers appear in the financial statements, and compare the rates of occurrence of numbers according to the characteristics of Benford's law. About the existence of errors and fraud in the financial statements of PT medco Energy Tbk did not occur. Conclusions: The study concludes that Benford's law can serve as indicator tool in detecting the possibility of in financial statements to case studies of PT Medco Energy Tbk for the fiscal year 2000-2010.Keywords: Benford law, first digits, all digits number Benford law, financial statement
Procedia PDF Downloads 239610 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models
Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach
Abstract:
In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model
Procedia PDF Downloads 185609 Finding Data Envelopment Analysis Target Using the Multiple Objective Linear Programming Structure in Full Fuzzy Case
Authors: Raziyeh Shamsi
Abstract:
In this paper, we present a multiple objective linear programming (MOLP) problem in full fuzzy case and find Data Envelopment Analysis(DEA) targets. In the presented model, we are seeking the least inputs and the most outputs in the production possibility set (PPS) with the variable return to scale (VRS) assumption, so that the efficiency projection is obtained for all decision making units (DMUs). Then, we provide an algorithm for finding DEA targets interactively in the full fuzzy case, which solves the full fuzzy problem without defuzzification. Owing to the use of interactive methods, the targets obtained by our algorithm are more applicable, more realistic, and they are according to the wish of the decision maker. Finally, an application of the algorithm in 21 educational institutions is provided.Keywords: DEA, MOLP, full fuzzy, target
Procedia PDF Downloads 302608 Investigating the Efficiency of Stratified Double Median Ranked Set Sample for Estimating the Population Mean
Authors: Mahmoud I. Syam
Abstract:
Stratified double median ranked set sampling (SDMRSS) method is suggested for estimating the population mean. The SDMRSS is compared with the simple random sampling (SRS), stratified simple random sampling (SSRS), and stratified ranked set sampling (SRSS). It is shown that SDMRSS estimator is an unbiased of the population mean and more efficient than SRS, SSRS, and SRSS. Also, by SDMRSS, we can increase the efficiency of mean estimator for specific value of the sample size. SDMRSS is applied on real life examples, and the results of the example agreed the theoretical results.Keywords: efficiency, double ranked set sampling, median ranked set sampling, ranked set sampling, stratified
Procedia PDF Downloads 247607 Quantum Mechanism Approach for Non-Ruin Probability and Comparison of Path Integral Method and Stochastic Simulations
Authors: Ahmet Kaya
Abstract:
Quantum mechanism is one of the most important approaches to calculating non-ruin probability. We apply standard Dirac notation to model given Hamiltonians. By using the traditional method and eigenvector basis, non-ruin probability is found for several examples. Also, non-ruin probability is calculated for two different Hamiltonian by using the tensor product. Finally, the path integral method is applied to the examples and comparison is made for stochastic simulations and path integral calculation.Keywords: quantum physics, Hamiltonian system, path integral, tensor product, ruin probability
Procedia PDF Downloads 334606 Reading and Writing Memories in Artificial and Human Reasoning
Authors: Ian O'Loughlin
Abstract:
Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.Keywords: artificial reasoning, human memory, machine learning, neural networks
Procedia PDF Downloads 271605 Comparing Numerical Accuracy of Solutions of Ordinary Differential Equations (ODE) Using Taylor's Series Method, Euler's Method and Runge-Kutta (RK) Method
Authors: Palwinder Singh, Munish Sandhir, Tejinder Singh
Abstract:
The ordinary differential equations (ODE) represent a natural framework for mathematical modeling of many real-life situations in the field of engineering, control systems, physics, chemistry and astronomy etc. Such type of differential equations can be solved by analytical methods or by numerical methods. If the solution is calculated using analytical methods, it is done through calculus theories, and thus requires a longer time to solve. In this paper, we compare the numerical accuracy of the solutions given by the three main types of one-step initial value solvers: Taylor’s Series Method, Euler’s Method and Runge-Kutta Fourth Order Method (RK4). The comparison of accuracy is obtained through comparing the solutions of ordinary differential equation given by these three methods. Furthermore, to verify the accuracy; we compare these numerical solutions with the exact solutions.Keywords: Ordinary differential equations (ODE), Taylor’s Series Method, Euler’s Method, Runge-Kutta Fourth Order Method
Procedia PDF Downloads 358604 Cooperative Replenishment through Bidding
Authors: Behzad Hezarkhani, Greys Sosic
Abstract:
Collaborative purchasing and replenishment have proven to be beneficial in supply chain management. This talk addresses the situation where buyers, potentially in possession of private procurement channels, carry out cooperative purchasing by submitting their bids to a coordinator. The collaborative organization is faced with two basic decisions: (1) who will be allocated with the products, and (2) how much each party should pay. We discuss mechanisms that could achieve desirable outcomes in this settings with special attention to the strategic behavior of the buyers.Keywords: supply chain management, group purchasing organizations, game theory, mechanism design
Procedia PDF Downloads 342603 A Numerical Method for Diffusion and Cahn-Hilliard Equations on Evolving Spherical Surfaces
Authors: Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
In this paper, we present a simple effective numerical geometric method to estimate the divergence of a vector field over a curved surface. The conservation law is an important principle in physics and mathematics. However, many well-known numerical methods for solving diffusion equations do not obey conservation laws. Our presented method in this paper combines the divergence theorem with a generalized finite difference method and obeys the conservation law on discrete closed surfaces. We use the similar method to solve the Cahn-Hilliard equations on evolving spherical surfaces and observe stability results in our numerical simulations.Keywords: conservation laws, diffusion equations, Cahn-Hilliard equations, evolving surfaces
Procedia PDF Downloads 494602 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces
Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen
Abstract:
The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems
Procedia PDF Downloads 376601 Identification of Classes of Bilinear Time Series Models
Authors: Anthony Usoro
Abstract:
In this paper, two classes of bilinear time series model are obtained under certain conditions from the general bilinear autoregressive moving average model. Bilinear Autoregressive (BAR) and Bilinear Moving Average (BMA) Models have been identified. From the general bilinear model, BAR and BMA models have been proved to exist for q = Q = 0, => j = 0, and p = P = 0, => i = 0 respectively. These models are found useful in modelling most of the economic and financial data.Keywords: autoregressive model, bilinear autoregressive model, bilinear moving average model, moving average model
Procedia PDF Downloads 407600 The Establishment of RELAP5/SNAP Model for Kuosheng Nuclear Power Plant
Authors: C. Shih, J. R. Wang, H. C. Chang, S. W. Chen, S. C. Chiang, T. Y. Yu
Abstract:
After the measurement uncertainty recapture (MUR) power uprates, Kuosheng nuclear power plant (NPP) was uprated the power from 2894 MWt to 2943 MWt. For power upgrade, several codes (e.g., TRACE, RELAP5, etc.) were applied to assess the safety of Kuosheng NPP. Hence, the main work of this research is to establish a RELAP5/MOD3.3 model of Kuosheng NPP with SNAP interface. The establishment of RELAP5/SNAP model was referred to the FSAR, training documents, and TRACE model which has been developed and verified before. After completing the model establishment, the startup test scenarios would be applied to the RELAP5/SNAP model. With comparing the startup test data and TRACE analysis results, the applicability of RELAP5/SNAP model would be assessed.Keywords: RELAP5, TRACE, SNAP, BWR
Procedia PDF Downloads 429599 A Comparative Study of Additive and Nonparametric Regression Estimators and Variable Selection Procedures
Authors: Adriano Z. Zambom, Preethi Ravikumar
Abstract:
One of the biggest challenges in nonparametric regression is the curse of dimensionality. Additive models are known to overcome this problem by estimating only the individual additive effects of each covariate. However, if the model is misspecified, the accuracy of the estimator compared to the fully nonparametric one is unknown. In this work the efficiency of completely nonparametric regression estimators such as the Loess is compared to the estimators that assume additivity in several situations, including additive and non-additive regression scenarios. The comparison is done by computing the oracle mean square error of the estimators with regards to the true nonparametric regression function. Then, a backward elimination selection procedure based on the Akaike Information Criteria is proposed, which is computed from either the additive or the nonparametric model. Simulations show that if the additive model is misspecified, the percentage of time it fails to select important variables can be higher than that of the fully nonparametric approach. A dimension reduction step is included when nonparametric estimator cannot be computed due to the curse of dimensionality. Finally, the Boston housing dataset is analyzed using the proposed backward elimination procedure and the selected variables are identified.Keywords: additive model, nonparametric regression, variable selection, Akaike Information Criteria
Procedia PDF Downloads 265598 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species
Authors: Kamel Al-Khaled
Abstract:
Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species
Procedia PDF Downloads 375597 An A-Star Approach for the Quickest Path Problem with Time Windows
Authors: Christofas Stergianos, Jason Atkin, Herve Morvan
Abstract:
As air traffic increases, more airports are interested in utilizing optimization methods. Many processes happen in parallel at an airport, and complex models are needed in order to have a reliable solution that can be implemented for ground movement operations. The ground movement for aircraft in an airport, allocating a path to each aircraft to follow in order to reach their destination (e.g. runway or gate), is one process that could be optimized. The Quickest Path Problem with Time Windows (QPPTW) algorithm has been developed to provide a conflict-free routing of vehicles and has been applied to routing aircraft around an airport. It was subsequently modified to increase the accuracy for airport applications. These modifications take into consideration specific characteristics of the problem, such as: the pushback process, which considers the extra time that is needed for pushing back an aircraft and turning its engines on; stand holding where any waiting should be allocated to the stand; and runway sequencing, where the sequence of the aircraft that take off is optimized and has to be respected. QPPTW involves searching for the quickest path by expanding the search in all directions, similarly to Dijkstra’s algorithm. Finding a way to direct the expansion can potentially assist the search and achieve a better performance. We have further modified the QPPTW algorithm to use a heuristic approach in order to guide the search. This new algorithm is based on the A-star search method but estimates the remaining time (instead of distance) in order to assess how far the target is. It is important to consider the remaining time that it is needed to reach the target, so that delays that are caused by other aircraft can be part of the optimization method. All of the other characteristics are still considered and time windows are still used in order to route multiple aircraft rather than a single aircraft. In this way the quickest path is found for each aircraft while taking into account the movements of the previously routed aircraft. After running experiments using a week of real aircraft data from Zurich Airport, the new algorithm (A-star QPPTW) was found to route aircraft much more quickly, being especially fast in routing the departing aircraft where pushback delays are significant. On average A-star QPPTW could route a full day (755 to 837 aircraft movements) 56% faster than the original algorithm. In total the routing of a full week of aircraft took only 12 seconds with the new algorithm, 15 seconds faster than the original algorithm. For real time application, the algorithm needs to be very fast, and this speed increase will allow us to add additional features and complexity, allowing further integration with other processes in airports and leading to more optimized and environmentally friendly airports.Keywords: a-star search, airport operations, ground movement optimization, routing and scheduling
Procedia PDF Downloads 231