Abstracts | Agricultural and Biosystems Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2329

World Academy of Science, Engineering and Technology

[Agricultural and Biosystems Engineering]

Online ISSN : 1307-6892

2149 Medicinal and Aromatic Plants of Borcka (Artvin)

Authors: Özgür Emi̇nağaoğlu, Hayal Akyildirim Beğen, Şevval Sali̇oğlu

Abstract:

In this study, the plant used for purification and aromatic purposes by the public in Adagül, Akpınar, Alaca, Ambarlı, Arkaköy, Avcılar, Balcı, Civan, Demirciler, Düzköy, İbrikli, Kale, Kaynarca and Taraklı villages in Borcka (Artvin) district between 2020-2022. The purpose of the study, determining the surgical common and local names, regions, botanical features, used parts of plants, purpose of use, local usage intensive, and giving literature data. The research area is located on the A8 square according to Davis's grid system; its phytogeographic extensions are in the Holarctic regions, and the Euro-Siberian flora settlement is in the Colchic subsection of the Euxine region. In the research area, 71 personal questionnaires were applied. As a result of the surveys, it was determined that 93 plant species belonging to 44 families were used by the local people for purification and aromatic purposes. The families that contain the most taxa in the research area are, respectively, Rosaceae (15 taxa), Astericaeae (9 taxa), Lamiaceae (7 taxa), Crassulaceae (4 taxa). As a result of the survey studies, Plantago major L. is known by almost all participants. The most used plants were Allium scorodoprasum, Helichrysum arenarium, Alnus glutinosa subsp. barbata, Juglans regia, Tilia rubra subsp. caucasica, Picea orientalis, Urtica dioica. These plants are used in the treatment of many diseases. Some of these plants that grow in Borçka are used in different countries for the treatment of the same diseases.

Keywords: artvin, borçka, medicinal, aromatic, plant

Procedia PDF Downloads 33
2148 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye

Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu

Abstract:

DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.

Keywords: campanula, DNA barcoding, endemic, türkiye, artvin

Procedia PDF Downloads 36
2147 A Systematic Mapping of the Use of Information and Communication Technology (ICT)-Based Remote Agricultural Extension for Women Smallholders

Authors: Busiswa Madikazi

Abstract:

This systematic mapping study explores the underrepresentation of women's contributions to farming in the Global South within the development of Information and Communication Technologies (ICT)-based extension methods. Despite women farmers constituting 70% of the agricultural labour force, their productivity is hindered by various constraints, including illiteracy, household commitments, and limited access to credit and markets. A systematic mapping approach was employed with the aim of identifying evidence gaps in existing ICT extension for women farmers. The data collection protocol follows a structured approach, incorporating key criteria for inclusion, exclusion, search strategy, and coding and the PICO strategy (Population, Intervention, Comparator, and Outcome). The results yielded 119 articles that qualified for inclusion. The findings highlight that mobile phone apps (WhatsApp) and radio/television programming are the primary extension methods employed while integrating ICT with training, field visits, and demonstrations are underutilized. Notably, the study emphasizes the inadequate attention to critical issues such as food security, gender equality, and attracting youth to farming within ICT extension efforts. These findings indicate a significant policy and practice gap, neglecting community-driven approaches that cater to women's specific needs and enhance their agricultural production. Map highlights the importance of refocusing ICT extension efforts to address women farmers’ unique challenges, thereby contributing to their empowerment and improving agricultural practices.

Keywords: agricultural extension, ICT, women farmers, smallholders

Procedia PDF Downloads 33
2146 Deep Learning Based Polarimetric SAR Images Restoration

Authors: Hossein Aghababaei, Sergio Vitale, Giampaolo ferraioli

Abstract:

In the context of Synthetic Aperture Radar (SAR) data, polarization is an important source of information for Earth's surface monitoring . SAR Systems are often considered to transmit only one polarization. This constraint leads to either single or dual polarimetric SAR imaging modalities. Single polarimetric systems operate with a fixed single polarization of both transmitted and received electromagnetic (EM) waves, resulting in a single acquisition channel. Dual polarimetric systems, on the other hand, transmit in one fixed polarization and receive in two orthogonal polarizations, resulting in two acquisition channels. Dual polarimetric systems are obviously more informative than single polarimetric systems and are increasingly being used for a variety of remote sensing applications. In dual polarimetric systems, the choice of polarizations for the transmitter and the receiver is open. The choice of circular transmit polarization and coherent dual linear receive polarizations forms a special dual polarimetric system called hybrid polarimetry, which brings the properties of rotational invariance to geometrical orientations of features in the scene and optimizes the design of the radar in terms of reliability, mass, and power constraints. The complete characterization of target scattering, however, requires fully polarimetric data, which can be acquired with systems that transmit two orthogonal polarizations. This adds further complexity to data acquisition and shortens the coverage area or swath of fully polarimetric images compared to the swath of dual or hybrid polarimetric images. The search for solutions to augment dual polarimetric data to full polarimetric data will therefore take advantage of full characterization and exploitation of the backscattered field over a wider coverage with less system complexity. Several methods for reconstructing fully polarimetric images using hybrid polarimetric data can be found in the literature. Although the improvements achieved by the newly investigated and experimented reconstruction techniques are undeniable, the existing methods are, however, mostly based upon model assumptions (especially the assumption of reflectance symmetry), which may limit their reliability and applicability to vegetation and forest scenarios. To overcome the problems of these techniques, this paper proposes a new framework for reconstructing fully polarimetric information from hybrid polarimetric data. The framework uses Deep Learning solutions to augment hybrid polarimetric data without relying on model assumptions. A convolutional neural network (CNN) with a specific architecture and loss function is defined for this augmentation problem by focusing on different scattering properties of the polarimetric data. In particular, the method controls the CNN training process with respect to several characteristic features of polarimetric images defined by the combination of different terms in the cost or loss function. The proposed method is experimentally validated with real data sets and compared with a well-known and standard approach from the literature. From the experiments, the reconstruction performance of the proposed framework is superior to conventional reconstruction methods. The pseudo fully polarimetric data reconstructed by the proposed method also agree well with the actual fully polarimetric images acquired by radar systems, confirming the reliability and efficiency of the proposed method.

Keywords: SAR image, deep learning, convolutional neural network, deep neural network, SAR polarimetry

Procedia PDF Downloads 46
2145 Assessment of Environmental Impact for Rice Mills in Burdwan District: Special Emphasis on Groundwater, Surface Water, Soil, Vegetation and Human Health

Authors: Rajkumar Ghosh, Bhabani Prasad Mukhopadhay

Abstract:

Rice milling is an important activity in agricultural economy of India, particularly the Burdwan district. However, the environmental impact of rice mills is frequently underestimated. The environmental impact of rice mills in the Burdwan district is a major source of concern, given the importance of rice milling in the local economy and food supply. In the Burdwan district, more than fifty (50) rice mills are in operation. The goal of this study is to investigate the effects of rice mills on several environmental components, with a particular emphasis on groundwater, surface water, soil, and vegetation. The research comprises a thorough review of numerous rice mills located around the district, utilising both qualitative and quantitative approaches. Water samples taken from wells near rice mills will be tested for groundwater quality, with an emphasis on factors such as heavy metal pollution and pollutant concentrations. Monitoring rice mill discharge into neighbouring bodies of water and studying the potential impact on aquatic ecosystems will be part of surface water evaluations. Furthermore, soil samples from the surrounding areas will be taken to examine changes in soil characteristics, nutrient content, and potential contamination from milling waste disposal. Vegetation studies will be conducted to investigate the effects of emissions and effluents on plant health and biodiversity in the region. The findings will provide light on the extent of environmental degradation caused by rice mills in the Burdwan district, as well as valuable insight into the effects of such operations on water, soil, and vegetation. The findings will aid in the development of appropriate legislation and regulations to reduce negative environmental repercussions and promote sustainable practises in the rice milling business. In some cases, heavy metals have been related to health problems. Heavy metals (As, Cd, Cu, Pb, Cr, Hg) are linked to skin, lung, brain, kidney, liver, metabolic, spleen, cardiovascular, haematological, immunological, gastrointestinal, testes, pancreatic, metabolic, and bone problems. As a result, this study contributes to a better knowledge of industrial environmental impacts and establishes the framework for future studies aimed at developing a more ecologically balanced and resilient Burdwan district. The following recommendations are offered for reducing the rice mill's environmental impact: To keep untreated effluents out of bodies of water, adequate waste management systems must be established. Use environmentally friendly rice milling processes to reduce pollution. To avoid soil pollution, rice mill by-products should be used as fertiliser in a controlled and appropriate manner. Groundwater, surface water, soil, and vegetation are all regularly monitored in order to study and adapt to environmental changes. By adhering to these principles, the rice milling industry of Burdwan district may achieve long-term growth while lowering its environmental effect and safeguarding the environment for future generations.

Keywords: groundwater, environmental analysis, biodiversity, rice mill, waste management, diseases, industrial impact

Procedia PDF Downloads 56
2144 Assessing Carbon Stock and Sequestration of Reforestation Species on Old Mining Sites in Morocco Using the DNDC Model

Authors: Nabil Elkhatri, Mohamed Louay Metougui, Ngonidzashe Chirinda

Abstract:

Mining activities have left a legacy of degraded landscapes, prompting urgent efforts for ecological restoration. Reforestation holds promise as a potent tool to rehabilitate these old mining sites, with the potential to sequester carbon and contribute to climate change mitigation. This study focuses on evaluating the carbon stock and sequestration potential of reforestation species in the context of Morocco's mining areas, employing the DeNitrification-DeComposition (DNDC) model. The research is grounded in recognizing the need to connect theoretical models with practical implementation, ensuring that reforestation efforts are informed by accurate and context-specific data. Field data collection encompasses growth patterns, biomass accumulation, and carbon sequestration rates, establishing an empirical foundation for the study's analyses. By integrating the collected data with the DNDC model, the study aims to provide a comprehensive understanding of carbon dynamics within reforested ecosystems on old mining sites. The major findings reveal varying sequestration rates among different reforestation species, indicating the potential for species-specific optimization of reforestation strategies to enhance carbon capture. This research's significance lies in its potential to contribute to sustainable land management practices and climate change mitigation strategies. By quantifying the carbon stock and sequestration potential of reforestation species, the study serves as a valuable resource for policymakers, land managers, and practitioners involved in ecological restoration and carbon management. Ultimately, the study aligns with global objectives to rejuvenate degraded landscapes while addressing pressing climate challenges.

Keywords: carbon stock, carbon sequestration, DNDC model, ecological restoration, mining sites, Morocco, reforestation, sustainable land management.

Procedia PDF Downloads 33
2143 A Review of the Nutritional, Health and Medicinal Benefits of Selected Endangered Food Spice Crops in South Eastern Nigeria

Authors: Poly-Mbah C. P., Offor J. I., Onyeneke E. N., Poly-Mbah J. C.

Abstract:

Many food spice crops are being endangered into extinction in Nigeria because of climate change as well as deforestation occasioned by population pressure and urbanization and also due to neglect of research and agronomic attention. This review was aimed at identifying the nutritional and health benefits of these endangered aromatic food spice crops. The findings of this review will help to popularize their cultivation and increase research efforts made in the agronomy of these food spice species. Nine aromatic food spice crop species identified to be facing the danger of extinction include: Guinea pepper ( Piper guineensis), Utazi ( Gongronema latifolium), Hoary or Thai lemon basil ( Ocimum africanum), Mint basil ( Ocimum gratissimum), Whole country onions( Afrostyrax lepidophyllus), Jansa ( Cussonia bateri), Negro pepper ( Xylopia aethiopica), Ataiko or Orima (Afromomium Danielle), Aidan (Tetrapleura tetraptera). Findings from this review revealed that these species are capable of improving the nutrition and health of the rural dwellers but yet, are minimally cultivated. This paper also reviewed research made in the agronomy of these identified threatened food spice crops in the semi-urban Southeastern Nigeria environment and discovered that there is little research attention on them. The availability of these food spice crop species was discovered to come from collections made from nearby bushes and forests. This paper therefore recommends that agronomic packages such as pre-planting, planting and post-planting requirements be investigated and recommended in order to initiate and increase the cultivation of the selected endangered food spice crops as well as their productivity.

Keywords: review, endangered, food spice crops, South Eastern Nigeria

Procedia PDF Downloads 37
2142 Soil Properties and Crop Productivity of Kiln Sites in the Highlands of North-western Ethiopia

Authors: Hanamariam Mekonnen

Abstract:

Ethiopian farmers traditionally produce charcoal under several kilns on cultivated land: particularly in Kasiry micro-watershed Fagita Lekoma district of Northwestern Ethiopia. However, the effects of such soil heating and remnants of charcoal leftover on soils have not been adequately documented. Hence, this study tried to quantify the effects of such kiln sites on selected soil properties and wheat crop performance. Soils from four kiln sites were thus purposively sampled at depths of 0-20 cm, 20-40 cm and 40-60 cm and were compared with the respective soil layers of none-kiln sites from similar adjacent fields. While soil moisture content was sampled at kiln and none-kiln site in wet and dry seasons from each depth. In addition, a pot experiment was conducted using two sources of biochar (Acacia decurrens and Eucalyptus Camaldulensis) with four rates (0, 10, 20, and 40 t/ha) and compared with crops grown from soils of 1kiln sites without biochar application laid out in a CRD with three replications. The data were analyzed using SAS software Version 9.4.The result revealed notable variations of kiln site soils and along soil depth. The appreciable increased (p<0.05) soil pH (5.5 to 5.74), organic carbon (3.89 to 4.27%), TN (0.30 to 0.32%), CEC (32.59 to 35.23 cmolckg-1), Ca (6.44 to 7.9 cmolckg-1), Mg (4.48 to 5.46 cmolckg-1), and significantly (p<0.01) Av. P (30.25 to 46.4 ppm) and K (2.11 to 2.82 cmolckg-1) were recorded from the none-kiln to kiln soils, respectively. On the other hand, ex. acidity and aluminum, available Fe and Mn were reduced from 2.20 to 1.54, 1.95 to 1.31 cmolckg-1 and 57.46 to 41.40 and 5.65 to 3.86 ppm, respectively, from the control to the kiln. Soil texture was significantly affected by soil heating and along soil depth. The sand content was (p<0.05) varied between the value of 23% to 29% from none-kiln to kiln site, and clay content was (p<0.01) increased from 0-20 cm (32%) soil depth to 40-60 cm (43%) deeper soil. Significantly (p<0.05) higher Soil moisture content was recorded at none-kiln site (45.85%) compared to kiln (40.44%) in wet season, whereas in dry season, lower moisture content was revealed at kiln site (26%) compared to none-kiln (30.7%). As wet to dry season, soil moisture was decreased from 43% to 28% respectively. Bulk density (P<0.01) varied between 0.88 to 0.94 gcm-3 from control to kiln in dry season. Similarly, the value of soil pH (6.10), Av. P (58.12), exchangeable bases (Ca (9.83), Mg (6.19) and K (3.67)) were (p<0.01) higher at the 0-20 cm soil depth as compared to the deeper soils, the result of soil moisture (30 to 42%) and CEC (31 to 36 cmolckg-1) increased down the soil profile. After wheat harvest, soil pH, Av. P, CEC, and exchangeable bases (Mg, K and Na) were significantly higher in the kiln soil, while soil moisture and OC increased by the applied biochar of 20 and 40 ton/ha. High yield 2.28 gpot-1 (p<0.01) was recorded in kiln soil, growth parameters of wheat were significantly increased with increasing biochar rates.

Keywords: biochar, kasiry micro-watershed, kiln site, none-kiln site, soil properties

Procedia PDF Downloads 35
2141 Assessing Denitrification-Disintegration Model’s Efficacy in Simulating Greenhouse Gas Emissions, Crop Growth, Yield, and Soil Biochemical Processes in Moroccan Context

Authors: Mohamed Boullouz, Mohamed Louay Metougui

Abstract:

Accurate modeling of greenhouse gas (GHG) emissions, crop growth, soil productivity, and biochemical processes is crucial considering escalating global concerns about climate change and the urgent need to improve agricultural sustainability. The application of the denitrification-disintegration (DNDC) model in the context of Morocco's unique agro-climate is thoroughly investigated in this study. Our main research hypothesis is that the DNDC model offers an effective and powerful tool for precisely simulating a wide range of significant parameters, including greenhouse gas emissions, crop growth, yield potential, and complex soil biogeochemical processes, all consistent with the intricate features of environmental Moroccan agriculture. In order to verify these hypotheses, a vast amount of field data covering Morocco's various agricultural regions and encompassing a range of soil types, climatic factors, and crop varieties had to be gathered. These experimental data sets will serve as the foundation for careful model calibration and subsequent validation, ensuring the accuracy of simulation results. In conclusion, the prospective research findings add to the global conversation on climate-resilient agricultural practices while encouraging the promotion of sustainable agricultural models in Morocco. A policy architect's and an agricultural actor's ability to make informed decisions that not only advance food security but also environmental stability may be strengthened by the impending recognition of the DNDC model as a potent simulation tool tailored to Moroccan conditions.

Keywords: greenhouse gas emissions, DNDC model, sustainable agriculture, Moroccan cropping systems

Procedia PDF Downloads 34
2140 Root System Architecture Analysis of Sorghum Genotypes and Its Effect on Drought Adaptation

Authors: Hailemariam Solomon, Taye Tadesse, Daniel Nadew, Firezer Girma

Abstract:

Sorghum is an important crop in semi-arid regions and has shown resilience to drought stress. However, recurrent drought is affecting its productivity. Therefore, it is necessary to explore genes that contribute to drought stress adaptation to increase sorghum productivity. The aim of this study is to evaluate and determine the effect of root system traits, specifically root angle, on drought stress adaptation and grain yield performance in sorghum genotypes. A total of 428 sorghum genotypes from the Ethiopian breeding program were evaluated in three drought-stress environments. Field trials were conducted using a row-column design with three replications. Root system traits were phenotyped using a high-throughput phenotyping platform and analyzed using a row-column design with two replications. Data analysis was performed using R software and regression analysis. The study found significant variations in root system architecture among the sorghum genotypes. Non-stay-green genotypes had a grain yield ranging from 1.63 to 3.1 tons/ha, while stay-green genotypes had a grain yield ranging from 2.4 to 2.9 tons/ha. The analysis of root angle showed that non-stay-green genotypes had an angle ranging from 8.0 to 30.5 degrees, while stay-green genotypes had an angle ranging from 12.0 to 29.0 degrees. Improved varieties exhibited angles between 14.04 and 19.50 degrees. Positive and significant correlations were observed between leaf areas and shoot dry weight, as well as between leaf width and shoot dry weight. Negative correlations were observed between root angle and leaf area, as well as between root angle and root length. This research highlights the importance of root system architecture, particularly root angle traits, in enhancing grain yield production in drought-stressed conditions. It also establishes an association between root angle and grain yield traits for maximizing sorghum productivity.

Keywords: roor sysytem architecture, root angle, narrow root angle, wider root angle, drought

Procedia PDF Downloads 37
2139 Eco-Friendly Cultivation

Authors: Shah Rucksana Akhter Urme

Abstract:

Agriculture is the main source of food for human consumption and feeding the world huge population, the pressure of food supply is increasing day by day. Undoubtedly, quality strain, improved plantation, farming technology, synthetic fertilizer, readily available irrigation, insecticides and harvesting technology are the main factors those to meet up the huge demand of food consumption all over the world. However, depended on this limited resources and excess amount of consuming lands, water, fertilizers leads to the end of the resources and severe climate effects has been left for our future generation. Agriculture is the most responsible to global warming, emitting more greenhouse gases than all other vehicles largely from nitrous oxide released by from fertilized fields, and carbon dioxide from the cutting of rain forests to grow crops . Farming is the thirstiest user of our precious water supplies and a major polluter, as runoff from fertilizers disrupts fragile lakes, rivers, and coastal ecosystems across the globe which accelerates the loss of biodiversity, crucial habitat and a major driver of wildlife extinction. It is needless to say that we have to more concern on how we can save the nutrients of the soil, storage of the water and avoid excessive depends on synthetic fertilizer and insecticides. In this case, eco- friendly cultivation could be a potential alternative solution to minimize effects of agriculture in our environment. The objective of this review paper is about organic cultivation following in particular biotechnological process focused on bio-fertilizer and bio-pesticides. Intense practice of chemical pesticides, insecticides has severe effect on both in human life and biodiversity. This cultivation process introduces farmer an alternative way which is nonhazardous, cost effective and ecofriendly. Organic fertilizer such as tea residue, ashes might be the best alternative to synthetic fertilizer those play important role in increasing soil nutrient and fertility. Ashes contain different essential and non-essential mineral contents that are required for plant growth. Organic pesticide such as neem spray is beneficial for crop as it is toxic for pest and insects. Recycled and composted crop wastes and animal manures, crop rotation, green manures and legumes etc. are suitable for soil fertility which is free from hazardous chemicals practice. Finally water hyacinth and algae are potential source of nutrients even alternative to soil for cultivation along with storage of water for continuous supply. Inorganic practice of agriculture, consuming fruits and vegetables becomes a threat for both human life and eco-system and synthetic fertilizer and pesticides are responsible for it. Farmers that practice eco-friendly farming have to implement steps to protect the environment, particularly by severely limiting the use of pesticides and avoiding the use of synthetic chemical fertilizers, which are necessary for organic systems to experience reduced environmental harm and health risk.

Keywords: organic farming, biopesticides, organic nutrients, water storage, global warming

Procedia PDF Downloads 34
2138 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 37
2137 Effects of Carbon Dioxide on the Organoleptic Properties of Hazelnut

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches for postharvest. Hazelnut has a considerable share in the annual exports of Iran. In the present study, hazelnut was studied after being exposed to different CO2 pressures (0.1-0.5bar) within 24 hours. Changes in organoleptic properties (colour, firmness, aroma, crispness, and overall acceptability) during fumigation were studied. The results showed that the sensory evaluation showed that carbon dioxide had no effect on the qualitative characteristics of hazelnut.

Keywords: carbon dioxide, hazelnut, qualitative characteristics, organoleptic

Procedia PDF Downloads 48
2136 Effects of Carbon Dioxide on the Sensory of Pumpkin seed and Its Toxicity Against Oryzaephilus mercator

Authors: Reza Sadeghi

Abstract:

Carbon dioxide treatment is one of the new methods for storage pest control. It can be used to replace chemical approaches. In the present study, the mortalities of Oryzaephilus mercator as the key pest of stored products, especially nuts, were studied after being exposed to different CO2 pressures (0.1, 0.2, 0.3, 0.4 and 0.5 bar) within 24 hours. The mortality percentages of O. mercator increased with an increase in CO2 pressure. The results obtained from experiments on the qualitative characteristics of the studied dates through the sensory test revealed that CO2 pressures did not affect their aroma, color, crispness, firmness, and overall acceptance. Therefore, it could be concluded that the atmospheric CO2 gas provided a cost-effective and environmentally friendly method for controlling the insect pests of pumpkin seed, besides preserving their sensory and quality properties.

Keywords: carbon dioxide, control, seed, qualitative characteristics

Procedia PDF Downloads 72
2135 Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique

Authors: Reza Sadeghi

Abstract:

In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants.

Keywords: colorimetric assay, microwave heating, Oryzaephilus mercator, mortality

Procedia PDF Downloads 50
2134 Wheat Yield and Yield Components under Raised Bed Planting System

Authors: Hamidreza Miri, Farahnaz Momtazi

Abstract:

Wheat is one of the most important crops in Fars province, and because of water shortage, there is a great emphasis on its water use efficiency in the production field. A field experiment was conducted in 2021 and 2022 in order to evaluate wheat yield and its components in raised planting system in Arsanjan, Fars province. The experiment was conducted as a split plot with three irrigation treatments (irrigation equal to evapotranspiration, 80% of evapotranspiration irrigation (moderate drought stress), and 60% of evapotranspiration irrigation (severe drought stress)) as the main plot and three planting methods (conventional flat planting, 60 cm raised bed planting and 120 cm raised bed planting) as a subplot. The results indicated that drought stress significantly decreased traits such as plant height, grain yield, ear number, seed number, and biological yield while increasing seed protein. Raised bed planting significantly increased the traits in comparison with conventional flat planting. So that plating with a 120 cm raised bed increased grain yield by 22.1% and 25.9% in the first and second years, respectively. This increase was 17% for biological, 75 for ear number, and 21% for seed number. Planting in raised bed system reduced the adverse effect of drought stress on wheat traits. In conclusion, based on the observed results planting in raised bed system can be adopted as an appropriate planting pattern for improving yield and water productivity in experimental regions and similar climates.

Keywords: wheat, raised bed planting, drought stress, yield, water use

Procedia PDF Downloads 34
2133 Establishment of Gene Pools for Yield Within the Ghanaian Sweetpotato Parental Germplasm

Authors: John Saaka

Abstract:

The increasing world population poses a threat to food security. To meet current and future food demands, sweetpotato stand a good chance because of its recent food security roles. Concerted efforts are needed for both regional and local level varietal development. Heterosis exploiting breeding scheme (HEBS) is one of the options used to improve yield in some crop species and could be a good approach for sweetpotato improvement in Ghana by establishing heterotic gene pools within a population. To achieve this, 22 parental lines were collected from different sources and put in a full diallel arrangement. A total of 149 families, 20 individual cuttings per family, were taken to the field, including ‘checks’ and parental lines for experimentation in a 1m X 0.3m planting order according to the Westcott design. Results from this study led to the characterization of the selected parents into three main heterotic gene pools based on their suitability for use as male, female or both, respectively. This study serves as a baseline for further characterization of the rest of the germplasm in the Ghanaian sweetpotato breeding program.

Keywords: sweetpotato, heterosis, germplasm, food security

Procedia PDF Downloads 28
2132 Calibration and Validation of the Aquacrop Model for Simulating Growth and Yield of Rain-fed Sesame (Sesamum indicum L.) Under Different Soil Fertility Levels in the Semi-arid Areas of Tigray

Authors: Abadi Berhane, Walelign Worku, Berhanu Abrha, Gebre Hadgu, Tigray

Abstract:

Sesame is an important oilseed crop in Ethiopia; which is the second most exported agricultural commodity next to coffee. However, there is poor soil fertility management and a research-led farming system for the crop. The AquaCrop model was applied as a decision-support tool; which performs a semi-quantitative approach to simulate the yield of crops under different soil fertility levels. The objective of this experiment was to calibrate and validated the AquaCrop model for simulating the growth and yield of sesame under different nitrogen fertilizer levels and to test the performance of the model as a decision-support tool for improved sesame cultivation in the study area. The experiment was laid out as a randomized complete block design (RCBD) in a factorial arrangement in the 2016, 2017, and 2018 main cropping seasons. In this experiment, four nitrogen fertilizer rates; 0, 23, 46, and 69 Kg/ha nitrogen, and three improved varieties (Setit-1, Setit-2, and Humera-1). In the meantime, growth, yield, and yield components of sesame were collected from each treatment. Coefficient of determination (R2), Root mean square error (RMSE), Normalized root mean square error (N-RMSE), Model efficiency (E), and Degree of agreement (D) were used to test the performance of the model. The results indicated that the AquaCrop model successfully simulated soil water content with R2 varying from 0.92 to 0.98, RMSE 6.5 to 13.9 mm, E 0.78 to 0.94, and D 0.95 to 0.99; and the corresponding values for AB also varied from 0.92 to 0.98, 0.33 to 0.54 tons/ha, 0.74 to 0.93, and 0.9 to 0.98, respectively. The results on the canopy cover of sesame also showed that the model acceptably simulated canopy cover with R2 varying from 0.95 to 0.99, and a RMSE of 5.3 to 8.6%. The AquaCrop model was appropriately calibrated to simulate soil water content, canopy cover, aboveground biomass, and sesame yield; the results indicated that the model adequately simulated the growth and yield of sesame under the different nitrogen fertilizer levels. The AquaCrop model might be an important tool for improved soil fertility management and yield enhancement strategies of sesame. Hence, the model might be applied as a decision-support tool in soil fertility management in sesame production.

Keywords: aquacrop model, sesame, normalized water productivity, nitrogen fertilizer

Procedia PDF Downloads 32
2131 Impact of Improved Beehive on Income of Rural Households: Evidence from Bugina District of Northern Ethiopia

Authors: Wondmnew Derebe

Abstract:

Increased adoption of modern beehives improves the livelihood of smallholder farmers whose income largely depends on mixed crop-livestock farming. Improved beehives have been disseminated to farmers in many parts of Ethiopia. However, its impact on income is less investigated. Thus, this study estimates how adopting improved beehives impacts rural households' income. Survey data were collected from 350 randomly selected households' and analyzed using an endogenous switching regression model. The result revealed that the adoption of improved beehives is associated with a higher annual income. On average, improved beehive adopters earned about 6,077 (ETB) more money than their counterparts. However, the impact of adoption would have been larger for actual non-adopters, as reflected in the negative transitional heterogeneity effect of 1792 (ETB). The result also indicated that the decision to adopt or not to adopt improved beehives was subjected to individual self-selection. Improved beehive adoption can increase farmers' income and can be used as an alternative poverty reduction strategy.

Keywords: impact, adoption, endogenous switching regression, income, improved

Procedia PDF Downloads 39
2130 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation

Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park

Abstract:

In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.

Keywords: aerial image, image process, machine vision, open field smart farm, segmentation

Procedia PDF Downloads 45
2129 Bio–efficacy of Selected Plant extracts and Cypermethrin on Growth and Yield of Cowpea (Vigna unguiculata L.).

Authors: Akanji Kayode Ayanwusi., Akanji Elizabeth Nike, Bidmos Fuad Adetunji, Oladapo Olufemi Stephen

Abstract:

This experiment was conducted in Igboora, southwest Nigeria during the year 2022 planting season to determine the bio-efficacy of plant extracts (Jatropha curcas and Petiveria alliacea) and synthetic (Cypermethrin) insecticides against the insect pest of cowpea (Vigna unguiculata L.) and to determine its effect on the growth and yield of cowpea in the study area. Cowpea is one of the most important food and forage legumes in the semi-arid tropics. It is grown in 45 countries worldwide, including parts of Africa, Asia, Southern Europe, the Southern United States, and Central and South America. Cowpea production is considered too risky an enterprise by many growers because of its numerous pest problems. The treatments for the experiment consisted of two aqueous plant extracts (J.curcas and P. alliacea) at 50 /0 w/v and Cypermethrin 400 EC replicated three times including control in a randomized complete block design. Each plot measured 2.0 m by 2.0 m with 1.0 m inter-spaced per adjacent plot. The results from the study showed that different insect pests attack cowpea at different stages of growth. The insects observed were Bemisa tabaci, Callosobruchus maculatus, Megalurothrips sjostedti, and Maruca vitrata. High yields were obtained from plots treated with P. alliacea and synthetic insecticide (cypermethrin). J. curcas also produced optimum yield but lower than P. alliacea also P. alliacea treated plots had the least damaged pods while the untreated plots had the highest damaged pods, the plants extracts exhibited high insecticidal activities in this study, therefore P. alliacea leaves formulated as an insecticide is recommended for the control of insect pests of cowpea in the study area.

Keywords: plant extracts, yield, cypermethrin., cowpea

Procedia PDF Downloads 37
2128 Assessment of Soil Quality Indicators in Rice Soils Under Rainfed Ecosystem

Authors: R. Kaleeswari

Abstract:

An investigation was carried out to assess the soil biological quality parameters in rice soils under rainfed and to compare soil quality indexing methods viz., Principal component analysis, Minimum data set and Indicator scoring method and to develop soil quality indices for formulating soil and crop management strategies.Soil samples were collected and analyzed for soil biological properties by adopting standard procedure. Biological indicators were determined for soil quality assessment, viz., microbial biomass carbon and nitrogen (MBC and MBN), potentially mineralizable nitrogen (PMN) and soil respiration and dehydrogenease activity. Among the methods of rice cultivation, Organic nutrition, Integrated Nutrient Management (INM) and System of Rice Intensification (SRI ), rice cultivation registered higher values of MBC, MBN and PMN. Mechanical and conventional rice cultivation registered lower values of biological quality indicators. Organic nutrient management and INM enhanced the soil respiration rate. SRI and aerobic rice cultivation methods increased the rate of soil respiration, while conventional and mechanical rice farming lowered the soil respiration rate. Dehydrogenase activity (DHA) was registered to be higher in soils under organic nutrition and Integrated Nutrient Management INM. System of Rice Intensification SRI and aerobic rice cultivation enhanced the DHA; while conventional and mechanical rice cultivation methods reduced DHA. The microbial biomass carbon (MBC) of the rice soils varied from 65 to 244 mg kg-1. Among the nutrient management practices, INM registered the highest available microbial biomass carbon of 285 mg kg-1.Potentially mineralizable N content of the rice soils varied from 20.3 to 56.8 mg kg-1. Aerobic rice farming registered the highest potentially mineralizable N of 78.9 mg kg-1..The soil respiration rate of the rice soils varied from 60 to 125 µgCO2 g-1. Nutrient management practices ofINM practice registered the highest. soil respiration rate of 129 µgCO2 g-1.The dehydrogenase activity of the rice soils varied from 38.3 to 135.3µgTPFg-1 day-1. SRI method of rice cultivation registered the highest dehydrogenase activity of 160.2 µgTPFg-1 day-1. Soil variables from each PC were considered for minimum soil data set (MDS). Principal component analysis (PCA) was used to select the representative soil quality indicators. In intensive rice cultivating regions, soil quality indicators were selected based on factor loading value and contribution percentage value using principal component analysis (PCA).Variables having significant difference within production systems were used for the preparation of minimum data set (MDS).

Keywords: soil quality, rice, biological properties, PCA analysis

Procedia PDF Downloads 64
2127 Utilization of Two Kind of Recycling Greywater in Irrigation of Syngonium SP. Plants Grown Under Different Water Regime

Authors: Sami Ali Metwally, Bedour Helmy Abou-Leila, Hussien I.Abdel-Shafy

Abstract:

The work was carried out at the greenhouse of National Research Centre, Pot experiment was carried out during of 2020 and 2021 seasons aimed to study the effect of two types of water (two recycling gray water treatments((SMR (Sequencing Batch Reactor) and MBR(Membrane Biology Reactor) and three watering intervals 15, 20 and 25 days on Syangonium plants growth. Examination of data cleared that, (MBR) recorded increase in vegetative growth parameters, osmotic pressure, transpiration rate chlorophyll a,b,carotenoids and carbohydrate)in compared with SBR.As for water, intervalsthe highest values of most growth parameters were obtained from plants irrigated with after (20 days) compared with other treatments.15 days irrigation intervals recorded significantly increased in osmotic pressure, transpiration rate and photosynthetic pigments, while carbohydrate values recorded decreased. Interaction between water type and water intervals(SBR) recorded the highest values of most growth parameters by irrigation after 20 days. While the treatment (MBR)and irrigated after 25 days showed the highest values on leaf area and leaves fresh weight compared with other treatments.

Keywords: grey water, water intervals, Syngonium plant, recycling water, vegetative growth

Procedia PDF Downloads 74
2126 Evaluation of the Most Effective Insecticides against the Spodoptera Frugiperda, on the Maize Production

Authors: Ahmed Ali Hassan

Abstract:

In 2016, the Fall Armyworm (FAW) was first discovered in Africa. FAW is abundantly present in Somalia and seriously harms the maize crop. This investigation examined the impact on maize productivity of three different pesticides used to combat the autumn armyworm, Spodoptera frugiperda (Noctuidae: Lepidoptera). During the 2020–2021 growing season, three insecticides (Malathion 57 EC, Ampligo150 ZC, and Carbryle 85 WP) were evaluated at field demonstration plots. Our result showed that, significant mortality of S. frugiperda was observed on the treatment plot treated with Amplico. Ampligo caused over 90% larval mortality after application. Malathion had moderate activity, causing 53.733% mortality after application, while Carbaryl was less effective, causing 36.367% mortality after application. Consequently, the current finding shows that the three selected insecticides reduced the damage and infestation level of S. frugiperda in the maize field conditions and the most effective treatment were Amplico.

Keywords: pesticides, maize fall army worm, insecticides, mortality, S. frugiperda

Procedia PDF Downloads 35
2125 Soil Water Retention and Van Genuchten Parameters following Tillage and Manure Effects

Authors: Shahin Farajifar, Azadeh Safadoust, Ali Akbar Mahboubi

Abstract:

A study was conducted to evaluate hydraulic properties of a sandy loam soil and corn (Zea mays L.) crop production under a short-term tillage and manure combinations field experiment carried out in west of Iran. Treatments included composted cattle manure application rates [0, 30, and 60 Mg (dry weight) ha-1] and tillage systems [no-tillage (NT), chisel plowing (CP), and moldboard plowing (MP)] arranged in a split-plot design. Soil water characteristic curve (SWCC) and saturated hydraulic conductivity (Ks) were significantly affected by manure and tillage treatments. At any matric suction, the soil water content was in the order of MP>CP>NT. At all matric suctions, the amount of water retained by the soil increased as manure application rate increased (i.e. 60>30>0 Mg ha-1). Similar to the tillage effects, at high suctions the differences of water retained due to manure addition were less than that at low suctions. The change of SWCC from tillage methods and manure applications may attribute to the change of pore size and aggregate size distributions. Soil Ks was in the order of CP>MP>NT for the first two layers and in the order of MP>CP and NT for the deeper soil layer. The Ks also increased with increasing rates of manure application (i.e. 60>30>0 Mg ha-1). This was due to the increase in the total pore size and continuity.

Keywords: corn, manuure, saturated hydraulic conductivity, soil water characteristic curve, tillage

Procedia PDF Downloads 44
2124 Recommendation Systems for Cereal Cultivation using Advanced Casual Inference Modeling

Authors: Md Yeasin, Ranjit Kumar Paul

Abstract:

In recent years, recommendation systems have become indispensable tools for agricultural system. The accurate and timely recommendations can significantly impact crop yield and overall productivity. Causal inference modeling aims to establish cause-and-effect relationships by identifying the impact of variables or factors on outcomes, enabling more accurate and reliable recommendations. New advancements in causal inference models have been found in the literature. With the advent of the modern era, deep learning and machine learning models have emerged as efficient tools for modeling. This study proposed an innovative approach to enhance recommendation systems-based machine learning based casual inference model. By considering the causal effect and opportunity cost of covariates, the proposed system can provide more reliable and actionable recommendations for cereal farmers. To validate the effectiveness of the proposed approach, experiments are conducted using cereal cultivation data of eastern India. Comparative evaluations are performed against existing correlation-based recommendation systems, demonstrating the superiority of the advanced causal inference modeling approach in terms of recommendation accuracy and impact on crop yield. Overall, it empowers farmers with personalized recommendations tailored to their specific circumstances, leading to optimized decision-making and increased crop productivity.

Keywords: agriculture, casual inference, machine learning, recommendation system

Procedia PDF Downloads 39
2123 Direct Organogenesis of Begonia Rex cv. DS-EYWA, An Unique Rare Cultivar, via Thin Cell Layering (TCL) Technique

Authors: Mahboubeh Davoudi Pahnekolayi

Abstract:

Begonia rex cv. DS-EYWA is a rare, unique cultivar of begonia rex with curly colorful leaves. Optimization of an in vitro efficient regeneration protocol by focusing on transverse Thin Cell Layer (tTCL) petiole explants for high-scale production of such a beautiful cultivar was considered as our main purpose in this experiment. Thus, various concentrations of Plant Growth Regulators (PGRs) including 6-Benzylaminopurine (BAP), Thidiazuron (TDY), and –Naphthaleneacetic Acid (NAA), were selected in a Completely Randomized Design (CRD) to establish and optimize the direct organogenesis efficiency of this cultivar. Cultivation of 1 mm tTCL petiole explants in noted treatments showed that 1.5 mgl-1 BAP + 0.5 mgl-1 NAA can induce the highest number of direct regenerated shoots and lower concentration of BAP (0.5 mgl-1) can be suggested for shoot elongation before rooting stage. Elongated shoots were successfully rooted in MS free basal medium and acclimatized in 1:1 peat moss: perlite sterilized pot mixture.

Keywords: begonia rare cultivar, direct organogenesis, explant type, regeneration, thin cell layering (TCL)

Procedia PDF Downloads 37
2122 Investigation of Clubroot Disease Occurrence under Chemical and Organic Soil Environment

Authors: Zakirul Islam, Yugo Kumokawa, Quoc Thinh Tran, Motoki Kubo

Abstract:

Clubroot is a disease of cruciferous plant caused by soil born pathogen Plasmodiophora brassicae and can significantly limit the production through rapid spreading. The present study was designed to investigate the effect of cultivation practices (chemical and organic soils) on clubroot disease development in Brassica rapa. Disease index and root bacterial composition were investigated for both chemical and organic soils. The bacterial biomass and diversity in organic soil were higher than those in chemical soil. Disease severity was distinct for two different cultivation methods. The number of endophytic bacteria decreased in the infected root for both soils. The increased number of endophytic bacterial number led to reduce the proliferation of pathogen spore inside the root and thus reduced the disease severity in organic plants.

Keywords: clubroot disease, bacterial biomass, root infection, disease index, chemical cultivation, organic cultivation

Procedia PDF Downloads 45
2121 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 40
2120 Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)

Authors: Mala Tankam Carine, Kekeunou Sévilor, Nukenine Elias

Abstract:

Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed.

Keywords: diatomaceous earth, cowpea, callosobruchus maculatus, securidaca longepedunculata, combined action, co-toxicity coefficient

Procedia PDF Downloads 42