Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31464
Selection of Saccharomyces cerevisiae Strains Tolerant to Lead and Cadmium Toxicity

Authors: Nadia R. A. Nassar, Yehia A. Heikal, Mahmoud A. M. Abou Donia, Mohamed Fadel, Gomaa N. Abdel-Rahman


The aim of this study was to select the best strains of Saccharomyces cerevisiae able to resist lead and cadmium. Ten strains were screened on the basis of their resistance at different concentrations of 0, 2, 4, 8, 12, 16, 20 and 24 ppm for Pb and 0, 0.5, 1, 2, 4, 6, 8 and 10 ppm for Cd. The properties of baker's yeast quality were decreased by the increase of Pb or Cd in growth medium. The slope values of yield, total viable cells and gassing power of produced baker's yeast were investigated as an indicator of metal resistant. In addition, concentrations of Pb and Cd in produced baker's yeast were determined. The strain of S. cerevisiae FH-620 had the highest resistance against Pb and Cd and had the minimum levels of both two investigated metals in produced baker's yeast.

Keywords: Cadmium, lead, S. cerevisiae, tolerant.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2170


[1] W. Damtew. Studies on the development of baker’s yeast using cane molasses. M.Sc. Thesis, Fac. Technol., Addis Ababa Univ., Addis Ababa, 2008, 189 p.
[2] P. Iatskovskaia, G. I. Solomko, I. V. Kononko and V. K. Ianchevskii. Chemical composition of protein concentrate from Saccharomyces and its effect on immunologic response. Vopr pitan., Jan-Feb., 1992 (1) pp. 63-67.
[3] L. V. Curtin. Molasses-General Considerations. In: Molasses in Animal Nutrition (Ed. Curtin, L. V.), National Feed Ingredients Association, West Des Moines, USA, 1983, pp. 211-235.
[4] H. Togrul and N. Arslan. Mathematical model for prediction of apparent viscosity of molasses. Journal of Food Engineering, 2004, vol. 62 pp. 281–289.
[5] G. N. Abdel-Rahman. Effect of some heavy metals in molasses medium on the produced baker's yeast properties. M.Sc. Thesis, Food Technology Dep. Fac. Agric., Cairo Univ., Egypt, 2010, 171 p.
[6] I. S. Ross. Some effects of heavy metals on fungal cells. Trans. Br. Mycol. Soc., 1975, vol. 64 pp. 175-193.
[7] G. M. Gadd. Interactions of fungi with toxic metals. New Phytol., 1993, vol. 124 pp. 25-60.
[8] E. V. Soares, K. Hebbelinck and H. M. V. M. Soares. Toxic effects caused by heavy metals in the yeast Saccharomyces cerevisiae: a comparative study. Can J. Microbiol., 2003, vol. 49 pp. 336-343.
[9] P. Skountzou, M. Soupioni, A. Bekatorou, M. Kanellaki, A. A. Koutinas, R. Marchant and I. M. Banat. Lead (II) uptake during baker’s yeast production by aerobic fermentation of molasses. Process Biochemistry, 2003, vol. 38 pp. 1479-1482.
[10] V. Brandolini, P. Tedeschi, A. Capece, A. Maietti, D. Mazzotta, G. Salzano, A. Paparella and P. Romano. Saccharomyces cerevisiae wine strains differing in copper resistance exhibit different capability to reduce copper content in wine. World Journal of Microbiology & Biotechnology, 2002, vol. 18 pp. 499–503.
[11] C. Li, Y. Xu, W. Jiang, X. Dong, D. Wang and B. Liu. Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae. Bioresource Technology, 2013, vol. 143 pp. 46–52.
[12] Egyptian Standard. Egyptian Standard of yeast Part 2: methods of analysis and testing for yeast. Egyptian Organization for Standardization and Quality Control, E.S. 191/2000.
[13] M. L. Suihko and V. Mfikinen. Candida krusei in baker's yeast production. European J Appl Microbiol Biotechnol., 1981, vol. 13 pp. 113-116.
[14] SAS: Statistical Analysis System, SAS / STAT User's Guide. Release 6.03 Edn. SAS Institute, Cary, NC, 1028 PP., 1999.
[15] P. D. B. Adamis, D. S. Gomes, M. L. C. C. Pinto, A. D. Panek and E. C. A. Eleutherio. The role of glutathione transferases in cadmium stress. Toxicology Letters, 2004, vol. 154 pp. 81–88.
[16] M. Mapolelo, N. Torto and B. Prior. Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments. Talanta, 2005, vol. 65 pp. 930–937.
[17] D. S. Gomes, L. C. Fragoso, C. J. Riger, A. D. Panek and E. C. A. Eleutherio. Regulation of cadmium uptake by Saccharomyces cerevisiae. Biochimica et Biophysica Acta, 2002, vol. 1573 pp. 21- 25.
[18] M. Schmitt, G. Gellert, J. Ludwig and H. L. Frate. Phenotypic yeast growth analysis for chronic toxicity testing. Ecotoxicology and Environmental Safety, 2004, vol. 59 pp. 142–150.
[19] S. Vinopal, T. Ruml and P. Kotrba. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. International Biodeterioration and Biodegradation, 2007, vol. 60 pp. 96-102.
[20] F. Ghorbani, H. Younesi, S. M. Ghasempouri, A. A. Zinatizadeh, M. Amini and A. Daneshi. Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem. Eng. J., 2008, vol. 145 pp. 267-275.
[21] F. Di Caprio, P. Altimari, D. Uccelletti and F. Pagnanelli. Mechanistic modelling of copper biosorption by wild type and engineered Saccharomyces cerevisiae biomasses. Chemical Engineering Journal, 2014, vol. 244 pp. 561-568.
[22] W. Jiang, Y. Xu, C. Li, X. Lv and D. Wang. Effect of inorganic salts on the growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii cultured under Cd2+ stress. Bioresour. Technol., 2013, vol. 128 pp. 831- 834.
[23] I. Lefevre, G. Marchal, P. Meerts, E. Correal and S. Lutts. Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environ. Exp. Bot, 2009, vol. 65 pp. 142- 152.
[24] S. A. H. Munoz, K. Wrobel, G. J. F. Corona and K. Wrobel. The protective effect of selenium inorganic forms against cadmium and silver toxicity in mycelia of Pleurotus ostreatus. Mycol. Res., 2007, vol. 111 pp. 626-632.
[25] M. Strouhal, R. Kizek, J. Vacek, L. Trnkova and M. Nemec. Electrochemical study of heavy metals and metallothionein in yeast Yarrowia lipolytica. Bioelectrochemistry, 2003, vol. 60 pp. 29-36.