Search results for: higher-order SVD (HOSVD)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: higher-order SVD (HOSVD)

5 An Improved Algorithm for Calculation of the Third-order Orthogonal Tensor Product Expansion by Using Singular Value Decomposition

Authors: Chiharu Okuma, Naoki Yamamoto, Jun Murakami

Abstract:

As a method of expanding a higher-order tensor data to tensor products of vectors we have proposed the Third-order Orthogonal Tensor Product Expansion (3OTPE) that did similar expansion as Higher-Order Singular Value Decomposition (HOSVD). In this paper we provide a computation algorithm to improve our previous method, in which SVD is applied to the matrix that constituted by the contraction of original tensor data and one of the expansion vector obtained. The residual of the improved method is smaller than the previous method, truncating the expanding tensor products to the same number of terms. Moreover, the residual is smaller than HOSVD when applying to color image data. It is able to be confirmed that the computing time of improved method is the same as the previous method and considerably better than HOSVD.

Keywords: Singular value decomposition (SVD), higher-orderSVD (HOSVD), outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
4 Comparison between Higher-Order SVD and Third-order Orthogonal Tensor Product Expansion

Authors: Chiharu Okuma, Jun Murakami, Naoki Yamamoto

Abstract:

In digital signal processing it is important to approximate multi-dimensional data by the method called rank reduction, in which we reduce the rank of multi-dimensional data from higher to lower. For 2-dimennsional data, singular value decomposition (SVD) is one of the most known rank reduction techniques. Additional, outer product expansion expanded from SVD was proposed and implemented for multi-dimensional data, which has been widely applied to image processing and pattern recognition. However, the multi-dimensional outer product expansion has behavior of great computation complex and has not orthogonally between the expansion terms. Therefore we have proposed an alterative method, Third-order Orthogonal Tensor Product Expansion short for 3-OTPE. 3-OTPE uses the power method instead of nonlinear optimization method for decreasing at computing time. At the same time the group of B. D. Lathauwer proposed Higher-Order SVD (HOSVD) that is also developed with SVD extensions for multi-dimensional data. 3-OTPE and HOSVD are similarly on the rank reduction of multi-dimensional data. Using these two methods we can obtain computation results respectively, some ones are the same while some ones are slight different. In this paper, we compare 3-OTPE to HOSVD in accuracy of calculation and computing time of resolution, and clarify the difference between these two methods.

Keywords: Singular value decomposition (SVD), higher-order SVD (HOSVD), higher-order tensor, outer product expansion, power method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
3 Application of Multi-Dimensional Principal Component Analysis to Medical Data

Authors: Naoki Yamamoto, Jun Murakami, Chiharu Okuma, Yutaro Shigeto, Satoko Saito, Takashi Izumi, Nozomi Hayashida

Abstract:

Multi-dimensional principal component analysis (PCA) is the extension of the PCA, which is used widely as the dimensionality reduction technique in multivariate data analysis, to handle multi-dimensional data. To calculate the PCA the singular value decomposition (SVD) is commonly employed by the reason of its numerical stability. The multi-dimensional PCA can be calculated by using the higher-order SVD (HOSVD), which is proposed by Lathauwer et al., similarly with the case of ordinary PCA. In this paper, we apply the multi-dimensional PCA to the multi-dimensional medical data including the functional independence measure (FIM) score, and describe the results of experimental analysis.

Keywords: multi-dimensional principal component analysis, higher-order SVD (HOSVD), functional independence measure (FIM), medical data, tensor decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
2 The Survey of the Buckling Effect of Laminated Plate under the Thermal Load using Complex Finite Strip Method

Authors: A.R.Nezamabadi, M.Mansouri Gavari, S.Mansouri, M.Mansouri Gavari

Abstract:

This article considers the positional buckling of composite thick plates under thermal loading . For this purpose , the complex finite strip method is used . In analysis of complex finite strip, harmonic complex function in longitudinal direction , cubic functions in transversal direction and parabola distribution of transverse shear strain in thickness of thick plate based on higherorder shear deformation theory are used . In given examples , the effect of angles of stratification , number of layers , dimensions ratio and length – to – thick ratio across critical temperature are considered.

Keywords: Thermal buckling , Thick plate , Complex finite strip , Higher – order shear deformation theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
1 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semianalytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific subparametric elements. Mapping functions are uses as a class of higherorder Lagrange polynomials, special shape functions, Gauss-Lobatto- Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D Elastodynamic Problems, Lagrange Polynomials, G-L-Lquadrature, Decoupled SBFEM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985