Search results for: Yazid A. M.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: Yazid A. M.

4 Adhesion Properties of Bifidobacterium Pseudocatenulatum G4 and Bifidobacterium Longum BB536 on HT-29 Human Epithelium Cell Line at Different Times and pH

Authors: Ali Q. S., Farid A. J., Kabeir B. M., Zamberi S., Shuhaimi M., Ghazali H. M., Yazid A. M.

Abstract:

Adhesion to the human intestinal cell is considered as one of the main selection criteria of lactic acid bacteria for probiotic use. The adhesion ability of two Bifidobacteriums strains Bifidobacterium longum BB536 and Bifidobacterium psudocatenulatum G4 was done using HT-29 human epithelium cell line as in vitro study. Four different level of pH were used 5.6, 5.7, 6.6, and 6.8 with four different times 15, 30, 60, and 120 min. Adhesion was quantified by counting the adhering bacteria after Gram staining. The adhesion of B. longum BB536 was higher than B. psudocatenulatum G4. Both species showed significant different in the adhesion properties at the factors tested. The highest adhesion for both Bifidobacterium was observed at 120 min and the low adhesion was in 15 min. The findings of this study will contribute to the introduction of new effective probiotic strain for future utilization.

Keywords: Bifidobacterium, Adhesion, HT-29 human epithelium cells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1849
3 Bias Optimization of Mach-Zehnder Modulator Considering RF Gain on OFDM Radio-Over-Fiber System

Authors: Ghazi Al Sukkar, Yazid Khattabi, Shifen Zhong

Abstract:

Most of the recent wireless LANs, broadband access networks, and digital broadcasting use Orthogonal Frequency Division Multiplexing techniques. In addition, the increasing demand of Data and Internet makes fiber optics an important technology, as fiber optics has many characteristics that make it the best solution for transferring huge frames of Data from a point to another. Radio over fiber is the place where high quality RF is converted to optical signals over single mode fiber. Optimum values for the bias level and the switching voltage for Mach-Zehnder modulator are important for the performance of radio over fiber links. In this paper, we propose a method to optimize the two parameters simultaneously; the bias and the switching voltage point of the external modulator of a radio over fiber system considering RF gain. Simulation results show the optimum gain value under these two parameters.

Keywords: OFDM, Mach Zehnder Bias Voltage, switching voltage, radio-over-fiber, RF gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
2 A Hybrid Model of ARIMA and Multiple Polynomial Regression for Uncertainties Modeling of a Serial Production Line

Authors: Amir Azizi, Amir Yazid b. Ali, Loh Wei Ping, Mohsen Mohammadzadeh

Abstract:

Uncertainties of a serial production line affect on the production throughput. The uncertainties cannot be prevented in a real production line. However the uncertain conditions can be controlled by a robust prediction model. Thus, a hybrid model including autoregressive integrated moving average (ARIMA) and multiple polynomial regression, is proposed to model the nonlinear relationship of production uncertainties with throughput. The uncertainties under consideration of this study are demand, breaktime, scrap, and lead-time. The nonlinear relationship of production uncertainties with throughput are examined in the form of quadratic and cubic regression models, where the adjusted R-squared for quadratic and cubic regressions was 98.3% and 98.2%. We optimized the multiple quadratic regression (MQR) by considering the time series trend of the uncertainties using ARIMA model. Finally the hybrid model of ARIMA and MQR is formulated by better adjusted R-squared, which is 98.9%.

Keywords: ARIMA, multiple polynomial regression, production throughput, uncertainties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2199
1 Production Throughput Modeling under Five Uncertain Variables Using Bayesian Inference

Authors: Amir Azizi, Amir Yazid B. Ali, Loh Wei Ping

Abstract:

Throughput is an important measure of performance of production system. Analyzing and modeling of production throughput is complex in today-s dynamic production systems due to uncertainties of production system. The main reasons are that uncertainties are materialized when the production line faces changes in setup time, machinery break down, lead time of manufacturing, and scraps. Besides, demand changes are fluctuating from time to time for each product type. These uncertainties affect the production performance. This paper proposes Bayesian inference for throughput modeling under five production uncertainties. Bayesian model utilized prior distributions related to previous information about the uncertainties where likelihood distributions are associated to the observed data. Gibbs sampling algorithm as the robust procedure of Monte Carlo Markov chain was employed for sampling unknown parameters and estimating the posterior mean of uncertainties. The Bayesian model was validated with respect to convergence and efficiency of its outputs. The results presented that the proposed Bayesian models were capable to predict the production throughput with accuracy of 98.3%.

Keywords: Bayesian inference, Uncertainty modeling, Monte Carlo Markov chain, Gibbs sampling, Production throughput

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145